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ON COUPLINGS OF SYMMETRIC OPERATORS WITH
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Abstract. In the paper the known results on couplings of symmetric operators Aj , j ∈ {1,2},
in the sense of A.V. Shtraus are extended to the case of operators Aj with arbitrary (possibly
unequal and infinite) deficiency indices. In particular, we generalize to this case the coupling
method based on the theory of boundary triplets for symmetric operators. This enables us to
obtain the abstract Titchmarsh formula, which gives the representation of the Weyl function of
the coupling in terms of Weyl functions of boundary triplets for A∗

1 and A∗
2 . In applications

to differential operators on R this formula turns into the classical Titchmarsh formula, which
gives a representation of the characteristic matrix Ω(·) in terms of Titchmarsh-Weyl functions
on semiaxes R+ and R− . Moreover, by using the coupling method we parameterize all Naimark
exit space extensions Ã = Ã∗ of the second kind of a densely defined symmetric operator A with
finite possibly unequal deficiency indices.

1. Introduction

Let H be a Hilbert space and let C̃ (H) be the set of all linear relations in H ,
i.e., the set of all closed subspaces in H2 . A relation A ∈ C̃ (H) is called symmetric
(self-adjoint) if A ⊂ A∗ (resp. A = A∗ ), where A∗ ∈ C̃ (H) is the adjoint relation to
A . Identifying of a symmetric not necessarily densely defined (self-adjoint) operator
A with its graph enables one to consider A as a symmetric (resp. self-adjoint) linear
relation.

Let H j be a Hilbert space, let Aj be a symmetric relation in H j , let H̃ := H1⊕H2

(so that H̃2 = H2
1 ⊕H2

2 ) and let P̂j be the orthoprojector in H̃2 onto H2
j , j ∈ {1,2} .

Recall [42, 11, 13] that a relation Ã = Ã∗ in H̃ is called a coupling of relations Aj if
P̂jÃ = A∗

j , j ∈ {1,2} . If Ã is a coupling of A1 and A2 , then Aj = Ã∩H2
j , j ∈ {1,2} .

In the paper by A.V. Shtraus [42] all couplings Ã of densely defined operators Aj

with finite deficiency indices n±(Aj) are characterized in terms of boundary operators
for A∗

j . In [11, 13] the coupling method for symmetric relations A with equal deficiency
indices n+(A) = n−(A) � ∞ has been developed on a basis of the theory of boundary
triplets. Recall that according to [19, 8] a collection Π = {H ,Γ0,Γ1} formed by a
Hilbert space H and two linear mappings Γ0 and Γ1 from A∗ to H is called a
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boundary triplet for A∗ if the mapping Γ = (Γ0,Γ1)� from A∗ to H 2 is surjective and
the following abstract Green’s identity holds:

( f ′,g)−( f ,g′) = (Γ1 f̂ ,Γ0ĝ)H −(Γ0 f̂ ,Γ1ĝ)H , f̂ = { f , f ′}, ĝ = {g,g′} ∈ A∗. (1.1)

In the following theorem from [11, 13] a coupling construction in terms of boundary
triplets is presented.

THEOREM 1.1. Let A and Ar be symmetric relations in H and Hr respectively
with equal deficiency indices n±(A) = n±(Ar) = d � ∞ and let Π = {H ,Γ0,Γ1} and
Πr = {H ,Γr

0,Γr
1} be boundary triplets for A∗ and A∗

r respectively. Then the linear
relation

Ã = { f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r : Γ0 f̂ −Γr

0 f̂r = Γ1 f̂ −Γr
1 f̂r = 0} (1.2)

is a coupling of A and Ar . Conversely, let A be a symmetric relation in H with n+(A)−
n−(A) , let Π = {H ,Γ0,Γ1} be a boundary triplet for A∗ , let Ã ⊃ A be a self-adjoint
relation in the Hilbert space H̃ = H⊕Hr satisfying

A = Ã∩H2, A∗ = P̂Ã (1.3)

( P̂ is the orthoprojector in H̃2 onto H2 ) and let Ar = Ã∩H2
r . Then there exists a unique

boundary triplet Πr = {H ,Γr
0,Γr

1} for A∗
r such that Ã is of the form (1.2) (hence Ã is

a coupling of A and Ar ).

Let B(H ) be the set of all bounded operators in H . According to [14, 30] with a
boundary triplet Π = {H ,Γ0,Γ1} for A∗ one associates the operator function M(·) :
C\R → B(H ) (the Weyl function of Π) defined by

Γ1{ fλ ,λ fλ} = M(λ )Γ0{ fλ ,λ fλ}, fλ ∈ Nλ (A) := ker(A∗ −λ ), λ ∈ C\R.

It turns out that M(·) belongs to the class Ru[H ] of uniformly strict Nevanlinna
operator-functions. The latter means that Imλ · ImM(λ ) � αλ I with some αλ > 0
and M∗(λ ) = M(λ ), λ ∈ C\R .

An important ingredient in the theory of boundary triplets is a self-adjoint exten-
sion A0 := kerΓ0 of A associated with a boundary triplet Π = {H ,Γ0,Γ1} for A∗ . Let
M(·) and Mr(·) be the Weyl functions of boundary triplets Π and Πr from Theorem
1.1. Then according to [11, 13] there exists a boundary triplet Πc = {Hc,Γc

0,Γ
c
1} for

A∗ ⊕A∗
r such that Hc = H ⊕H , Ac

0(= kerΓc
0) coincides with the coupling Ã of A

and Ar (see (1.2)) and the Weyl function Mc(λ )(∈ B(H ⊕H )) of Πc is

Mc(λ )=
( −(M(λ )+Mr(λ ))−1 IH −(M(λ )+Mr(λ ))−1M(λ )

IH −M(λ )(M(λ )+Mr(λ ))−1 (M−1(λ )+M−1
r (λ ))−1

)
, λ ∈ C\R.

(1.4)

The Weyl function Mc(·) turns out to be a very important and useful object in
extension theory and its applications. To illustrate this assertion consider the Sturm -
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Liouville expression l[y] = −y′′ +q(x)y with the real potential q(x) defined on R . Let
Tmin and Tmax be the corresponding minimal an maximal operator in L2(R) and let
T−
min and T−

max (T+
min and T+

max ) be minimal and maximal operators in L2(R−) (resp.
L2(R+)) generated by the restriction of l[y] onto R− = (−∞,0] (resp. R+ = [0,∞)).
Assume that l[y] is in the limit point case at −∞ and ∞ (this means that n±(T−

min) =
n±(T+

min) = 1). Then there exist boundary triplets Π for T−
max and Πr for T+

max such that
the Weyl functions M(·) of Π and Mr(·) of Πr coincide with the classical Titchmarsh
-Weyl functions for l[y] on R− and R+ respectively [16]. Moreover, the coupling
(1.2) of T−

min and T+
min is Tmax = T ∗

max(= Tmin) and formula (1.4) for Mc(·) turns into
the classical Titchmarsh formula for the characteristic function Ω(λ ) = Mc(λ ) of the
Sturm - Liouville operator on R [44]. This fact enables one to consider (1.4) as an ab-
stract Titchmarsh formula for the coupling of symmetric relations with equal deficiency
indices.

Recall that a self-adjoint relation Ã ⊃ A in a Hilbert space H̃⊃ H is called an exit
space extension of A . In the case n+(A) = n−(A) the Krein formula for generalized
resolvents

Rτ(λ ) := PH(Ãτ −λ )−1 � H = (A0 −λ )−1− γ(λ )(τ(λ )+M(λ ))−1γ∗(λ ), λ ∈ C+
(1.5)

gives a parametrization Ã = Ãτ of all exit space extensions Ã = Ã∗ of A by means of
all Nevanlinna functions τ(·) : C+ → C̃ (H ) , which are holomorphic functions with
values in the set of all maximal dissipative linear relations in H [26, 28]. In terms of
a boundary triplet Π = {H ,Γ0,Γ1} for A∗ elements of (1.5) are defined as follows
[14, 30]: A0(= A∗

0) = kerΓ0 , γ(·) : C+ → B(H ,H) is a unique operator-function such
that Γ0(γ(λ ),λ γ(λ ))� = IH (the γ -field) and M(·) is the Weyl function of Π . More-
over, in [11, 13] the proof of the Krein formula (1.5) using the coupling construction
(1.2) is presented. For extensions Ã satisfying (1.3) this proof is based on the following
basic realization result: for every function τ ∈ Ru[H ] there exists a symmetric relation
Ar in Hr and a boundary triplet Πr = {H ,Γr

0,Γ
r
1} for A∗

r such that the Weyl func-
tion of Πr is τ(·) [28, 15]. This result, Theorem 1.1 and Titchmarsh formula (1.4)
with Mr(λ ) = τ(λ ) enabled to show in [11, 13] that an exit space extension Ã = Ãτ
satisfies (1.3) if and only if τ(·) ∈ Ru[H ] . Moreover, by using a certain modification
of the above results the authors of [11, 13] parameterized all extensions Ãτ which are
operators (when A is an operator) and all extensions Ãτ of the second kind in the sense
of Naimark. Note also that the coupling construction (1.2) and formula for canonical
resolvents related to it were used in the recent paper [10] for studying of the compres-
sions of exit space extensions; moreover, a certain modification of such a construction
was used in [4, 6, 39] for studying of multidimensional Schrodinger operators.

As is known [30] each boundary triplet Π = {H ,Γ0,Γ1} for A∗ satisfies n+(A) =
n−(A) = dimH . Therefore theory of boundary triplets is not applicable to couplings
of relations with unequal deficiency indices. At the same time in applications couplings
of relations (operators) A1 and A2 with unequal deficiency indices n+(Aj) �= n−(Aj)
naturally appear. Consider for instance the differential expression l[y] = −iy(3) of the
third order on R . Let Tmax be the corresponding maximal operator in L2(R) and let
T±
min and T±

max be minimal and maximal operators in L2(R±) generated by restrictions
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of l[y] on R± . Then n+(T+
min) = n−(T−

min) = 1, n−(T+
min) = n+(T−

min) = 2 and Tmax =
T ∗
max is the coupling of T+

min and T−
min .

In [34] a new construction of a boundary triplet with two Hilbert space H0 and
H1 was presented. Namely, assume that H0 is a Hilbert space, H1 is a subspace
in H0 , H2 := H0 �H1 and Pj is the orthoprojector in H0 onto H j, j ∈ {1,2} .
Then according to [34] a collection Π = {H0 ⊕H1,Γ0,Γ1} with operators Γ j : A∗ →
H j, j ∈ {0,1}, is called a boundary triplet for A∗ if the mapping Γ = (Γ0,Γ1)� is
surjective and the following Green’s identity holds for all f̂ = { f , f ′}, ĝ = {g,g′} ∈ A∗ :

( f ′,g)− ( f ,g′) = (Γ1 f̂ ,Γ0ĝ)H0 − (Γ0 f̂ ,Γ1ĝ)H0 + i(P2Γ0 f̂ ,P2Γ0ĝ)H2 (1.6)

If Π = {H0 ⊕H1,Γ0,Γ1} is a boundary triplet for A∗ , then

dimH1 = n−(A) � n+(A) = dimH0 (1.7)

and hence it is applicable to relations A with possibly unequal deficiency indices n±(A) .
By using this fact we extend in the present paper the above results from [42, 11, 13]
to couplings of symmetric linear relations with arbitrary (possibly unequal and infinite)
deficiency indices.

According to [34] with a boundary triplet Π = {H0⊕H1,Γ0,Γ1} for A∗ one as-
sociates two Weyl functions M+(·) : C+ → B(H0,H1) and M−(·) : C− → B(H1,H0)
given by

Γ1{ fλ ,λ fλ} = M+(λ )Γ0{ fλ ,λ fλ}, fλ ∈ Nλ (A), λ ∈ C+,

(Γ1 + iP2Γ0){ fλ ,λ fλ} = M−(λ )P1Γ0{ fλ ,λ fλ}, fλ ∈ Nλ (A), λ ∈ C−.

Assume that the block representations of M±(λ ) are

M+(λ ) = (M(λ ),N+(λ )) : H1 ⊕H2 → H1, λ ∈ C+, (1.8)

M−(λ ) = (M(λ ),N−(λ ))� : H1 → H1 ⊕H2, λ ∈ C−. (1.9)

Then according to [34, 36]the equalities

M (λ ) =
(

M(λ ) N+(λ )
0 i

2 IH2

)
: H1 ⊕H2 → H1 ⊕H2, λ ∈ C+ (1.10)

M (λ ) =
(

M(λ ) 0
N−(λ ) − i

2 IH2

)
: H1 ⊕H2 → H1 ⊕H2, λ ∈ C− (1.11)

define the operator-function M (·)∈Ru[H0] with H0 = H1⊕H2 . In the present paper
we prove the following inverse theorem.

THEOREM 1.2. Let (M+,M−) be a pair of holomorphic operator-functions M+(·) :
C+ → B(H0,H1) and M−(·) : C− → B(H1,H0) with the block representations (1.8),
(1.9) such that the operator function M (·) defined by (1.10) and (1.11) belongs to
Ru[H0] . Then there exist a symmetric relation A in H and a boundary triplet Π =
{H0⊕H1,Γ0,Γ1} for A∗ such that M+(·) and M−(·) are the Weyl functions of Π .
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By using Theorem 1.2 we show that a simple symmetric operator A with n+(A) =
n−(A) admits the representation A = A1⊕A2 with the maximal symmetric operator A2

if and only if there is a characteristic function C(λ ) of A (in the sense of [43, 22, 30])

admitting the block representation C(λ ) =
(

C1(λ ) C2(λ )
0 C3

)
with the constant entry

C3 . This statement covers the following known result [2, 27]: a densely defined simple
symmetric operator A with n+(A) = n−(A) admits the representation A = A1 ⊕ A2

with the maximal symmetric operators A1 and A2 if and only if some (and hence any)
characteristic function of A is constant.

