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Abstract. Additive results for the generalized Drazin inverse of Banach space operators are pre-
sented. Suppose the bounded linear operators a and b on an arbitrary complex Banach space
have generalized Drazin inverses. If bπ aba = 0 and ab2 = 0 , then a+b has generalized Drazin
inverse. This extends the main results of Djordjević and Wei (J. Austral. Math. J., 73(2002),
115–125). Then we apply our results to 2× 2 operator matrices and thereby generalize the
results of Deng, Cvetković-Ilić and Wei (Linear and Multilinear Algebra, 58(2010), 503–521).

1. Introduction

Let X be an arbitrary complex Banach space and L (X) denote the Banach al-
gebra of all bounded operators on X . Set A = L (X) . The commutant of a ∈ A is
defined by comm(a) = {x ∈ A | xa = ax} . The double commutant of a ∈ A is de-
fined by comm2(a) = {x ∈ A | xy = yx for all y ∈ comm(a)} . An element a in A has
g-Drazin inverse, i.e., a is GD-invertible if and only if there exists b ∈ comm(a) such
that b = bab and a−a2b ∈ A qnil . Such b , if exists, is unique, and is denoted by ad .
We call ad the g-Drazin inverse of a . As is well known, a is GD-invertible if and only
if it is quasipolar, i.e., there exists e2 = e ∈ comm2(a) such that a+e ∈A is invertible
and ae ∈ A qnil . Here, A qnil = {a ∈ A | 1+ax ∈U(A ) for every x ∈ comm(a)} . As
is well known,

a ∈ A qnil ⇔ lim
n→∞

‖ an ‖ 1
n = 0.

Suppose the bounded linear operators a and b on an arbitrary complex Banach space
have g-Drazin inverses. In Section 2, we prove that if bπaba = 0 and ab2 = 0 then
a + b has g-Drazin inverse. This extends the results of Djordjevic and Wei (see [7,
Theorem 2.3]).

We next consider the g-Drazin inverse of a 2×2 operator matrix

M =
(

A B
C D

)
(*)

where A ∈ L (X),D ∈ L (Y ) are GD-invertible and X ,Y are complex Banach spaces.
Here, M is a bounded operator on X ⊕Y . The g-Drazin inverses have various appli-
cations in singular differential and differential equations, Markov chains, and iterative
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methods (see [1, 2, 4, 14]). In Section 3, we present some g-Drazin inverses for a
2×2 operator matrix M under a number of different conditions, which generalize [15,
Theorem 2.1 and Theorem 2.2].

If a ∈ A has g-Drazin inverse ad . The element p = 1−aad is called the spectral
idempotent of a . In Section 4, we further consider the g-Drazin inverse of a 2× 2
operator matrix M under the conditions on spectral idempotents. These also extends
[5, Theorem 6 and Theorem 7] to wider cases.

Throughout the paper, X is a Banach space and A = L (X) . We use U(A ) to
denote the set of all units in A . A d indicates the set of all GD-invertible elements in
A . N stands for the set of all natural numbers.

2. Additive results

The purpose of this section is to establish the generalized Drazin inverse of P+Q
in the case PQP = 0 and PQ2 = 0. The explicit formula for the generalized Drazin
inverse of P+Q is illustrated as well. We start by

LEMMA 2.1. Let a,b ∈ A and ab = 0 . If a,b ∈ A d , then a+b∈ A d .

Proof. See [7, Theorem 2.3].

LEMMA 2.2. Let a ∈ A and n ∈ N . Then an ∈ A d if and only if a ∈ A d .

Proof. See [10, Theorem 2.7].

Let x ∈ A . Then we have Pierce decomposition

x = pxp+ px(1− p)+ (1− p)xp+(1− p)x(1− p).

For further use, we induce a representation given by the matrix

x =
(

pxp px(1− p)
(1− p)xp (1− p)x(1− p)

)
p
.