Next we prove the main coupling theorem concerning the coupling of symmetric
relations A in H and Ar in Hr with possibly unequal deficiency indices satisfying
n±(A) = n±(−Ar) . Namely, we show that in this case Theorem 1.1 remains valid with
boundary triplets Π = {H0⊕H1,Γ0,Γ1} for A∗ , Πr = {H0⊕H1,Γr

0,Γ
r
1} for (−Ar)∗

and the coupling Ã given by

Ã = { f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r : Γ0 f̂ −Γr

0Jr f̂r = Γ1 f̂ −Γr
1Jr f̂r = 0} (1.12)

instead of (1.2) (in (1.12) Jr{ f , f ′} := { f ,− f ′}, { f , f ′} ∈ H2, so that JrA∗
r = −A∗

r ).
Moreover, we show that there exists a boundary triplet Πc = {Hc,Γc

0,Γ
c
1} for A∗ ⊕A∗

r
(the coupling of boundary triplets Π and Πr ) such that Hc = H1⊕H2⊕H1 , kerΓ0 =
Ã and the Weyl function Mc(λ ) (λ ∈ C+) of Πc is

Mc(λ ) =

⎛⎝ Φ(λ ) Φ(λ )N+(λ ) IH1 + Φ(λ )M(λ )
Nr−(−λ )Φ(λ ) i

2IH2 +Nr−(−λ )Φ(λ )N+(λ ) Nr−(−λ )Φ(λ )M(λ )
Mr(−λ )Φ(λ ) Mr(−λ )Φ(λ )N+(λ ) Mr(−λ )Φ(λ )M(λ )

⎞⎠ ,

(1.13)

where Φ(λ ) = −(M(λ )−Mr(−λ )− iN+(λ )Nr−(−λ ))−1. In this equalities M(·) and
N+(·) are taken from the block representation (1.8) of the Weyl function M+(λ ) cor-
responding to the boundary triplet Π for A∗ and Mr(·) and Nr−(·) are taken from the
block representation

Mr−(z) = (Mr(z),Nr−(z))� : H1 → H1 ⊕H2, z ∈ C−

of the Weyl function Mr−(·) corresponding to the boundary triplet Πr for (−Ar)∗ .
Equality (1.13) is the abstract Titchmarsh formula for the coupling of symmetric

relations (in particular operators) with arbitrary defects. Its role in the extension theory
of such relations is similar to that of the formula (1.4) for relations with equal defects.
For instance (1.13) enables us to describe all exit space extensions Ã = Ã∗ of a sym-
metric relation A with arbitrary defects satisfying (1.3). Namely, let A be a symmetric
relation in H with n−(A) � n+(A) and let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary
triplet for A∗ . Then according to [34] the Krein type formula for generalized resolvents

Rτ(λ ) := PH(Ãτ−λ )−1 � H = (A0−λ )−1−γ+(λ )K0(λ )(K1(λ )+M+(λ )K0(λ ))−1γ∗−(λ )

with λ ∈ C+ gives a parametrization Ã = Ãτ of all exit space extensions Ã = Ã∗ of A
by means of pairs τ = {K0(·),K1(·)} of holomorphic operator-functions Kj(·) : C+ →
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B(H1,H j), j ∈ {0,1} , belonging to the Nevanlinna type class R̃(H0,H1) (see sub-
section 2.2). In this formula A0 := kerΓ0 is a maximal symmetric extension of A with
n−(A0) = 0, γ±(·) are γ -fields (see Proposition 2.7) and M+(·) is the Weyl function
of Π .

Using the realisation Theorem 1.2, the main coupling theorem 1.1 and Titchmarsh
formula (1.13) we parametrize in terms of τ all extensions Ãτ of the second kind (in
the sense of Naimark) of a densely defined symmetric operator A with finite possibly
unequal deficiency indices n±(A) . In the case n+(A) = n−(A) such a parametrization
follows from the results of [13].

In the final part of the paper we demonstrate the obtained results on a symmetric
differential system [3, 18]

Jy′ −B(t)y = λH(t)y, t ∈ R, λ ∈ C (1.14)

on R . Here

J =

⎛⎝ 0 0 −Iν
0 iIν̂ 0
Iν 0 0

⎞⎠ : C
ν ⊕C

ν̂ ⊕C
ν︸ ︷︷ ︸

Cn

→ C
ν ⊕C

ν̂ ⊕C
ν︸ ︷︷ ︸

Cn

(1.15)

and B(t) = B∗(t), H(t) � 0, t ∈ R, are n× n -matrix functions (n = 2ν + ν̂ ). Let
Tmin , T−

min and T+
min be minimal (symmetric) relations in L2(H,R) , L2(H,R−) and

L2(H,R+) generated by system (1.14) and its restrictions onto R− and R+ respec-
tively [5, 29]. We show that in the case when T−

min and T+
min have minimal (unequal)

deficiency indices

n+(T−
min) = ν + ν̂, n−(T−

min) = ν, n+(T+
min) = ν, n−(T+

min) = ν + ν̂, (1.16)

the relation Tmin = T ∗
min is the coupling of T−

min and T+
min . Moreover, we show that in

this case the characteristic matrix Ω(·) of the system in the sense of [9, 40] coincides
(up to a self-adjoint constant) with the Weyl function Mc(·) of the coupling Πc of cer-
tain boundary triplets Π for (T−

min)
∗ and Πr for (−T+

min)
∗ (see Proposition 4.14, (2)).

This implies that for system (1.14) abstract Titchmarsh formula (1.13) turns into the
Titchmarsh formula from [35], which gives a representation of Ω(λ ) in terms of Weyl
functions m−(·) and m+(·) for restrictions of the system onto R− and R+ respectively
(see Definition 4.13).

As is known [23] the equation l[y] = λy , where l[y] is a formally self-adjoint dif-
ferential expression of an odd order can be reduced to system (1.14) with J of the form
(1.15). Therefore the results of the paper concerning system (1.14) can be reformulated
for differential operators on R , R+ and R− generated by l[y] (c.f. [37]).

2. Preliminaries

2.1. Notations

The following notations will be used throughout the paper: H , H denote separa-
ble Hilbert spaces; B(H1,H2) is the set of all bounded linear operators defined on H1

with values in H2 ; C0(H1,H2) := {N ∈ B(H0,H1) : ||N|| < 1} is the set of all strict
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contractions from H1 to H2 ; B(H ) := B(H ,H ) ; C0(H ) := C0(H ,H ) ; C (H)
is the set of all closed (possibly non densely defined) operators in H ; A � L is a re-
striction of the operator A ∈ B(H1,H2) onto the linear manifold L ⊂ H1 ; C+ (C−)
is the open upper (lower) half-plane of the complex plane; D = {z ∈ C : |z| < 1} is the
open unit disk in C .

If H is a subspace in H̃ , then PH (∈ [H̃ ]) denote the orthoprojector in H̃ onto
H and P

H̃ ,H
(∈ [H̃ ,H ]) denote the same orthoprojector considered as an operator

from H̃ to H .
Recall that a linear manifold T in the Hilbert space H0⊕H1 (H ⊕H ) is called

a linear relation from H0 to H1 (resp. in H ). The set of all closed linear relations
from H0 to H1 (in H ) will be denoted by C̃ (H0,H1) (resp. C̃ (H )). In the
following an operator T ∈ C (H) is identified with its graph grT . This enables one to
consider C (H) as a subset of C̃ (H) .

For a linear relation T ∈ C̃ (H0,H1) we denote by domT, ranT and kerT the
domain, range and kernel of T respectively. For T ∈ C̃ (H0,H1) we will denote by
T−1(∈ C̃ (H1,H0)) and T ∗(∈ C̃ (H1,H0)) the inverse and adjoint linear relations of
T respectively.

As is known a linear relation T ∈ C̃ (H) is called symmetric (self-adjoint) if T ⊂
T ∗ (resp. T = T ∗ ). Let JH ∈ B(H2) be the operator given by

JH =
(

0 −IH
IH 0

)
: H⊕H→ H⊕H. (2.1)

Then for T ∈ C̃ (H) the following equivalence holds:

T ⊂ T ∗ ⇐⇒ (JH f̂ , ĝ) = 0, f̂ , ĝ ∈ T. (2.2)

For an operator T = T ∗ ∈ B(H) we write T � 0 if (T f , f ) � 0, f ∈H, and T > 0
if T −αI � 0 with some α > 0.

Recall that a holomorphic operator function Φ(·) : C \R → B(H ) is called a
Nevanlinna function if Imλ · ImΦ(λ ) � 0 and Φ∗(λ ) = Φ(λ ), λ ∈ C \R . The class
of all Nevanlinna B(H )-valued functions will be denoted by R[H ] . Moreover, we
denote by Ru[H ] the set of all functions Φ(·) ∈ R[H ] such that Imλ · ImΦ(λ ) >
0, λ ∈ C\R .

2.2. The classes R̃(H0,H1) and R̃(H )

In the following H0 is a Hilbert space, H1 is a subspace in H0 , H2 := H0�H1 ,
P1 := PH0,H1 and P2 = PH2 .

DEFINITION 2.1. [33, 36] A function τ(·) : C+ → C̃ (H0,H1) is referred to the
class R̃(H0,H1) if:

(i) 2Im(h1,h0)−||P2h0||2 � 0, {h0,h1} ∈ τ(λ ), λ ∈ C+ ;
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(ii) (τ(λ )+ iP1)−1 ∈B(H1,H0), λ ∈C+, and the operator-function (τ(λ )+ iP1)−1

is holomorphic on C+ .

According to [33, 36] the equality

τ(λ ) = {{K0(λ )h,K1(λ )h} : h ∈ H1}, λ ∈ C+

establishes a bijective correspondence between all functions τ = τ(·)∈ R̃(H0,H1) and
all pairs {K0(·),K1(·)} of holomorphic operator-functions Kj(·) : C+ → B(H1,H j), j∈
{0,1}, with the block representation

K0(λ ) = (K01(λ ),K02(λ ))� : H1 → H1 ⊕H2 (2.3)

satisfying for all λ ∈ C+ the following relations:

2 Im(K∗
01(λ )K1(λ ))−K∗

02(λ )K02(λ ) � 0, (K1(λ )+ iK01(λ ))−1 ∈ B(H1). (2.4)

In the following we write τ = {K0(·),K1(·)} identifying a function τ ∈ R̃(H0,H1)
and the corresponding pair {K0(·),K1(·)} of holomorphic operator functions satisfying
(2.4)(more precisely the equivalence class of such pairs [33]).

DEFINITION 2.2. A pair τ = {K0(·),K1(·)} of holomorphic operator-functions
Kj(·) : C+ → B(H1,H j), j ∈ {0,1}, is referred to the class R̃u(H0,H1) if

K0(λ ) = (IH1 ,K02(λ ))� : H1 → H1 ⊕H2, λ ∈ C+ (2.5)

(that is, K0(λ ) has the block representation (2.3) with K01(λ ) = IH1 ) and

2ImK1(λ )−K∗
02(λ )K02(λ ) > 0, λ ∈ C+. (2.6)

REMARK 2.3. (1) If τ={K0(·),K1(·)}∈R̃u(H0,H1) , then by (2.6) ImK1(λ )>
0 and, consequently, the second relation in (2.4) is satisfied. Therefore τ ∈
R̃(H0,H1) and hence R̃u(H0,H1) ⊂ R̃(H0,H1) .

(2) In the case H1 = H0 =: H the class R̃(H ,H ) coincides with the well-known
class R̃(H ) of Nevanlinna C̃ (H )-valued functions (Nevanlinna operator pairs)
τ = {K0(λ ),K1(λ )} , λ ∈ C+ (see e.g [11]).Moreover, identifying a function
Φ(·) ∈ Ru[H ] with a pair τ = {IH ,Φ(λ )} ∈ R̃u(H ,H ), λ ∈ C+, one gets
R̃u(H ,H ) = Ru[H ] .

2.3. Boundary triplets and Weyl functions

In the following we denote by A a closed symmetric linear relation (in particular
closed not necessarily densely defined symmetric operator) in a Hilbert space H . Let
Nλ (A) = ker(A∗ −λ ) (λ ∈ C\R) be a defect subspace of A , let N̂λ (A) = {{ f ,λ f} :
f ∈ Nλ (A)} and let n±(A) := dimNλ (A) � ∞, λ ∈ C±, be deficiency indices of A .

As before we assume that H0 is a Hilbert space, H1 is a subspace in H0 and
H2 := H0�H1 , so that H0 =H1⊕H2 . Moreover, we let P1 =PH0,H1 and P2 = PH2 .

Below within this subsection we specify some definitions and results from [34, 36].
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DEFINITION 2.4. A collection Π = {H0⊕H1,Γ0,Γ1} , where Γ j : A∗ →H j, j ∈
{0,1} are linear mappings, is called a boundary triplet for A∗ , if the mapping Γ : f̂ →
{Γ0 f̂ ,Γ1 f̂ }, f̂ ∈ A∗, from A∗ into H0⊕H1 is surjective and the Green’s identity (1.6)
holds for all f̂ = { f , f ′}, ĝ = {g,g′} ∈ A∗ .

By using the operator JH (see (2.1)) one may rewrite (1.6) as

−(JH f̂ , ĝ) = (Γ1 f̂ ,Γ0ĝ)H0 − (Γ0 f̂ ,Γ1ĝ)H0 + i(P2Γ0 f̂ ,P2Γ0ĝ)H2 , f̂ , ĝ ∈ A∗. (2.7)

In the following propositions some properties of boundary triplets are specified.

PROPOSITION 2.5. If Π = {H0 ⊕H1,Γ0,Γ1} is a boundary triplet for A∗ , then
(1.7) holds. Conversely, let A be a symmetric relation with n−(A) � n+(A) . Then
for any Hilbert space H0 and a subspace H1 ⊂ H0 satisfying (1.7) there exists a
boundary triplet Π = {H0⊕H1,Γ0,Γ1} for A∗ .

PROPOSITION 2.6. Let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary triplet for A∗ .
Then:

(1) kerΓ0∩kerΓ1 = A and Γ j is a bounded operator from A∗ onto H j, j ∈ {0,1} .

(2) The equality A0 := kerΓ0 = { f̂ ∈ A∗ : Γ0 f̂ = 0} define a maximal symmetric
extension A0 of A such that n−(A0) = 0 .

PROPOSITION 2.7. Let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary triplet for A∗ .
Then there exists a unique pair of operator-functions γ+(·) : C+ → B(H0,H) and
γ−(·) : C− → B(H1,H) (γ -fields of the triplet Π) such that γ+(λ )H0 ⊂ Nλ (A) ,
γ−(λ )H1 ⊂ Nλ (A) and

Γ0γ̂+(λ ) = IH0 , λ ∈ C+; P1Γ0γ̂−(λ ) = IH1 , λ ∈ C−, (2.8)

where γ̂+(λ ) = (γ+(λ ),λ γ+(λ ))�(∈ B(H0,H
2)), λ ∈ C+, and

γ̂−(λ ) = (γ−(λ ),λ γ−(λ ))�(∈ B(H1,H
2)), λ ∈ C− .

DEFINITION 2.8. The operator functions M+(·) : C+ → B(H0,H1) and M−(·) :
C− → B(H1,H0) defined by

M+(λ ) = Γ1γ̂+(λ ), λ ∈ C+; M−(λ ) = (Γ1 + iP2Γ0)γ̂−(λ ), λ ∈ C− (2.9)

are called the (abstract) Weyl functions of the triplet Π = {H0 ⊕H1,Γ0,Γ1} for A∗ .

It was shown in [34] that the operator-functions γ±(·) and M±(·) are holomorphic on
their domains and M∗

+(λ ) = M−(λ ), λ ∈ C+ . Moreover, the following theorem was
proved in [36].
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THEOREM 2.9. Let A be a symmetric operator in H , let Π = {H0⊕H1,Γ0,Γ1}
be a boundary triplet for A∗ and let M± be the Weyl functions of Π with the block rep-
resentations (1.8), (1.9). Then : (i) the equalities (1.10) and (1.11) define the operator-
function M (·) ∈ Ru[H0]; (ii) the operator A is densely defined if and only if the fol-
lowing two conditions are satisfied:

s− lim
y→∞

M (iy) = 0 and lim
y→∞

yIm(M (iy)h,h) = ∞, h ∈ H0 \ {0}. (2.10)

2.4. Exit space extensions and generalized resolvents

In the following with each unitary operator U ∈ B(H1,H2) we associate a unitary
operator Ũ := U ⊕U ∈ B(H2

1,H
2
2) .

DEFINITION 2.10. Linear relations Tj ∈ C̃ (H j), j ∈ {1,2}, are said to be unitar-
ily equivalent if there exists a unitary operator U ∈ B(H1,H2) such that T2 = ŨT1 .

DEFINITION 2.11. Let H be a subspace in a Hilbert space H̃ . The relation Ã =
Ã∗ ∈ C̃ (H̃) is called H-minimal if span{H,(Ã−λ )−1H : λ ∈ C\R} = H̃ .

Recall further the following definition.

DEFINITION 2.12. The operator function R(·) : C+ → B(H) is called the gener-
alized resolvent of a symmetric relation A ∈ C̃ (H) if there exist a Hilbert space H̃⊃ H

and a self-adjoint relation Ã ∈ C̃ (H̃) such that A ⊂ Ã and the following equality holds:

R(λ ) = P
H̃,H

(Ã−λ )−1 � H, λ ∈ C+. (2.11)

The relation Ã ∈ C̃ (H̃) in (2.11) is called an exit space self-adjoint extension of A .
Such an extension exists for any symmetric relation A .

According to [28] each generalized resolvent of A is generated by some H-minimal exit
space extension Ã of A . Moreover, if the H-minimal exit space extensions Ã1 ∈ C̃ (H̃1)
and Ã2 ∈ C̃ (H̃2) of A induce the same generalized resolvent R(λ ) , then there exists
a unitary operator V ∈ [H̃1 �H,H̃2 �H] such that Ã1 and Ã2 are unitarily equivalent
by means of the unitary operator U = IH ⊕V . By using this fact we suppose in the
following that an exit space extension Ã is H-minimal, so that it is defined by (2.11)
uniquely up to the unitary equivalence.

A description of all generalized resolvents of a symmetric relation A with possibly
unequal deficiency indices n±(A) is given by the following theorem obtained in [34].

THEOREM 2.13. Assume that n−(A)� n+(A) , Π = {H0⊕H1,Γ0,Γ1} is a bound-
ary triplet for A∗ , A0 = kerΓ0 and γ±(·) and M+(·) are the γ -fields and the Weyl func-
tion of Π respectively. Then the equality (the Krein formula for generalized resolvents)

Rτ(λ ) = (A0−λ )−1−γ+(λ )K0(λ )(K1(λ )+M+(λ )K0(λ ))−1γ∗−(λ ), λ ∈C+ (2.12)
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establishes a bijective correspondence R(λ ) = Rτ(λ ) between all pairs τ =
{K0(·),K1(·)} ∈ R̃(H0,H1) and all generalized resolvents R(λ ) of A.

REMARK 2.14. It follows from Theorem 2.13 that formula for resolvents (2.12)
together with the equality

Rτ(λ ) = P
H̃,H

(Ãτ −λ )−1 � H, λ ∈ C+ (2.13)

gives a parametrization Ã = Ãτ of all (H-minimal) exit space self-adjoint extensions Ã
of A by means of all pairs τ = {K0(·),K1(·)} ∈ R̃(H0,H1) .

REMARK 2.15. If H0 = H1 := H , then the triplet Π = {H0 ⊕H1,Γ0,Γ1} in
the sense of Definition 2.4 turns into the boundary triplet (boundary value space) Π =
{H ,Γ0,Γ1} for A∗ in the sense of [19, 8]. In this case:

(i) n+(A) = n−(A) = dimH and the Green identity (1.6) takes the form (1.1).

(ii) A0 = A∗
0 and the γ -fields γ±(·) of Π turn into the γ -field γ(·) defined in the

papers [14, 15, 30] as a unique operator-function γ(·) : C\R → B(H ,H) such
that γ(λ )H ⊂ Nλ (A) and

Γ0γ̂(λ ) = IH , λ ∈ C\R (2.14)

with γ̂(λ ) = (γ(λ ),λ γ(λ ))�(∈ B(H ,H2)), λ ∈ C \R . Moreover, the Weyl
function M+(·) of Π turns into the Weyl function M(·) defined in the same
papers by

M(λ ) = Γ1γ̂(λ ), λ ∈ C\R. (2.15)

(iii) M(·) is a Q-function of the pair (A,A0) and formula (2.12) turns into the clas-
sical Krein formula for generalized resolvents of a symmetric relation A with
equal deficiency indices [26, 28, 14, 30].

PROPOSITION 2.16. [14, 30] Let n+(A) = n−(A) and let Π = {H ,Γ0,Γ1} be
a boundary triplet for A∗ . Then for each operator B = B∗ ∈ B(H ) the equality
ÃB = { f̂ ∈ A∗ : Γ1 f̂ = BΓ0 f̂} defines a self-adjoint extension ÃB ∈ C̃ (H) of A and
the following Krein formula for canonical resolvents holds:

(ÃB −λ )−1 = (A0−λ )−1 + γ(λ )(B−M(λ ))−1γ∗(λ ), λ ∈ C\R. (2.16)

3. Inner characterization of the Weyl functions

Recall that a symmetric relation A ∈ C̃ (H) is called simple if there is not a de-
composition H = H1 ⊕ H2 such that H2 �= {0} and A = A1 ⊕ A2 with symmetric
A1 ∈ C̃ (H1) and self-adjoint A2 ∈ C̃ (H2) . The simplicity of A is equivalent to the
equality H = span{Nλ (A) : λ ∈ C\R} . If A ∈ C̃ (H) is simple, then A ∈ C (H) , that
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is A is an operator. Moreover, for each symmetric A ∈ C̃ (H) there exists a unique pair
if decompositions

H = H1 ⊕H2, A = A1⊕A2 (3.1)

with a simple operator A1 ∈ C (H1) (the simple part of A) and a self-adjoint relation
A2 ∈ C̃ (H2) .

DEFINITION 3.1. Let Aj ∈ C̃ (H j) and let Π j = {H0⊕H1,Γ
( j)
0 ,Γ( j)

1 } be a bound-
ary triplet for A∗

j , j ∈ {1,2} . The boundary triplets Π1 and Π2 are called unitarily
equivalent if there exists a unitary operator U ∈ B(H1,H2) such that

ŨA∗
1 = A∗

2 and Γ(1)
k = Γ(2)

k Ũ � A∗
1, k ∈ {0,1}. (3.2)

If boundary triplets Π j = {H0 ⊕H1,Γ
( j)
0 ,Γ( j)

1 } for A∗
j are unitarily equivalent and

U ∈ B(H1,H2) is a unitary operator such that (3.2) holds, then ŨA1 = A2 , i.e., relations
A1 and A2 are unitarily equivalent.

The inner characterization of abstract Weyl functions for symmetric relations A
with equal deficiency indices is given by the following two theorems [14, 15, 16].

THEOREM 3.2. Let Π = {H ,Γ0,Γ1} be a boundary triplet for A∗ and let M(·)
be the Weyl function of Π . Then M(·) ∈ Ru[H ] .

Conversely, let H be a Hilbert space and let M(·) ∈ Ru[H ] . Then there exist a
Hilbert space H , a simple symmetric operator A ∈ C (H) with n+(A) = n−(A) and a
boundary triplet Π = {H ,Γ0,Γ1} for A∗ such that M(·) is the Weyl function of Π .

THEOREM 3.3. Assume that A j ∈ C (H j) is a simple symmetric operator with

n+(Aj) = n−(Aj) , Π j = {H ,Γ( j)
0 ,Γ( j)

1 } is a boundary triplet for A∗
j and Mj(·) is the

Weyl function of Π j, j ∈ {1,2} . Then the triplets Π1 and Π2 are unitarily equivalent
if and only if M1(λ ) = M2(λ ), λ ∈ C+ .

Our next goal is to extend the above theorems onto symmetric relations A with unequal
deficiency indices n±(A) . To this end we first introduce a new class of holomorphic
operator-functions. Namely, let H0 be a Hilbert space, let H1 be a subspace in H0

and let H2 = H0 �H1 , so that H0 = H1 ⊕H2 .

DEFINITION 3.4. A pair (M+,M−) of holomorphic operator-functions M+(·) :
C+ → B(H0,H1) and M−(·) : C− → B(H1,H0) with the block representations

M+(λ ) = (M(λ ),N+(λ )) : H1 ⊕H2 → H1, λ ∈ C+ (3.3)

M−(λ ) = (M(λ ),N−(λ ))� : H1 → H1 ⊕H2, λ ∈ C− (3.4)

will be referred to the class Ru[H0,H1] if M∗
+(λ ) = M−(λ ), λ ∈ C+, and

2ImM(λ )−N+(λ )N∗
+(λ ) > 0, λ ∈ C+ (3.5)

2ImM(λ )+N∗
−(λ )N−(λ ) < 0, λ ∈ C− (3.6)
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REMARK 3.5. (1) Clearly each function M+(·) of the form (3.3) (M−(·) of the
form (3.4)) satisfying (3.5) (resp, (3.6)) generates a pair (M+,M−)∈ Ru[H0,H1]
(with H0 = H1⊕H2 ) by means of the equality M−(λ ) =M∗

+(λ ), λ ∈C− (resp.
M+(λ ) = M∗−(λ ), λ ∈ C+ ).

(2) Let M+(·) and M−(·) be operator-functions (3.3), (3.4), let M (λ ) be given by
(1.10), (1.11) and let H0 = H1 ⊕H2 . One can easily verify that (M+,M−) ∈
Ru[H0,H1] if and only if M (·) ∈ Ru[H0] . Therefore in the case H0 = H1 =:
H on has Ru[H0,H1] = Ru[H ] .

The following lemma directly follows from Definitions 2.2, 3.4 and Remark 3.5, (1).

LEMMA 3.6. The equalities

K0(λ ) = (IH1 , −iN−(−λ ))� : H1 → H1 ⊕H2, K1(λ ) = −M(−λ ), λ ∈ C+,

establish a bijective correspondence between all pairs (M+,M−) ∈ Ru[H0,H1] with
the block representation (3.4) of M−(λ ) and all pairs τ = {K0(·),K1(·)}∈ R̃u(H0,H1) .

In the following proposition we specify a connection between pairs (M+,M−) ∈
Ru[H0,H1] and strictly contractive operator-functions.

PROPOSITION 3.7. Let ϕ be a conformal mapping of C+ onto D given by

ϕ(λ ) = (λ − i)(λ + i)−1, λ ∈ C+ (3.7)

and let

Y1 =
(

iIH1 0
0

√
2IH2

)
: H1 ⊕H2︸ ︷︷ ︸

H0

→ H1 ⊕H2︸ ︷︷ ︸
H0

, Y2 =
(

IH1

0

)
: H1 → H1 ⊕H2︸ ︷︷ ︸

H0

,

(3.8)

Y3 = (−iIH1 , 0) : H1 ⊕H2︸ ︷︷ ︸
H0

→ H1. (3.9)

Then the equality

M̂(z) = (Y3 +M+(ϕ−1(z)))(Y1 +Y2M+(ϕ−1(z)))−1, z ∈ D (3.10)

establishes a bijective correspondence between all holomorphic operator-functions
M+(·) : C+ → B(H0,H1) with block representation (3.3) satisfying (3.5) and all holo-
morphic operator-functions M̂(·) : D → C0(H0,H1) .

Proof. Since

Y1 +Y2M+(ϕ−1(z)) =
(

M(ϕ−1(z))+ iIH1 N+(ϕ−1(z))
0

√
2IH2

)
, z ∈ D
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and by (3.5) ImM(ϕ−1(z) � 0, the operator Y1+Y2M+(ϕ−1(z)) is invertible. Therefore
the equality (3.10) gives a bijective correspondence between holomorphic functions
M+(·) : C+ → B(H0,H1) and M̂(·) : D → B(H0,H1) .