We have

LEMMA 2.3. Let A be a Banach algebra, let a ∈ A and let

x =
(

a c
0 b

)
p
,

relative to p2 = p ∈ A . If a ∈ (pA p)d and b ∈ ((1− p)A (1− p))d , then x ∈ A d .

Proof. See [3, Theorem 2.3].

We are now ready to extend [15, Theorem 2.1 and Theorem 2.2] and prove:
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THEOREM 2.4. Let a,b ∈ A d . If bπaba = 0 and ab2 = 0 , then a+b∈ A d .

Proof. Let p = bbd . Then we have

a =
(

a11 a1

a21 a2

)
p
, b =

(
b1 0
0 b2

)
p
,

where b2 = (1− bbd)b(1− bbd) = b− b2bd ∈ A qnil . Since ab2 = 0, we see that
ap = (ab2)(bd)2 = 0, and so a11 = a21 = 0. Hence, we have

a+b =
(

b1 a1

0 a2 +b2

)
p
.

Since b1 = pbp = b(bbd) and bbd = bdb , we easily see that b1 ∈ (pA p)d . By using
Cline’s formula, we have a2 = bπabπ ∈ A d . By hypothesis, we check that

a2b2a2 = 0,a2b
2
2 = 0.

We will suffice to prove a2 +b2 ∈ (1− p)A (1− p)
)d .

Set

M =
(

a2
2 +a2b2 a2

2b2

a2 +b2 a2b2 +b2
2

)
.

Then

M =
(

a2b2 a2
2b2

0 a2b2

)
+

(
a2

2 0
a2 +b2 b2

2

)
:= G+F.

We see that G2 = 0 and GF = 0.

F =
(

a2
2 0

a2 +b2 b2
2

)
=

(
a2

2 0
a2 0

)
+

(
0 0
b2 b2

2

)
:= H +K.

One easily check that

H =
(

a2
2 0

a2 0

)
=

(
a2

1

)
(a2,0).

Since (a2,0)
(

a2

1

)
= a2

2 ∈ A d , it follows by Cline’s formula, we see that

Hd =
(

a2

1

)
((a2

2)
d)2(a2,0) =

(
a2

1

)
(ad

2)
4(a2,0)

=
(

a2(ad
2)

4a2 0
(ad

2)
4a2 0

)
=

(
(ad

2)
2 0

(ad
2)

3 0

)
.

Likewise, we have

Kd =
(

0
b2

)
(bd

2)
4(1,b2) =

(
0 0

(bd
2)

3 (bd
2)

2

)
.
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Clearly, HK = 0. In light of Lemma 2.1,

Fd = (I−KKd)

[
∞

∑
n=0

Kn(Hd)n

]
Hd +Kd

[
∞

∑
n=0

(Kd)nHn

]
(I−HHd).

In light of [15, Theorem 2.1], we see that

Md = Fd +G(Fd)2.

Clearly, M =
((

a2

1

)
(1,b2)

)2

. By virtue of Lemma 2.1,

(a2 +b2)d =
(

(1,b2)
(

a2

1

))d

= (1,b2)Md
(

a2

1

)

as asserted.

As an immediate consequence, we can derive the following which was given in
[9, Lemma 5].

COROLLARY 2.5. Let a,b ∈ A qnil . If aba = 0 and ab2 = 0 , then a+b∈A qnil .

Proof. Since a,b ∈ A qnil , we see that ad = bd = 0. In light of Theorem 2.4,
(a+b)d = 0, and therefore a+b∈ A qnil , as required.

Let P,Q ∈ A (X)d . In [8, Theorem 4.2.2], Guo proved that P+Q ∈ A (X)d if
PQP = 0 and Q2P = 0 by a different route, and so it is worth noting the following
examples.

EXAMPLE 2.6. Let a =
(

0 1
0 0

)
, b =

(
1 0
0 0

)
∈M2(C) . Then aba= 0 and ab2 =

0, while b2a �= 0.

EXAMPLE 2.7. Let a =
(

0 0
1 0

)
, b =

(
1 0
0 0

)
∈M2(C) . Then aba= 0 and b2a =

0, while ab2 �= 0.