Let z ∈ D and let λ = ϕ−1(z) ∈ C+ . Then the operator M̂(z) admits the repre-
sentation by means of the following two equalities:

k0 = (Y1 +Y2M+(λ ))h0 = (M+(λ )h0 + ih01)⊕
√

2h02, (3.11)

M̂(z)k0 = (Y3 +M+(λ ))h0 = M+(λ )h0− ih01, h0 = h01⊕h02 ∈ H1⊕H2 = H0

and the immediate calculations give

||k0||2−||M̂(z)k0||2 = 4(B(λ )h0,h0), (3.12)

where B(λ ) =
(

ImM(λ ) 1
2iN+(λ )

− 1
2iN

∗
+(λ ) 1

2 IH2

)
. Since the operator Y1 +Y2M+(λ ) is invertible,

it follows from (3.11) and (3.12) that ||M̂(z)|| < 1 if and only if B(λ ) > 0 or, equiv-
alently, (3.5) holds. Hence M̂(z) ∈ C0(H0,H1) for any z ∈ D if and only if M+(λ )
satisfies (3.5) for any λ ∈ C+ .

Recall that an operator V ∈ B(domV,H) with the closed domain domV ⊂ H is
called an isometry in H if ||V f ||= || f ||, f ∈ domV . Clearly a linear relation V ∈ C̃ (H)
is (a graph of) an isometry if and only if V ⊂V−1∗ .

DEFINITION 3.8. [31, 32] Let V be an isometry in H . Then a collection Π̂ =
{Ĥ0⊕ Ĥ1, Γ̂0, Γ̂1} consisting of Hilbert spaces Ĥ j and linear mappings Γ̂ j : V−1∗ →
Ĥ j, j ∈ {0,1}, is called a boundary triplet for V if the mapping Γ̂ = (Γ̂0, Γ̂1)� :

V−1∗ → Ĥ0 ⊕ Ĥ1 is surjective and

( f ′,g′)− ( f ,g) = (Γ̂0 f̂ , Γ̂0ĝ)− (Γ̂1 f̂ , Γ̂1ĝ), f̂ = { f , f ′}, ĝ = {g,g′} ∈V−1∗. (3.13)

PROPOSITION 3.9. [31, 32] Let Π̂ = {Ĥ0 ⊕ Ĥ1, Γ̂0, Γ̂1} be a boundary triplet
for V . Then for each z ∈ D the operator Γ̂1 � N̂z(V−1) isomorphically maps N̂z(V−1)
onto Ĥ1 and the equality

Γ̂0 � N̂z(V−1) = M̂(z)Γ̂1 � N̂z(V−1), z ∈ D (3.14)

correctly defines the holomorphic operator function M̂(·) : D → C0(Ĥ1,Ĥ0) .

The operator-function M̂(·) is called the Weyl function of the triplet Π̂ . Actually the
Weyl function M̂(·) is the characteristic function of some contraction Ã ⊃ V in the
sense of [7, 38].

The following theorem directly follows from the results of [31, 32].

THEOREM 3.10. Let Ĥ0 and Ĥ1 be Hilbert spaces and let M̂(·):D→C0(Ĥ1,Ĥ0)
be a holomorphic operator-function. Then there exist a Hilbert space H , an isometry
V in H and a boundary triplet Π̂ = {Ĥ0 ⊕ Ĥ1, Γ̂0, Γ̂1} for V such that M̂(·) is the
Weyl function of Π̂ .
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LEMMA 3.11. Let V be an isometry in H , let Π̂ = {Ĥ0 ⊕ Ĥ1, Γ̂0, Γ̂1} be a
boundary triplet for V with Ĥ0 ⊂ Ĥ1 , let Ĥ2 = Ĥ1 � Ĥ0 and let M̂(·) be the Weyl
function of Π̂ . Moreover, let

X =
1√
2

(
iIH IH
−iIH IH

)
: H⊕H→ H⊕H. (3.15)

Then:

(1) The operator X is unitary and the equalities

A = X∗ grV, A∗ = X∗V−1∗ (3.16)

define a symmetric relation A ∈ C̃ (H) and its adjoint A∗ .

(2) The equalities

H0 = Ĥ1, H1 = Ĥ0 (3.17)

Γ0 f̂ = i√
2
(Γ̂0x̂−P

Ĥ1,Ĥ0
Γ̂1x̂)⊕P

Ĥ1,Ĥ2
Γ̂1x̂, Γ1 f̂ = 1√

2
(Γ̂0x̂+P

Ĥ1,Ĥ0
Γ̂1x̂),
(3.18)

where f̂ ∈A∗ and x̂ = X f̂ ∈V−1∗ define a boundary triplet Π = {H0⊕H1,Γ0,Γ1}
for A∗ .

(3) The Weyl function M+(·) of the triplet Π is connected with M̂(·) via (3.10).

Proof.

(1) Since X∗ = 1√
2

(−iIH iIH
IH IH

)
, it follows that X∗X = XX∗ = I and hence the op-

erator X is unitary. Let f̂ = { f , f ′}, ĝ = {g,g′} and x̂ = {x,x′}, ŷ = {y,y′} be
elements of H2 connected via x̂ = X f̂ and ŷ = Xĝ or, equivalently, f̂ = X∗x̂ and
ĝ = X∗ŷ . This means that

x = 1√
2
( f ′ + i f ), x′ = 1√

2
( f ′ − i f ), y = 1√

2
(g′ + ig), y′ = 1√

2
(g′ − ig)

and, consequently,

(x′,y′)− (x,y) = i[( f ′,g)− ( f ,g′)]. (3.19)

Let A := X∗grV ∈ C̃ (H) . Then by (3.19)

{ f , f ′} ∈ A∗ ⇐⇒ {x′,x} ∈V ∗ ⇐⇒ {x,x′} ∈V−1∗

end hence A∗ = X∗V−1∗ . Moreover, since grV ⊂ V−1∗ , it follows that A ⊂ A∗ ,
i.e., the relation A is symmetric.
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(2) Let f̂ = { f , f ′}, ĝ = {g,g′} ∈ A∗ and let x̂, ŷ ∈V−1∗ be given by x̂ = {x,x′} :=
X f̂ , ŷ = {y,y′} := Xĝ . Then in view of (3.18) and (3.19) one has

(Γ1 f̂ ,Γ0ĝ)− (Γ0 f̂ ,Γ1ĝ)+ i(P2Γ0 f̂ ,P2Γ0ĝ) = i((Γ̂1x̂, Γ̂1ŷ)− (Γ̂0x̂, Γ̂0ŷ))
=−i((x′,y′)−(x,y))=( f ′,g)−( f ,g′)

(here we made use of the equality H2(= H0 �H1) = Ĥ2 , which follows from
(3.17)). Hence the operators Γ0 and Γ1 satisfy the Green’s identity (1.6). Sur-
jectivity of the operator (Γ0,Γ1)� directly follows from (3.18) and surjectivity
of (Γ̂0, Γ̂1)� .

(3) It follows from (3.18) that
√

2 Γ̂1x̂ = Y1Γ0 f̂ +Y2Γ1 f̂ ,
√

2 Γ̂0x̂ = Y3Γ0 f̂ + Γ1 f̂ ,

where f̂ ∈ A∗, x̂ = X f̂ and Yj are operators (3.8), (3.9). Let λ ∈ C+ and let

z = ϕ(λ ) ∈ D , where ϕ is the mapping (3.7). Assume that h ∈ Ĥ1(= H0) .
Since the operator Y1 +Y2M+(λ ) is invertible, there exists f̂ = { f ,λ f} ∈ N̂λ (A)
such that

h = (Y1 +Y2M+(λ ))Γ0 f̂ = Y1Γ0 f̂ +Y2Γ1 f̂ =
√

2 Γ̂1x̂,

where

x̂ = X{ f ,λ f} = 1√
2
{(λ + i) f ,(λ − i) f} = λ+i√

2
{ f ,z f} ∈V−1∗.

Hence x̂ ∈ N̂z(V−1) and

M̂(z)h =
√

2M̂(z)Γ̂1x̂ =
√

2 Γ̂0x̂ = (Y3 +M+(λ ))Γ0 f̂

= (Y3 +M+(λ ))(Y1 +Y2M+(λ ))−1h.

This yields statement (3).

The following lemma directly follows from [36, Proposition 4.2].

LEMMA 3.12. Let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary triplet for A∗ and let
M+(·) be the Weyl function of Π represented as in (3.3). Moreover, let Ar be a simple
maximal symmetric operator in a Hilbert space Hr with n+(Ar) = 0, n−(Ar) = dimH2

and let He := H⊕Hr . Then Ae := A⊕Ar is a symmetric relation in He , A∗
e := A∗⊕A∗

r
and there exists a linear mapping Γr : A∗

r → H2 such that the operators

Γe
0 f̂e = P1Γ0 f̂ ⊕ (P2Γ0 f̂ + Γr f̂r)(∈ H1 ⊕H2), (3.20)

Γe
1 f̂e = Γ1 f̂ ⊕ i

2 (P2Γ0 f̂ −Γr f̂r)(∈ H1 ⊕H2), f̂e = f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r (3.21)

form a boundary triplet Πe = {H0,Γe
0,Γ

e
1} for A∗

e and the Weyl function M (·) of Πe

admits the representation (1.10).
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Now we are ready to prove the two main theorems of this section, which provides an
inner characterisation of abstract Weyl functions for symmetric relations with arbitrary
(possibly unequal) deficiency indices (cf. Theorems 3.2 and 3.3).

THEOREM 3.13. Let A ∈ C̃ (H) be a symmetric linear relation with deficiency
indices n−(A) � n+(A) , let Π = {H0⊕H1,Γ0,Γ1} be a boundary triplet for A∗ and
let M±(·) be the Weyl functions of this triplet. Then (M+,M−) ∈ Ru[H0,H1] .

Conversely, let H0 be a Hilbert space, let H1 be a subspace in H0 and let
(M+,M−) ∈ Ru[H0,H1] . Then there exist a Hilbert space H , a simple symmetric op-
erator A ∈ C (H) with n−(A) � n+(A) and a boundary triplet Π = {H0⊕H1,Γ0,Γ1}
for A∗ such that M+(·) and M−(·) are the Weyl functions of Π .

Proof. The direct statement of the theorem follows from [34, Corollary 3.18].
Let the assumptions of the inverse statement be satisfied. Then by Proposition

3.7 equality (3.10) defines the holomorphic operator-function M̂(·) : D → C0(Ĥ1,Ĥ0)
with Ĥ1 = H0 , Ĥ0 = H1 and according to Theorem 3.10 there exist a Hilbert space
H , an isometry V in H and a boundary triplet Π̂ = {Ĥ0 ⊕ Ĥ1, Γ̂0, Γ̂1} for V such
that M̂(·) is the Weyl function of Π̂ . Let A = X∗grV , where X is given by (3.15).
Then in view of Lemma 3.11 A is a symmetric relation in H and the equalities (3.17),
(3.18) define a boundary triplet Π = {H0 ⊕H1,Γ0,Γ1} for A∗ . Denote by MΠ+(·)
and MΠ−(·) the Weyl functions of the triplet Π . In accordance with lemma 3.11
MΠ+(·) is connected with M̂(·) via (3.10) (with MΠ+ instead of M+ ) and since the
correspondence (3.10) is one-to-one, one has M+(λ ) = MΠ+(λ ), λ ∈ C+ . Moreover,
M−(λ ) = M∗

+(λ ) = M∗
Π+(λ ) = MΠ−(λ ), λ ∈ C− .

Next assume that A1 is a simple part of A . Then in view of decompositions (3.1)
A∗ = A∗

1⊕A2 and by Proposition 2.6, (1) Γ0 � A2 = Γ1 � A2 = 0. Hence the equalities
Γ′

j = Γ j � A∗
1, j ∈ {0,1}, define a boundary triplet Π′ = {H0,⊕H1,Γ′

0,Γ′
1} for A∗

1
with the same Weyl functions M±(·) .

THEOREM 3.14. Assume that A j ∈ C (H j) is a simple symmetric operator with

n−(Aj) � n+(Aj) , Π j = {H0⊕H1,Γ
( j)
0 ,Γ( j)

1 } is a boundary triplet for A∗
j and M( j)

+ (·)
is the Weyl function of Π j, j ∈ {1,2} . Then the triplets Π1 and Π2 are unitarily

equivalent if and only if M(1)
+ (λ ) = M(2)

+ (λ ), λ ∈ C+ .

Proof. If triplets Π1 and Π2 are unitarily equivalent, then obviously M(1)
+ (λ ) =

M(2)
+ (λ ) . Conversely, let M( j)

+ (λ ) = (M( j)(λ ), N( j)
+ (λ )) be the block representations

of M( j)
+ (λ ), j ∈ {1,2}, and let M(1)

+ (λ ) = M(2)
+ (λ ), λ ∈ C+ . Moreover, let Ar be a

simple maximal symmetric operator in a Hilbert space Hr with n+(Ar) = 0, n−(Ar) =
dimH2 , let H

( j)
e := H j ⊕Hr and let A( j)

e = Aj ⊕ Ar, j ∈ {1,2} . Then by Lemma

3.12 the equalities (3.20) and (3.21) with Γ0 = Γ( j)
0 and Γ1 = Γ( j)

1 define a boundary

triplet Π( j)
e = {H0,Γ

e( j)
0 ,Γe( j)

1 } for (A( j)
e )∗(= A∗

j ⊕A∗
r ) and the Weyl function M j(·)
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of Π( j)
e is M j(λ ) =

(
M( j)(λ ) N( j)

+ (λ )
0 i

2 IH2

)
, λ ∈ C+ . Clearly, M1(λ ) = M2(λ ) and by

Theorem 3.3 there is a unitary operator Ue ∈ B(H(1)
e ,H

(2)
e ) such that

Ũe(A
(1)
e )∗ = (A(2)

e )∗ and Γe(1)
k = Γe(2)

k Ũe � (A(1)
e )∗, k ∈ {0,1}. (3.22)

Let γ( j)
e (·) be the γ -field of Π( j)

e . Since N̂λ (A( j)
e ) = N̂λ (Aj)⊕ N̂λ (Ar) and for each

λ ∈ C− the operators Γe( j)
0 � N̂λ (A( j)

e ) and P1Γ( j)
0 � N̂λ (Aj)) are invertible, it fol-

lows from (3.20) that the operator Γe( j)
0 � N̂λ (Ar) isomorphically maps N̂λ (Ar) onto

H2 and hence γ( j)
e (λ )H2 = Nλ (Ar), λ ∈ C−, j ∈ {1,2} . Moreover, in view of

(3.22) γ(2)
e (λ ) = Ueγ(1)

e (λ ) and, therefore, UeNλ (Ar) = Nλ (Ar), λ ∈ C− . This and
the equality Hr = span{Nλ (Ar) : λ ∈ C−} imply that UeHr = Hr and, consequently,
Ue = U ⊕Ur with unitary operators U ∈ B(H) and Ur ∈ B(Hr) . Combining this fact
with (3.20), (3.21) and (3.22) one obtains the equalities (3.2). Thus triplets Π1 and Π2

are unitarily equivalent.

DEFINITION 3.15. [22, 30] Let A∈ C̃ (H) , A⊂ A∗ , n+(A) = n−(A) and let Π =
{H ,Γ0,Γ1} be a boundary triplet for A∗ . An operator function C(·) : C+ → B(H )
defined by

C(λ )(Γ1 + iΓ0) � N̂λ (A) = (Γ1− iΓ0) � N̂λ (A), λ ∈ C+ (3.23)

is called the characteristic function of A .

For a special triplet Π for A∗ the function C(·) coincides with the characteristic func-
tion of A in the sense of A. Shtraus [43].

LEMMA 3.16. Let Π = {H ,Γ0,Γ1} be a boundary triplet for A∗ , let M(·) be
the Weyl function of Π and let C(·) be the characteristic function of A. Assume also
that H is decomposed as

H = H1⊕H2. (3.24)

Then M(λ ) has the block representation

M(λ ) =
(

M1(λ ) M2(λ )
0 M3

)
: H1 ⊕H2 → H1 ⊕H2, λ ∈ C+ (3.25)

with the constant entry M3 if and only if C(λ ) has the block representation

C(λ ) =
(

C1(λ ) C2(λ )
0 C3

)
: H1 ⊕H2 → H1 ⊕H2, λ ∈ C+ (3.26)

with the constant entry C3 .
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Proof. It follows from (3.23) that M(λ ) and C(λ ) are connected via

C(λ ) = (M(λ )− i)(M(λ )+ i)−1, λ ∈ C+.

Now the immediate checking gives the result.
In the following theorem we characterise in terms of the Weyl functions and character-
istic functions symmetric operators A admitting the representation A = A1 ⊕A2 with
the maximal symmetric operator A2 .

THEOREM 3.17. Let A ∈ C (H) be a simple symmetric operator with equal defi-
ciency indices n+(A) = n−(A) . Then the following statements are equivalent:

(1) There exist decompositions

H = H1⊕H2, A = A1⊕A2, (3.27)

where A1 and A2 are symmetric operators in H1 and H2 respectively such that
n+(A2) = 0, n−(A2) �= 0 (this implies that A2 is maximal symmetric).

(2) There exist a boundary triplet Π = {H ,Γ0,Γ1} for A∗ and decomposition (3.24)
with H2 �= {0} such that the Weyl function M(·) of Π has the block represen-
tation (3.25) with the constant entry M3 or, equivalently, the characteristic func-
tion C(·) of A has the block representation (3.26) with the constant entry C3 (see
Lemma 3.16).

Moreover, n+(A1) = dimH , n−(A1) = dimH1 and n−(A2) = dimH2 .

Proof. (1)⇒ (2). Let H1 and H2 be Hilbert spaces with dimH1 = n−(A1),
dimH2 = n−(A2) and let H0 = H1 ⊕H2 . Since

dimH0 = n−(A1)+n−(A2) = n−(A) = n+(A) = n+(A1)

and hence n−(A1) � n+(A1) , it follows from Proposition 2.5 that there exists a bound-
ary triplet Π = {H0 ⊕H1,Γ0,Γ1} for A∗

1 . Applying to this triplet Lemma 3.12 we
obtain a boundary triplet Πe for A∗ with the Weyl function M (·) of the form (1.10).

(2)⇒ (1). Let Π = {H ,Γ0,Γ1} be a boundary triplet for A∗ such that for some
decomposition (3.24) of H the Weyl function M(·) of Π has the block representation
(3.25). Assume that K := ReM3, N := ImM3 . Since M(·) ∈ Ru[H ] , it follows that
N > 0. Let

X =
(

0 0

0 − 1
2N− 1

2 KN− 1
2

)
, Y =

(
IH1 0

0 1√
2
N− 1

2

)

and let M (λ ) = X +Y ∗M(λ )Y, λ ∈ C \R . Clearly, X∗ = X and the operator Y is
invertible. Therefore according to [14, 30] M (·) is the Weyl function of some bound-
ary triplet Π̃ = {H , Γ̃0, Γ̃1} for A∗ . Moreover, the direct calculations show that in the
upper half-plane M (λ ) is of the form (1.10) with some M(λ ) and N+(λ ) . Since
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M (·) ∈ Ru[H ] , it follows from Remark 3.5 that a par (M+,M−) with M+(λ ) =
(M(λ ),N+(λ )), λ ∈ C+, and M−(λ ) = M∗

+(λ ), λ ∈ C−, belongs to Ru[H ,H1] .
Therefore by Theorem 3.13 there exist a Hilbert space H′ , a simple symmetric operator
A′ in H′ and a boundary triplet Π′ = {H ⊕H1,Γ′

0,Γ
′
1} for (A′)∗ such that M+(·) is

the Weyl function of Π′ . Let Hr be a Hilbert space and let Ar be a simple maximal
symmetric operator in Hr with n+(Ar) = 0 and n−(Ar) = dimH2 . Moreover, let

He := H′ ⊕Hr, Ae = A′ ⊕Ar. (3.28)

Clearly Ae is a simple symmetric operator in He and according to Lemma 3.12 there
exists a boundary triplet Πe = {H ,Γe

0,Γ
e
1} for A∗

e such that the Weyl function of Πe

coincides with M (·) . Thus, triplets Π̃ for A∗ and Πe for A∗
e have the same Weyl

function M (·) and by Theorem 3.3 there exists a unitary operator U ∈ B(He,H) such
that grA = ŨgrAe . This and (3.28) imply that (3.27) holds with H1 = UH′ , H2 = UHr

and symmetric operators A1 ∈ C (H1) and A2 ∈ C (H2) given by grA1 = ŨgrA′ and
grA2 = ŨgrAr . Moreover, n+(A2) = n+(Ar) = 0 and n−(A2) = n−(Ar) = dimH2 �= 0.

COROLLARY 3.18. Under the assumptions of Theorem 3.17 the following state-
ments are equivalent:

(1) There exist decompositions (3.27) with maximal symmetric operators A1 and A2

satisfying n−(A1) = n+(A2) = 0 .

(2) For some (and hence for all) boundary triplet Π for A∗ the Weyl function M(·) of
Π is constant or, equivalently, the characteristic function C(·) of A is constant.

Proof. According to [30] the Weyl functions M(·) and M̃(·) of boundary triplets
Π = {H ,Γ0,Γ1} and Π̃ = {H , Γ̃0, Γ̃1} for A∗ are connected by

M̃(λ ) = (X3 +X4M(λ ))(X1 +X2M(λ ))−1, λ ∈ C\R

with some operators Xj ∈ B(H ) . Therefore if M(λ ) is constant for some boundary
triplet, then the same holds for any triplet. Observe also that in Theorem 3.17 n−(A1) =
0 if and only if H1 = {0} . This and Theorem 3.17 yield the result.

REMARK 3.19. For a densely defined operator A Corollary3.18 by another method
was proved in [2, 27].

4. Couplings and their Weyl functions

4.1. Couplings of symmetric relations

In the sequel we use the following assumptions:
(A1) H and Hr are Hilbert spaces, A ∈ C̃ (H) and Ar ∈ C̃ (Hr) are symmetric

linear relations with n−(A) = n−(−Ar) � n+(A) = n+(−Ar) , Π = {H0 ⊕H1,Γ0,Γ1}
and Πr = {H0 ⊕H1,Γr

0,Γ
r
1} are boundary triplets for A∗ and (−Ar)∗ respectively
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and γ±(·) and M±(·) (γr±(·) and Mr±(·)) are the γ -fields and the Weyl functions of
Π (resp. Πr ) with the block representations

γ+(λ ) = (γ(λ ),δ+(λ )) : H1 ⊕H2 → H, λ ∈ C+, (4.1)

M+(λ ) = (M(λ ),N+(λ )) : H1 ⊕H2 → H1, λ ∈ C+, (4.2)

M−(λ ) = (M(λ ),N−(λ ))� : H1 → H1 ⊕H2, λ ∈ C−, (4.3)

γr+(λ ) = (γr(λ ),δr+(λ )) : H1 ⊕H2 → Hr, λ ∈ C+, (4.4)

Mr+(λ ) = (Mr(λ ),Nr+(λ )) : H1 ⊕H2 → H1, λ ∈ C+, (4.5)

Mr−(λ ) = (Mr(λ ),Nr−(λ ))� : H1 → H1 ⊕H2, λ ∈ C−. (4.6)

(A2) H̃ is a Hilbert space given by

H̃ = H⊕Hr. (4.7)

In the following Jr ∈ B(H2
r ) is the operator given by

Jr =
(

IHr 0
0 −IHr

)
: Hr ⊕Hr → Hr ⊕Hr. (4.8)

Clearly, the equality JrA∗
r = (−Ar)∗ is valid.

LEMMA 4.1. Let the assumptions (A1) and (A2) be fulfilled. Then:

(1) The equalities

Ae = A⊕Ar, A∗
e = A∗ ⊕A∗

r (4.9)

define a symmetric relation Ae ∈ C̃ (H̃) and its adjoint A∗
e .

(2) The Hilbert space He and the operators Γ̃e
j : A∗

e → He given by

He = H1 ⊕H2⊕H1, (4.10)

Γ̃e
0( f̂ ⊕ f̂r) = P1Γ0 f̂ ⊕ i

2P2(Γr
0Jr f̂r + Γ0 f̂ )⊕P1Γr

0Jr f̂r(∈ H1 ⊕H2⊕H1),
(4.11)

Γ̃e
1( f̂ ⊕ f̂r) = Γ1 f̂ ⊕P2(Γr

0Jr f̂r −Γ0 f̂ )⊕ (−Γr
1Jr f̂r)(∈ H1 ⊕H2⊕H1) (4.12)

form a boundary triplet Π̃e = {He, Γ̃e
0, Γ̃

e
1} for A∗

e (here f̂ ∈ A∗ and f̂r ∈ A∗
r ).

(3) For each λ ∈ C− the γ -field γ̃e(λ ) of Π̃e admits the representation

γ̃e(λ ) =
(

γ−(λ ) 0 0
iδr+(−λ )N−(λ ) −2iδr+(−λ ) γr(−λ )

)
: H1 ⊕H2⊕H1 → H⊕Hr.

(4.13)

Proof.
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(1) Statement (1) is obvious.

(2) Let ϕ̂ = f̂ ⊕ f̂r, ψ̂ = ĝ⊕ ĝr ∈ A∗
e , where f̂ = { f , f ′}, ĝ = {g,g′} ∈ A∗ and f̂r =

{ fr, f ′r}, ĝr = {gr,g′r} ∈ A∗
r . Then

ϕ̂ = {ϕ ,ϕ ′} = { f ⊕ fr, f ′ ⊕ f ′r}, ψ̂ = {ψ ,ψ ′} = {g⊕gr,g
′ ⊕g′r}

and hence

(ϕ ′,ψ)− (ϕ ,ψ ′) =( f ′,g)− ( f ,g′)+ ( f ′r ,gr)− ( fr,g
′
r)

=(Γ1 f̂ ,Γ0ĝ)− (Γ0 f̂ ,Γ1ĝ)+ i(P2Γ0 f̂ ,P2Γ0ĝ)

− (Γr
1Jr f̂r,Γr

0Jrĝr)+ (Γr
0Jr f̂r,Γr

1Jrĝr)− i(P2Γr
0Jr f̂r,P2Γr

0Jrĝr).

On the other hand

(Γ̃e
1ϕ̂ , Γ̃e

0ψ̂)− (Γ̃e
0ϕ̂ , Γ̃e

1ψ̂)

=(Γ1 f̂ ,Γ0ĝ)− (Γ0 f̂ ,Γ1ĝ)− i
2 (P2Γr

0Jr f̂r −P2Γ0 f̂ ,P2Γr
0Jrĝr +P2Γ0ĝ)

− i
2 (P2Γr

0Jr f̂r +P2Γ0 f̂ ,P2Γr
0Jrĝr −P2Γ0ĝ)− (Γr

1Jr f̂r,Γr
0Jrĝr)+ (Γr

0Jr f̂r,Γr
1Jrĝr)

=(Γ1 f̂ ,Γ0ĝ)− (Γ0 f̂ ,Γ1ĝ)+ i(P2Γ0 f̂ ,P2Γ0ĝ)− i(P2Γr
0Jr f̂r,P2Γr

0Jrĝr)

− (Γr
1Jr f̂r,Γr

0Jrĝr)+ (Γr
0Jr f̂r,Γr

1Jrĝr).

This yields the Green identity (1.1) for mappings Γ̃e
0 and Γ̃e

1 . Surjectivity of the
operator (Γ̃e

0, Γ̃
e
1)

� directly follows from surjectivity of (Γ0,Γ1)�, (Γr
0,Γr

1)
� and

(4.11), (4.12).