3. Splitting approach

Let A ∈ L (X),D ∈ L (Y ) be GD-invertible and M be given by (∗) . The aim of
this section is to consider a GD-invertible 2× 2 operator matrix M . Using different
splitting of the operator matrix M as M = P+Q , we will apply Theorem 2.4 to obtain
various conditions for a GD-invertible M , which extend [15, Theorem 2.1 and Theorem
2.2].

THEOREM 3.1. If BCA = 0, BCB = 0, DCA = 0 and DCB = 0 , then M is GD-
invertible.
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Proof. We easily see that

M =
(

A B
C D

)
= p+q,

where

p =
(

A B
0 D

)
, q =

(
0 0
C 0

)
.

By virtue of [7, Lemma 2.2] p and q are GD-invertible. Obviously, pq2 = 0, pqp = 0
and then we complete the proof by Theorem 2.4.

COROLLARY 3.2. If BC = 0 and DC = 0 , then M is GD-invertible.

Proof. If BC = 0 then BCA = 0 and BCB = 0. If DC = 0, then DCA = 0 and
DCB = 0. So we get the result by Theorem 3.1.

COROLLARY 3.3. If CA = 0 and CB = 0 , then M is GD-invertible.

Proof. If CA = 0 then BCA = 0 and DCA = 0. If CB = 0, then DCB = 0 and
BCB = 0. So we get the result by Theorem 3.1.

THEOREM 3.4. If ABC = 0, ABD = 0, CBC = 0, CBD = 0 , then M is GD-
invertible.

Proof. Clearly, we have

M =
(

A B
C D

)
= p+q,

where

p =
(

A 0
C D

)
, q =

(
0 B
0 0

)
.

Then by Theorem 2.4, we complete the proof as in Theorem 3.1.

COROLLARY 3.5. (1) If BC = 0 and BD = 0 , then M is GD-invertible.

(2) If AB = 0 and CB = 0 , then M is GD-invertible.

EXAMPLE 3.6. Let A,B,C,D be operators, acting on separable Hilbert space
l2(N) , defined as follows respectively:

A(x1,x2,x3,x4, · · ·) = (x1,x1,x3,x4, · · ·),
B(x1,x2,x3,x4, · · ·) = (x1,−x1,x3,x4, · · ·),
C(x1,x2,x3,x4, · · ·) = (x1 + x2,x1− x2,0,0, · · ·),
D(x1,x2,x3,x4, · · ·) = (−x2,x2,0,0, · · ·).

Set M =
(

A B
C D

)
. Then BCA = 0,BCB = 0,DCA = 0 and DCB = 0. By virtue of

Theorem 3.4, M is GD-invertible.
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It is convenient this stage to include the following spiliting theorem.

THEOREM 3.7. If BCA = 0,BCB = 0,BDC = 0 and BD2 = 0 , then M is GD-
invertible.

Proof. Let

p =
(

A B
0 0

)
, q =

(
0 0
C D

)
.

Then M = p+q . In view of [7, Lemma 2.2,] p and q are GD-invertible. By hypothesis,
we easily verify that pqp = 0 and pq2 = 0. This completes the proof, by Theorem 2.4.

4. Spectral conditions

The goal of this section is to consider another splitting of the block matrix M and
present alternative theorems on spectral idempotents. Let A ∈ L (X),D ∈ L (Y ) be
GD-invertible and M be given by (∗) . We derive

THEOREM 4.1. (1) If BCA = 0,BCB = 0,DdC = 0 and BDDπ = 0 , then M is
GD-invertible.

(2) If CBC = 0,CBD = 0,CAd = 0 and AAπB = 0 , then M is GD-invertible.

Proof.

(1) Let

P =
(

A2Ad B
0 D2Dd

)
, Q =

(
AAπ 0
C DDπ

)
.

Then P and Q are GD-invertible by Theorem 3.1. We compute that

PQP =
(

BCA2Ad BCB
D2DdCA2Ad D2DdCB

)
,

PQ2 =
(

BCAAπ BD2Dπ

D2DdCAAπ 0

)
.