(3) Let γ̂±(λ ) = (γ±(λ ),λ γ±(λ ))� and γ̂r±(λ ) = (γr±(λ ),λ γr±(λ ))�, λ ∈ C± .
Then by (4.1) and (4.4)

γ̂+(λ ) = (γ̂(λ ), δ̂+(λ )) : H1 ⊕H2 → H2, λ ∈ C+,

γ̂r+(λ ) = (γ̂r(λ ), δ̂r+(λ )) : H1 ⊕H2 → H2
r , λ ∈ C+,

where γ̂(λ ) = (γ(λ ),λ γ(λ ))�, γ̂r(λ ) = (γr(λ ),λ γr(λ ))� and δ̂+(λ ) =
(δ+(λ ),λ δ+(λ ))�, δ̂r+(λ ) = (δr+(λ ),λ δr+(λ ))� . This and (2.8), (2.9) yield

P1Γ0γ̂(λ ) = P1Γr
0γ̂r(λ ) = IH1 , P1Γ0δ̂+(λ ) = P1Γr

0δ̂r+(λ ) = 0, λ ∈ C+,
(4.14)

P2Γ0γ̂(λ ) = P2Γr
0γ̂r(λ ) = 0, P2Γ0δ̂+(λ ) = P2Γr

0δ̂r+(λ ) = IH2 , λ ∈ C+,
(4.15)

P1Γ0γ̂−(λ ) = P1Γr
0γ̂r−(λ ) = IH1 , λ ∈ C−; Γ1γ̂(λ ) = M(λ ), λ ∈ C+,

(4.16)

Γ1δ̂+(λ ) = N+(λ ); , Γr
1γ̂r(λ ) = Mr(λ ), Γr

1δ̂r+(λ ) = Nr+(λ ), λ ∈ C+,
(4.17)
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Γ1γ̂−(λ ) = M(λ ), P2Γ0γ̂−(λ ) = −iN−(λ ), λ ∈ C−, (4.18)

Γr
1γ̂r−(λ ) = Mr(λ ), P2Γr

0γ̂r−(λ ) = −iNr−(λ ), λ ∈ C−. (4.19)

Let λ ∈ C− , let γ̃e(λ ) be given by (4.13) and let ̂̃γe(λ ) = (γ̃e(λ ),λ γ̃e(λ ))(∈
B(He,H̃

2)) . Since γ−(λ )H1 = Nλ (A), δr+(−λ )H2 ⊂N−λ (−Ar), γr(−λ )H1

⊂ N−λ (−Ar) and N−λ (−Ar) = Nλ (Ar), λ ∈ C−, it follows from the equality

Nλ (Ae) = Nλ (A)⊕Nλ (Ar) that γ̃e(λ )He ⊂ Nλ (Ae) . Next, the operators ̂̃γe(λ )
and Γ̃e

0 have the block representations

̂̃γe(λ ) =
(

γ̂−(λ ) 0 0

iJrδ̂r+(−λ )N−(λ ) −2iJrδ̂r+(−λ ) Jrγ̂r(−λ )

)
: H1 ⊕H2⊕H1

→ H2⊕H2
r

Γ̃e
0 =

⎛⎝ P1Γ0 0
i
2P2Γ0

i
2P2Γr

0Jr � A∗
r

0 P1Γr
0Jr � A∗

r

⎞⎠ : A∗ ⊕A∗
r → H1 ⊕H2⊕H1. (4.20)

Therefore for λ ∈ C− one has

Γ̃e
0
̂̃γe(λ )=

⎛⎝ P1Γ0 0
i
2P2Γ0

i
2P2Γr

0Jr � A∗
r

0 P1Γr
0Jr � A∗

r

⎞⎠( γ̂−(λ ) 0 0

iJrδ̂r+(−λ )N−(λ ) −2iJrδ̂r+(−λ ) Jrγ̂r(−λ )

)

=

⎛⎝ IH1 0 0
a(λ ) IH2 0

0 0 IH1

⎞⎠ ,

where

a(λ ) = i
2P2Γ0γ̂−(λ )− 1

2P2Γr
0δ̂r+(−λ )N−(λ ) = 1

2N−(λ )− 1
2N−(λ ) = 0

(here we made use of the relations (4.14) - (4.19)). Thus Γ̃e
0
̂̃γe(λ ) = IHe and by

Remark 2.15, (ii) γ̃e(λ ) is the γ -field of Π̃e .

PROPOSITION 4.2. Let the assumptions (A1) and (A2) be satisfied and let Ae and
A∗

e be the same as in Lemma 4.1. Then:

(1) The Hilbert space He of the form (4.10) and the operators Γe
j : A∗

e → He given
by

Γe
0( f̂ ⊕ f̂r) = P1Γ0 f̂ ⊕ i

2P2(Γr
0Jr f̂r + Γ0 f̂ )⊕Γr

1Jr f̂r(∈ H1 ⊕H2⊕H1) (4.21)

Γe
1( f̂ ⊕ f̂r) = Γ1 f̂ ⊕P2(Γr

0Jr f̂r −Γ0 f̂ )⊕P1Γr
0Jr f̂r(∈ H1⊕H2⊕H1) (4.22)

form a boundary triplet Πe = {He,Γe
0,Γ

e
1} for A∗

e (here f̂ ∈ A∗ and f̂r ∈ A∗
r ).
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(2) The γ -field γe(·) and the Weyl function Me(·) of the triplet Πe are

γe(λ ) =
(

γ(λ ) −2iδ+(λ ) iδ+(λ )Nr−(−λ )M−1
r (−λ )

0 0 γr−(−λ )M−1
r (−λ )

)
: H1 ⊕H2⊕H1

(4.23)

→ H⊕Hr, λ ∈ C+

γe(λ ) =
(

γ−(λ ) 0 0
∗ ∗ ∗

)
: H1 ⊕H2⊕H1 → H⊕Hr, λ ∈ C− (4.24)

Me(λ ) =

⎛⎝M(λ ) −2iN+(λ ) iN+(λ )Nr−(−λ )M−1
r (−λ )

0 2iIH2 −2iNr−(−λ )M−1
r (−λ )

0 0 M−1
r (−λ )

⎞⎠ : H1 ⊕H2⊕H1

(4.25)

→ H1 ⊕H2⊕H1, λ ∈ C+.

Proof.

(1) One can easily prove that a collection Π̇r = {H0 ⊕H1, Γ̇r
0, Γ̇

r
1} with

Γ̇r
0 = (Γr

1,P2Γr
0)

� : A∗
r → H1 ⊕H2, Γ̇r

1 = −P1Γr
0 (4.26)

is a boundary triplet for A∗
r . Substituting Γ̇r

j (instead of Γr
j ) into (4.11) and (4.12)

and taking Lemma 4.1, (2) into account one gets statement (1).

(2) Let γe(λ ) be given by (4.23) and let γ̂e(λ ) = (γe(λ ),λ γe(λ ))(∈ B(He,H̃
2)) .

Then the same arguments as in Lemma 4.1 show that γe(λ )He ⊂ Nλ (Ae) . Let
γ̂(·), δ̂+(·) and γ̂r−(·) be the same as in Lemma 4.1. Since γ̂e(λ ) and Γe

j has the
block representations

γ̂e(λ ) =
(

γ̂(λ ) −2iδ̂+(λ ) iδ̂+(λ )Nr−(−λ )M−1
r (−λ )

0 0 Jr γ̂r−(−λ )M−1
r (−λ )

)
, λ ∈ C+,

Γe
0 =

⎛⎝ P1Γ0 0
i
2P2Γ0

i
2P2Γr

0Jr � A∗
r

0 Γr
1Jr � A∗

r

⎞⎠ , Γe
1 =

⎛⎝ Γ1 0
−P2Γ0 P2Γr

0Jr � A∗
r

0 P1Γr
0Jr � A∗

r

⎞⎠ ,

it follows that

Γe
0γ̂e(λ )=

⎛⎝ P1Γ0 0
i
2P2Γ0

i
2P2Γr

0Jr � A∗
r

0 Γr
1Jr � A∗

r

⎞⎠(γ̂(λ ) −2iδ̂+(λ ) iδ̂+(λ )Nr−(−λ )M−1
r (−λ )

0 0 Jrγ̂r−(−λ )M−1
r (−λ )

)

=

⎛⎝IH1 0 0
0 IH2 c(λ )
0 0 IH1

⎞⎠ ,
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where

c(λ ) = − 1
2P2Γ0δ̂+(λ )Nr−(−λ )M−1

r (−λ )+ i
2P2Γr

0γ̂r−(−λ )M−1
r (−λ )

= − 1
2Nr−(−λ )M−1

r (−λ )+ i
2(−iNr−(−λ ))M−1

r (−λ ) = 0

(here we made use of the relations (4.14) - (4.19)). Thus Γe
0γ̂e(λ ) = IHe and

by Remark 2.15, (ii) γe(λ ) (λ ∈ C+) is the γ -field of Πe . Moreover, applying
(2.15) to the triplet Πe and taking (4.14) - (4.19) into account we obtain that the
Weyl function Me(·) of the triplet Πe is

Me(λ ) = Γe
1γ̂e(λ )

=

⎛⎝ Γ1 0
−P2Γ0 P2Γr

0Jr � A∗
r

0 P1Γr
0Jr � A∗

r

⎞⎠(γ̂(λ ) −2iδ̂+(λ ) iδ̂+(λ )Nr−(−λ )M−1
r (−λ )

0 0 Jrγ̂r−(−λ )M−1
r (−λ )

)

=

⎛⎝M(λ ) −2iN+(λ ) iN+(λ )Nr−(−λ )M−1
r (−λ )

0 2iIH2 c(λ )
0 0 M−1

r (−λ )

⎞⎠ , λ ∈ C+,

where

c(λ ) = −iP2Γ0δ̂+(λ )Nr−(−λ )M−1
r (−λ )+P2Γr

0γ̂r−(−λ )M−1
r (−λ ) =

= −iNr−(−λ )M−1
r (−λ )− iNr−(−λ )M−1

r (−λ ) = −2iNr−(−λ )M−1
r (−λ ).

Hence Me(λ ) is of the form (4.25). Finally, (4.24) directly follows from Lemma
4.1 applied to the triplet Πe .

Assume that H and Hr are Hilbert spaces, H̃ = H⊕Hr , P (Pr ) is the orthoprojector in
H̃ onto H (resp. Hr ) and P̂ ( P̂r ) is the orthoprojector in H̃2 onto H2 (resp. H2

r ):

P̂{h,h′} = {Ph,Ph′}, P̂r{h,h′} = {Prh,Prh
′}, {h,h′} ∈ H̃2.

For a self-adjoint relation Ã ∈ C̃ (H̃) we let

A = Ã∩H2, Ar = Ã∩H2
r , (4.27)

T = P̂Ã = {{Ph,Ph′} : {h,h′} ∈ Ã}, Tr = P̂rÃ = {{Prh,Prh
′} : {h,h′} ∈ Ã}. (4.28)

Clearly, A ∈ C̃ (H) and Ar ∈ C̃ (Hr) are closed symmetric relations and T and Tr

are not necessarily closed linear relations in H and Hr respectively. If T and Tr are
operators, then Ã is an operator, which is a coupling of T and Tr in the sense of [42].

The following relations are valid [12, 42]:

n+(A) = n+(−Ar)(= n−(Ar)), n−(A) = n−(−Ar)(= n+(Ar)) (4.29)

A∗ = closT, A∗
r = closTr (4.30)

closT = T ⇐⇒ closTr = Tr (4.31)

It follows from (4.30) that T ⊂ A∗ and T is closed if and only if A∗ = T .
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THEOREM 4.3. Assume that H is a Hilbert space, A ∈ C̃ (H) is a symmetric re-
lation in H with n−(A) � n+(A) , Π = {H0⊕H1,Γ0,Γ1} is a boundary triplet for A∗
and H2 = H0�H1 , so that H0 = H1⊕H2 . Moreover, let Hr be a Hilbert space, let
H̃ = H⊕Hr and let Jr ∈ B(H2

r ) be operator (4.8). Then:

(1) If Ar ∈ C̃ (Hr) is a symmetric relation in Hr with n±(−Ar) = n±(A) and Πr =
{H0 ⊕H1,Γr

0,Γ
r
1} is a boundary triplet for (−Ar)∗ , then the equality

Ã = { f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r : Γ0 f̂ = Γr

0Jr f̂r, Γ1 f̂ = Γr
1Jr f̂r} (4.32)

defines a self-adjoint relation Ã ∈ C̃ (H̃) such that A ⊂ Ã and

Ã∩H2 = A, A∗ = T (= P̂Ã). (4.33)

Moreover, Ar = Ã∩H2
r .

(2) If a relation Ã = Ã∗ ∈ C̃ (H̃) satisfies (4.33) and Ar = Ã∩H2
r , then there exists a

boundary triplet Πr = {H0⊕H1,Γr
0,Γr

1} for (−Ar)∗ such (4.32) holds.

Proof.

(1) Let Ae = A⊕Ar . Then according to Proposition 4.2 the equalities (4.10) and
(4.21), (4.22) define a boundary triplet Πe = {He,Γe

0,Γ
e
1} for A∗

e . Let

B = B∗ :=

⎛⎝ 0 0 IH1

0 0 0
IH1 0 0

⎞⎠ : H1 ⊕H2⊕H1︸ ︷︷ ︸
He

→ H1 ⊕H2⊕H1︸ ︷︷ ︸
He

. (4.34)

Then according to Proposition 2.16 the equality

ÃB = { f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r : Γe

1( f̂ ⊕ f̂r) = BΓe
0( f̂ ⊕ f̂r)} (4.35)

defines a self-adjoint extension ÃB of Ae and the immediate checking shows that
Ã = ÃB . Hence Ã = Ã∗ .

Let us show that Ã satisfies (4.33). Since A ⊂ Ae ⊂ Ã , it follows that A ⊂ (Ã∩
H2) . Conversely, let f̂ ∈ Ã∩H2 . Then f̂ = f̂ ⊕ f̂r ∈ A∗ ⊕A∗

r with f̂r = 0 and
hence

Γ0 f̂ = Γr
0Jr f̂r = 0, Γ1 f̂ = Γr

1Jr f̂r = 0.

Therefore by Proposition 2.6, (1) f̂ ∈ A and, consequently, (Ã∩H2) ⊂ A . This
yields the first equality in (4.33).

Next, in view of (4.30) one has T ⊂ A∗ . Conversely, let f̂ ∈ A∗ . Since the
mapping (Γr

0,Γ
r
1)

� is surjective, there exist f̂r ∈ A∗
r such that Γr

0Jr f̂r = Γ0 f̂ and
Γr

1Jr f̂r = Γ1 f̂ . Therefore f̂ ⊕ f̂r ∈ Ã and hence f̂ ∈ T . This implies that A∗ ⊂ T ,
which gives the second equality in (4.33).
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(2) Let Ã = Ã∗ ∈ C̃ (H̃) satisfies (4.33) and let Ar := Ã∩H2
r . Then Ar ∈ C̃ (Hr), Ar ⊂

A∗
r and by (4.30), (4.31) A∗

r = Tr(= P̂rÃ) . Hence JrP̂rÃ = JrA∗
r = (−Ar)∗ . Let

f̂e ∈ Ã and JrP̂r f̂e = 0. Then f̂e ∈ Ã∩H2 = A and hence Γ jP̂ f̂e = Γ j f̂e = 0, j ∈
{0,1} . Therefore the equalities

f̂r = JrP̂r f̂e, Γr
j f̂r = Γ jP̂ f̂e, f̂e ∈ Ã (4.36)

correctly define linear operators Γr
j : (−Ar)∗ → H j, j ∈ {0,1} . Let us show

that Πr = {H0 ⊕H1,Γr
0,Γr

1} is a boundary triplet for (−Ar)∗ . Since obviously
J
H̃

= diag(JH,JHr) (see (2.1)), it follows from (2.2) that

0 = (J
H̃

f̂e, ĝe) = (JHP̂ f̂e, P̂ĝe)+ (JHr P̂r f̂e, P̂rĝe), f̂e, ĝe ∈ Ã. (4.37)

Let f̂r, ĝr ∈ (−Ar)∗ . Then there exist f̂e, ĝe ∈ Ã such that (4.36) holds and
ĝr = JrP̂rĝe, Γr

jĝr = Γ jP̂ĝe, j ∈ {0,1} . By using (4.37), (2.7) and the equality
J∗r JHr Jr = −JHr one gets

−(JHr f̂r, ĝr) = −(JHr JrP̂r f̂e,JrP̂rĝe) = (JHr P̂r f̂e, P̂rĝe) = −(JHP̂ f̂e, P̂ĝe)

= (Γ1P̂ f̂e,Γ0P̂ĝe)− (Γ0P̂ f̂e,Γ1P̂ĝe)+ i(P2Γ0P̂ f̂e,P2Γ0P̂ĝe)

= (Γr
1 f̂r,Γr

0ĝr)− (Γr
0 f̂r,Γr

1ĝr)+ i(P2Γr
0 f̂r,P2Γr

0ĝr).

Thus the operators Γr
j satisfy the Green identity (2.7).

Next assume that h0 ∈ H0 and h1 ∈ H1 . Then there is f̂ ∈ A∗ such that Γ0 f̂ =
h0, Γ1 f̂ = h1 and by the second equality in (4.33) there is f̂e ∈ Ã such that
f̂ = P̂ f̂e . Let f̂r := JrP̂r f̂e . Then f̂r ∈ (−Ar)∗ and by (4.36)

Γr
j f̂r = Γ jP̂ f̂e = Γ j f̂ = h j, j ∈ {0,1},

which proves surjectivity of the operator (Γr
0,Γ

r
1)

� . Thus Πr is a boundary
triplet for A∗

r and according to statement (1) the equality

Ã′ = { f̂ ⊕ f̂r ∈ A∗ ⊕A∗
r : Γ0 f̂ = Γr

0Jr f̂r, Γ1 f̂ = Γr
1Jr f̂r}

defines a self-adjoint relation Ã′ ∈ C̃ (H̃) . Let f̂e ∈ Ã . Then f̂e = f̂ ⊕ f̂r with f̂ =
P̂ f̂e ∈ A∗ and f̂r = P̂r f̂e ∈ A∗

r . Moreover, by (4.36) Γ j f̂ = Γ jP̂ f̂e = Γr
jJrP̂r f̂e =

Γr
jJr f̂r, j ∈ {0,1}, and hence f̂e ∈ Ã′ . Thus Ã ⊂ Ã′ and the equality Ã∗ = Ã

yields Ã′ = Ã . This implies that (4.32) is valid.

DEFINITION 4.4. A self-adjoint relation Ã∈ C̃ (H̃) defined by (4.32) is called the
coupling of linear relations A and Ar corresponding to boundary triplets Π for A∗ and
Πr for (−Ar)∗ .

REMARK 4.5. (1) Let A be a symmetric relation in H with not necessarily
equal deficiency indices n±(A) and let Π = {H0 ⊕H1,Γ0,Γ1} be a boundary
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triplet for A∗ . Then according to Theorem 4.3 there is a bijective correspondence
between all exit space self-adjoint extensions Ã of A satisfying (4.33) and all
couplings of A with symmetric relations Ar ∈ C̃ (Hr) corresponding to Π and a
boundary triplet Πr for A∗

r .

(2) Assume that A has equal deficiency indices n+(A)= n−(A) and Π = {H ,Γ0,Γ1}
is a boundary triplet for A∗ with a single Hilbert space H (see Remark 2.15).
Then the coupling in the sense of Definition 4.4 turns into the coupling of A and
Ar ∈ C̃ (Hr) (n+(Ar) = n−(Ar) = n±(A)) corresponding to boundary triplets Π
for A∗ and Πr = {H ,Γr

0,Γr
1} for A∗

r (see [11, 13]). For this case Theorem 4.3
was proved in [11, 13].

(3) Suppose that A is a densely defined symmetric operator in H . Then in Definition
2.4 of a boundary triplet Π = {H0 ⊕H1,Γ0,Γ1} for A∗ one may assume that
the operators Γ0 and Γ1 are defined on domA∗ . Letting

J̃ = i

⎛⎝ 0 0 −IH1

0 −iIH2 0
IH1 0 0

⎞⎠ : H1 ⊕H2︸ ︷︷ ︸
H0

⊕H1 → H1 ⊕H2︸ ︷︷ ︸
H0

⊕H1

one rewrites (1.6) as

1
i [(A

∗ f ,g)− ( f ,A∗g)] = (J̃ΓA∗ f ,ΓA∗g), f ,g ∈ domA∗,

where ΓA∗ = (Γ0,Γ1)� . This implies that a linear space L = H0 ⊕H1 with
an indefinite inner product [h,h′] := (J̃h,h′), h,h′ ∈ L , is a boundary space and
ΓA∗ : domA∗ → L is a boundary operator of A∗ in the sense of A.V. Shtraus
[41]. Moreover, the coupling of densely defined operators A and Ar in the sense
of Definition 4.4 is a coupling of A∗ and A∗

r with respect to boundary operators
ΓA∗ and Γ−A∗

r
(see [42]). Therefore in the particular case of a densely defined

operator A with finite deficiency indices n±(A) Theorem 4.3 follows from [42,
Theorems 1 and 2].

4.2. Weyl function of the coupling

THEOREM 4.6. Let the assumptions (A1) and (A2) be satisfied and let Ã be the
coupling (4.32) of A and Ar . Moreover, let Ae ∈ C̃ (H̃) be symmetric linear relation
(4.9) and let Jr be operator (4.8). Then:

(i) The Hilbert space He (see (4.10)) and the operators Γc
j : A∗

e → He defined by

Γc
0( f̂ ⊕ f̂r) = (Γr

1Jr f̂r −Γ1 f̂ )⊕P2(Γ0 f̂ −Γr
0Jr f̂r)⊕P1(Γ0 f̂ −Γr

0Jr f̂r) (4.38)

Γc
1( f̂ ⊕ f̂r) = P1Γ0 f̂ ⊕ i

2P2(Γ0 f̂ + Γr
0Jr f̂r)⊕Γr

1Jr f̂r (4.39)

form a boundary triplet Πc = {He,Γc
0,Γ

c
1} for A∗

e (here f̂ ∈ A∗ and f̂r ∈ A∗
r ).

Moreover, for this triplet Ã = kerΓc
0 .
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(ii) Φ(λ ) :=−(M(λ )−Mr(−λ )− iN+(λ )Nr−(−λ ))−1 ∈ B(H1) (λ ∈C+) and the
Weyl function Mc(·) of the triplet Πc has the block representation

Mc(λ )=

⎛⎝ Φ(λ ) Φ(λ )N+(λ ) IH1 + Φ(λ )M(λ )
Nr−(−λ )Φ(λ ) i

2IH2 +Nr−(−λ )Φ(λ )N+(λ ) Nr−(−λ )Φ(λ )M(λ )
Mr(−λ )Φ(λ ) Mr(−λ )Φ(λ )N+(λ ) Mr(−λ )Φ(λ )M(λ )

⎞⎠ ,

(4.40)

λ ∈ C+ , with respect to decomposition (4.10) of He .

Proof. Let Πe = {He,Γe
0,Γ

e
1} be boundary triplet (4.21), (4.22) for A∗

e , let Me(·)
be the Weyl function (4.25) of Πe and let B = B∗ ∈ B(He) be operator (4.34). Then
according to [15] the equalities Γc

0 = BΓe
0 −Γe

1 and Γc
1 = Γe

0 define a boundary triplet
Πc = {He,Γc

0,Γ
c
1} for A∗

e and the Weyl function Mc(·) of this triplet is

Mc(λ ) = (B−Me(λ ))−1, λ ∈ C+. (4.41)

The immediate calculation shows that Γc
0 and Γc

1 are of the form (4.38) and (4.39).
Moreover, the equality Ã = kerΓc

0 directly follows from (4.38).
Assume that

M (λ ) =
(

M(λ ) N+(λ )
0 i

2 IH2

)
, Mr(λ ) =

(
Mr(−λ ) 0
Nr−(−λ ) − i

2 IH2

)
, λ ∈ C+.

Since by Theorem 3.13 (M+,M−) ∈ Ru[H0,H1] and (Mr+,Mr−) ∈ Ru[H0,H1] , it
follows from Remark 3.5, (2) that ImM (λ )> 0 and ImMr(λ )< 0. Hence the operator

M̃ (λ ) := M (λ )−Mr(λ ) =
(

M(λ )−Mr(−λ ) N+(λ )
−Nr−(−λ ) iIH2

)
satisfies ImM̃ (λ ) > 0, λ ∈ C+, and, consequently, the operator M̃ (λ ) is invertible.
Therefore the operator

M(λ )−Mr(−λ )−N+(λ )(−iIH2)(−Nr−(−λ )) = M(λ )−Mr(−λ )− iN+(λ )Nr−(−λ )

is invertible, which implies that Φ(λ ) ∈ B(H1) . Moreover,

B−Me(λ ) =

⎛⎝−M(λ ) 2iN+(λ ) IH1 − iN+(λ )Nr−(−λ )M−1
r (−λ )

0 −2iIH2 2iNr−(−λ )M−1
r (−λ )

IH1 0 −M−1
r (−λ )

⎞⎠
and the immediate checking shows that the operator-function Mc(·) of the form (4.40)
satisfies

(B−Me(λ ))Mc(λ ) = IHe, λ ∈ C+.

Therefore by (4.41) Mc(·) is the Weyl function of Πc .
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DEFINITION 4.7. The operator function Mc(·) of the form (4.40) is called the
Weyl function of the coupling of A and Ar .

REMARK 4.8. Let in Theorem 4.6 n+(A) = n+(Ar) = n−(A) = n−(Ar) , let Π =
{H ,Γ0,Γ1} (Π̃r = {H , Γ̃r

0, Γ̃
r
1} ) be a boundary triplet for A∗ (resp. A∗

r ) and let M(·)
(M̃r(·)) be the Weyl function of Π (resp. Π̃r ). Then the equalities Γr

0 = Γ̃r
0Jr � (−Ar)∗ ,

Γr
1 = −Γ̃r

1Jr � (−Ar)∗ define a boundary triplet Πr = {H ,Γr
0,Γr

1} for (−Ar)∗ with
the Weyl function Mr(λ ) = −M̃r(−λ ) and, therefore, the Weyl function Mc(·) of the
coupling of A and Ar is

Mc(λ )=
( −(M(λ )+ M̃r(λ ))−1 IH −(M(λ )+M̃r(λ ))−1M(λ )

IH −M(λ )(M(λ )+M̃r(λ ))−1 M̃r(λ )(M(λ )+M̃r(λ ))−1M(λ )

)
,λ ∈ C\R.

Note, that this equality was obtained in [11, 13].

4.3. Parametrization of special exit space extensions

PROPOSITION 4.9. Let the assumptions (A1) and (A2) be satisfied, let Ã∈ C̃ (H̃)
be the self-adjoint extension (4.32) of A and let R(λ ) be the corresponding generalized
resolvent (2.11) of A. Assume also that A0 = kerΓ0 and

K0(λ ) = (IH1 , −iNr−(−λ ))� : H1 → H1 ⊕H2, K1(λ ) = −Mr(−λ ), λ ∈ C+.
(4.42)

Then

R(λ ) = (A0 −λ )−1− γ+(λ )K0(λ )(K1(λ )+M+(λ )K0(λ ))−1γ∗−(λ ), λ ∈ C+.
(4.43)

Proof. Let Ae = A⊕Ar . Then according to Proposition 4.2 the equalities (4.10)
and (4.21), (4.22) define a boundary triplet Πe = {He,Γe

0,Γ
e
1} for A∗

e(= A∗⊕A∗
r ) such

that the γ -field γe(·) and the Weyl function Me(·) of Πe are of the form (4.23) - (4.25).
It follows from (4.32) that Ã = ÃB , where ÃB is the extension (4.35) of Ae with B = B∗
defined by (4.34). Now applying Proposition 2.16 to the triplet Πe and the extension
Ã = ÃB one gets

(Ã−λ )−1 = (Ae
0−λ )−1 + γe(λ )(B−Me(λ ))−1γ∗e (λ ), λ ∈ C+ (4.44)

where Ae
0 = kerΓe

0 is a self-adjoint extension of Ae . It follows from (4.44) that

R(λ ) = P
H̃,H

(Ae
0−λ )−1 � H+P

H̃,H
γe(λ )(B−Me(λ ))−1γ∗e (λ ) � H, λ ∈ C+.