By hypothesis, PQP = 0 and PQ2 = 0. In light of Lemma 2.1, M = P+Q is
GD- invertible.

(2) Choosing the same P and Q as in (1) we have QPQ = 0 and QP2 = 0. As P
and Q are GD- invertible, we complete the proof by Theorem 2.4.

COROLLARY 4.2. ([5, Theorem 6])

(1) If BC = 0, DdC = 0 and BDDπ = 0 , then M is GD-invertible.

(2) If CB = 0, CAd = 0 and AAπB = 0 , then M is GD-invertible.
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THEOREM 4.3. If BCA = 0, BCB = 0, BDd = 0 and DπDC = 0 , then M is GD-
invertible.

Proof. Let

P =
(

A(I−Aπ) B
0 DDπ

)
, Q =

(
AAπ 0
C D(I−Dπ)

)
.

In view of Theorem 3.1, P and Q are GD- invertible. Moreover, we have

PQP =
(

BCA(I−Aπ) BCB
DDπCA(I−Aπ) DDπCB

)
,

PQ2 =
(

BCAAπ +BD(I−Dπ)C BD2(I−Dπ)
DDπCAAπ 0

)
.

By hypothesis, we get PQP = 0 and PQ2 = 0. According to Theorem 2.4, M = P+Q
is G-Drazin invertible, as asserted.

COROLLARY 4.4. ([5, Theorem 7]) If BC = 0,BDd = 0 and DπDC = 0 , then
M is GD-invertible.

EXAMPLE 4.5. Let A,B,C,D be operators, acting on separable Hilbert space
l2(N) , defined as follows respectively:

A(x1,x2,x3,x4, · · ·) = (0,x1,x3,x4, · · ·),
B(x1,x2,x3,x4, · · ·) = (0,x1,x3,x4, · · ·),
C(x1,x2,x3,x4, · · ·) = (x1,x1 + x2,0,0, · · ·),
D(x1,x2,x3,x4, · · ·) = (x1,x1,0,0, · · ·).

Then
Dπ(x1,x2,x3,x4, · · ·) = (0,−x1 + x2,x3,x4, · · ·).

Moreover, we have BCA = 0,BCB = 0,BD(I −Dπ) = 0 and DπDC = 0. In light of

Theorem 4.3,

(
A B
C D

)
is GD-invertible. In this case, BC �= 0.

THEOREM 4.6. Let A ∈ L (X) be GD-invertible, D ∈ L (Y ) and M be given by
(∗) . Let W = AAd +AdBCAd . If AW is GD-invertible,

ACAπBC = 0,CAπBC = 0,D = CAdB,

then M is GD-invertible.

Proof. Clearly, we have

M =
(

A B
C CAdB

)
= P+Q,
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where

P =
(

A AAdB
C CAdB

)
, Q =

(
0 AπB
0 0

)
.

By hypothesis, we easily check that PQP = 0 and PQ2 = 0 and Q is GD-invertible.
Moreover, we have

P = P1 +P2, P1 =
(

A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ 0
CAπ 0

)

and P2P1 = 0. In light of [7, Lemma 2.2,] P2 is GD-invertible. It is easy to verify that

P1 =
(

AAd

CAd

)(
A,AAdB

)
.

By hypothesis, we see that

(
A,AAdB

)(
AAd

CAd

)
= AW

is GD-invertible. In light of the Cline’s formula, we see that P1 is GD-invertible. Ac-
cording to [7, Theorem 2.3] P is GD-invertible. This completes the proof.

Similarly with application of Theorem 2.4 we deduce the following result.

THEOREM 4.7. Let A ∈ L (X) be GD-invertible, D ∈ L (Y ) and M be given by
(∗) . Let W = AAd +AdBCAd . If AW is GD-invertible,

BCAAπ = 0, BCAπB = 0, D = CAdB,

then M is GD-invertible.
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