(4.45)

Let f̂ ∈ A0 . Then f̂ = f̂ ⊕ f̂r with f̂r = 0 and hence f̂ ∈ A∗
e(= A∗⊕A∗

r ) . Moreover, by
(4.21) Γe

0 f̂ = 0 and, consequently, f̂ ∈ Ae
0 . This implies that Ae

0 is an exit space self-
adjoint extension of A0 . Since by Proposition 2.6, (2) (A0−λ )−1 ∈ B(H)(λ ∈ C+) , it
follows that

P
H̃,H

(Ae
0−λ )−1 � H = (A0 −λ )−1, λ ∈ C+. (4.46)
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Next, in view of (4.23) and (4.24) one has

P
H̃,H

γe(λ ) = (γ(λ ), −2iδ+(λ ), iδ+(λ )Nr−(−λ )M−1
r (−λ )) : H1 ⊕H2⊕H1 → H,

γ∗e (λ ) � H = (γ∗−(λ ),0,0)� : H → H1⊕H2⊕H1

and by (4.41) the operator (B−Me(λ ))−1 is equal to the right-hand side of (4.40). This
implies that

P
H̃,H

γe(λ )(B−Me(λ ))−1γ∗e (λ ) � H

=
(
γ(λ ), −2iδ+(λ ), iδ+(λ )Nr−(−λ )M−1

r (−λ )
)⎛⎝ I

Nr−(−λ )
Mr(−λ )

⎞⎠Φ(λ )γ∗−(λ )

=− (γ(λ )− iδ+(λ )Nr−(−λ ))(M(λ )−Mr(−λ )− iN+(λ )Nr−(−λ ))−1γ∗−(λ )

=− γ+(λ )K0(λ )(K1(λ )+M+(λ )K0(λ ))−1γ∗−(λ ), λ ∈ C+.

Combining of this equality with (4.45) and (4.46) yields (4.43).
In the following theorem we parameterize all exit space extensions Ã of a symmetric
relation A satisfying (4.33).

THEOREM 4.10. Assume that A ∈ C̃ (H) is a symmetric relation in H with defi-
ciency indices n−(A) � n+(A) , Π = {H0 ⊕H1,Γ0,Γ1} is a boundary triplet for A∗ ,
A0 = kerΓ0 and γ±(·) and M+(·) are the γ -fields and the Weyl function of Π respec-
tively. Moreover, let τ = {K0(·),K1(·)} ∈ R̃(H0,H1) and let Ãτ be the corresponding
exit space self-adjoint extension of A defined by (2.12) and (2.13) (see Remark 2.14).
Then Ã = Ãτ satisfies (4.33) if and only if τ ∈ R̃u(H0,H1) .

Proof. Let H̃ ⊃ H be a Hilbert space and let Ã = Ãτ ∈ C̃ (H̃) satisfies (4.33).
Moreover, let Hr = H̃�H and let Ar = Ã∩H2

r . Then according to Theorem 4.3, (2)
there exists a boundary triplet Πr = {H0 ⊕H1,Γr

0,Γr
1} for (−Ar)∗ such that (4.32)

holds. Assume that Mr± are the Weyl functions of Πr and let Mr−(λ ) has the block
representation (4.6). Then according to Proposition 4.9 the generalized resolvent R(λ )=
Rτ(λ ) generated by Ã = Ãτ is of the form (4.43) with operator functions K0(·) and
K1(·) defined by (4.42). Moreover, since by Theorem 3.13 (Mr+,Mr−) ∈ Ru[H0,H1] ,
it follows from Lemma 3.6 that K0(·) and K1(·) form a pair τ ′ = {K0(·),K1(·)} ∈
R̃u(H0,H1) . Since by Theorem 2.13 τ = τ ′ , it follows that τ ∈ R̃u(H0,H1) .

Conversely, let τ ∈ R̃u(H0,H1) . Then according to Lemma 3.6 there exists a
pair (Mr+,Mr−) ∈ Ru[H0,H1] with the block representation (4.6) of Mr−(λ ) such
that the operator functions K0(·) and K1(·) admit the representation (4.42). Moreover,
by Theorem 3.13 there exist a Hilbert space Hr , a symmetric operator Ar ∈ C (Hr) and
a boundary triplet Πr = {H0 ⊕H1,Γr

0,Γ
r
1} for (−Ar)∗ such that Mr−(·) is the Weyl

functions of Πr . Let H̃ = H⊕Hr . Then according to Theorem 4.3, (1) the equality
(4.32) defines an exit space self-adjoint extension Ã∈ C̃ (H̃) of A such that (4.33) holds
and by Proposition 4.9 the corresponding generalized resolvent R(λ ) of A admits the
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representation (4.43). Therefore by Theorem 2.13 Ã coincides with Ãτ and hence Ãτ
satisfies (4.33).

REMARK 4.11. It follows from Theorem 4.10 and Remark 2.3, (2) that in the case
n+(A) = n−(A) and a boundary triplet Π = {H ,Γ0,Γ1} for A∗ an exit space extension
Ã = Ãτ of A satisfies (4.33) if and only if τ ∈ Ru[H ] . This fact was proved in [13].

Next assume that A is a closed densely defined symmetric operator in H , so that each
(H-minimal) exit space extension Ã= Ã∗ of A is a densely defined operator as well (see
e.g. [13]). Recall that according to M.A. Naimark (see e.g. [1]) an extension Ã = Ã∗
of A on a Hilbert space H̃ ⊃ H is said to be: (i) of the first kind, if dom Ã∩H = dom Ã
(i.e., if Ã acts in H); (ii) of the second kind, if domÃ∩H = domA ; (iii) of the third
kind, if dom Ã∩H �= domA and dom Ã∩H �= domÃ . The set of all extensions of A of
the second kind will be denoted by Nai2(A) .

A description of the set Nai2(A) for an operator A with finite possibly unequal
deficiency indices is given in the following theorem.

THEOREM 4.12. Let in addition to the assumptions of Theorem 4.10 A is a densely
defined operator in H with finite deficiency indices n−(A)� n+(A) . Then Ãτ ∈Nai2(A)
if and only if τ ∈ R̃u(H0,H1) (so that K0(λ ) has the block representation (2.5)) and
the operator-function

K (λ ) =
(

K1(λ ) 0
−iK02(λ ) i

2 IH2

)
;H1 ⊕H2︸ ︷︷ ︸

H0

→ H1⊕H2︸ ︷︷ ︸
H0

, λ ∈ C+,

satisfies the conditions

lim
y→+∞

1
yK (iy) = 0 and lim

y→+∞
yIm(K (iy)h,h) = ∞, h ∈ H0 \ {0}. (4.47)

Proof. Assume that Ãτ acts in a Hilbert space H̃⊃ H and let Hr = H̃�H . More-
over, let T and Ar be operators in H and Hr given by grT = P̂gr Ãτ and grAr =
gr Ãτ ∩H2

r (see (4.27) and (4.28)). Clearly, Ar is a closed symmetric operator. More-
over, since n±(A) < ∞, the operator T is closed, that is A∗ = T . Therefore by[13,
Proposition 7.5]

Ãτ ∈ Nai2(A) ⇐⇒ grA = gr Ãτ ∩H2 and domAr = Hr. (4.48)

Since A∗ = T , it follows from Theorem 4.10 that grA = gr Ãτ ∩H2 if and only if
τ ∈ R̃u(H0,H1) (so that K0(λ ) has the block representation (2.5)). Next, according
to Theorem 4.3 there is a boundary triplet Πr = {H0 ⊕H1,Γr

0,Γ
r
1} for (−Ar)∗ such

that Ãτ is a coupling of A and Ar corresponding to triplets Π and Πr . Let Mr−(·) be
the Weyl function of Πr with the block representation (4.6) and let Mr(λ ), λ ∈ C−,
be the corresponding operator-function (1.11). Then by Proposition 4.9 Mr−(·) and
τ = {K0(·),K1(·)} are connected via (4.42) and hence Mr(−λ )=−K1(λ ), Nr−(−λ ) =
iK02(λ ), λ ∈ C+ . Therefore K (λ ) = −Mr(−λ ), λ ∈ C+, and by Theorem 2.9
domAr = Hr if and only if conditions (4.47) are satisfied. This and (4.48) yield the
statement of the theorem.
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4.4. Example: coupling of symmetric systems

Let I = 〈a,b〉, −∞ � a < b � ∞, be an interval in R . As is known (see e.g
[3, 18]) a symmetric differential system on I is of the form

Jy′ −B(t)y = λH(t)y, t ∈ I , λ ∈ C, (4.49)

where J ∈ B(Cn) is an operator (n×n -matrix) satisfying J∗ = J−1 = −J and B(t) =
B∗(t), H(t) � 0 (a.e. on I ) are B(Cn)-valued operator functions (n×n -matrix func-
tions) on I integrable on each compact subinterval [α, ]

¯
⊂I . We assume that system

(4.49) is definite. The latter means that for some (and hence all) λ ∈ C there is only a
trivial solution y(t) ≡ 0 of (4.49) such that H(t)y(t) = 0 (a.e. on I ).

Denote by L2(H,I ) the Hilbert space of all (equivalence classes of) vector-
functions f (·) : I → Cn such that

∫
I

(H(t) f (t), f (t))dt < ∞ . With system (4.49) one

associates the maximal relation

Tmax = {{y, f} ∈ (L2(H,I ))2 : y ∈ AC(I ) and Jy′(t)−B(t)y = H(t) f (t) a.e. on I }
and the minimal relation Tmin defined as the closure of

T ′
min := {{y, f} ∈ Tmax : y has the compact support}.

It turns out that Tmin is a closed symmetric relation in L2(H,I ) with finite deficiency
indices n±(Tmin)� n , which coincide with the number of linearly independent solutions
y ∈ L2(H,I ) of (4.1) for λ ∈ C± . Moreover, the equality Tmax = T ∗

min is valid (see
e.g. [5, 29]).

In the following we consider system (4.49) on I = R and systems on the semiaxes
R− = (−∞,0] and R+ = [0,∞) obtained by restriction of (4.49) onto R− and R+ . We
assume that all these systems are definite. Moreover, without loss of generality we
assume that n = 2ν + ν̂ (hence Cn = Cν ⊕Cν̂ ⊕Cν ) and the operator J is given by
(1.15).

Put H̃ = L2(H,R) , H = L2(H,R−), Hr = L2(H,R+) and denote by T−
max (T+

max )
and T−

min (T+
min ) the maximal and minimal relations in H (resp. Hr ) generated by

restriction of the system (4.49) onto R− (resp. R+ ). In the following we assume that
the relations T−

min and T+
min have minimal deficiency indices (1.16), i.e., system is in the

limit point case at ∞ and −∞ . Then

T−
min = {{y−, f−} ∈ T−

max : y−(0) = 0}, T+
min = {{y+, f +} ∈ T+

max : y+(0) = 0}

and Tmin(= Tmax) is a self-adjoint linear relation in H̃ (see e.g. [5, 29]).Moreover,
according to [35, 37] the equalities

Γ0{y−, f−} = {y−3 (0),−iy−2 (0)}, Γ1{y−, f−} = y−1 (0), {y−, f−} ∈ T−
max,
(4.50)

Γr
0{y+, f +} = {y+

3 (0),−iy+
2 (0)}, Γr

1{y+, f +} = y+
1 (0), {y+, f +} ∈ −T+

max
(4.51)
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define boundary triplets Π={Cν+ν̂⊕Cν ,Γ0,Γ1} for T−
max and Πr={Cν+ν̂ ⊕Cν ,Γr

0,Γ
r
1}

for −T+
max . In (4.50) and (4.51) y±j (0) are taken from the representations

y− = y−(t) = y−1 (t)⊕ y−2 (t)⊕ y−3 (t)(∈ C
ν ⊕C

ν̂ ⊕C
ν), t ∈ R−,

y+ = y+(t) = y+
1 (t)⊕ y+

2 (t)⊕ y+
3 (t)(∈ C

ν ⊕C
ν̂ ⊕C

ν), t ∈ R+

of functions y− ∈ domT−
max and y+ ∈ dom(−T+

max)(= domT+
max) .

Let

M+(λ ) = (M(λ ),N+(λ )) : C
ν ⊕C

ν̂ → C
ν , λ ∈ C+,

Mr−(λ ) = (Mr(λ ),Nr−(λ ))� : C
ν → C

ν ⊕C
ν̂ , λ ∈ C−

be the Weyl functions of triplets Π and Πr respectively.

DEFINITION 4.13. [35, 37] The operator-functions

m−(λ ) =
(

m−
1 (λ ) m−

2 (λ )
0 i

2 Iν̂

)
:=
(

M(λ ) N+(λ )
0 i

2 Iν̂

)
, λ ∈ C+, (4.52)

m+(λ ) =
(

m+
1 (λ ) 0

m+
2 (λ ) i

2 Iν̂

)
:=
(−Mr(−λ ) 0
−Nr−(−λ ) i

2 Iν̂

)
, λ ∈ C+ (4.53)

are called the m-functions (Titchmarsh - Weyl functions) for restrictions of the system
(4.49) onto R− and R+ respectively.

The Weyl functions M±(·) and hence m-functions m±(·) can be expressed in terms
of values at 0 of certain matrix solutions of the system with entries belonging to
L2(H,R±) . Moreover, m±(·)∈ R[Cν ⊕Cν̂ ] and spectral functions of m−(·) and m+(·)
are matrix pseudo-spectral functions of the dimension ν + ν̂ for generalized Fourier
transforms generated by restrictions of the system onto R− and R+ respectively (for
more details see [35, 37]). Observe also that m−(λ )= M (λ ) and m+(λ )=−Mr(−λ ),
λ ∈ C+, where M (·) and Mr(·) are operator functions (1.10), (1.11) for M+(·) and
Mr−(·) respectively.

Let Y (·,λ )(∈ B(Cn)) be the fundamental solution of the system (4.49) with Y (0,λ )
= In . Then according to [9, 40] there exists a unique operator (matrix) function Ω(·) ∈
R[Cn] (the characteristic matrix of the system) such that the resolvent (Tmin −λ )−1 of
Tmin(= T ∗

min) is(
(Tmin−λ )−1 f

)
(x) =

∫
I

Y (x,λ )(Ω(λ )+ 1
2sgn(t− x)J)Y ∗(t,λ )H(t) f (t)dt, f ∈ H.

This fact enables one to describe spectral properties of Tmin in terms of Ω(·) .
It follows from [35, Theorem 5.9] that the following Titchmarsh formula holds

Ω(λ ) =

⎛⎝ Φ(λ ) Φ(λ )m−
2 (λ ) 1

2 Iν + Φ(λ )m−
1 (λ )

−m+
2 (λ )Φ(λ ) i

2Iν̂ −m+
2 (λ )Φ(λ )m−

2 (λ ) −m+
2 (λ )Φ(λ )m−

1 (λ )
− 1

2 Iν −m+
1 (λ )Φ(λ ) −m+

1 (λ )Φ(λ )m−
2 (λ ) −m+

1 (λ )Φ(λ )m−
1 λ )

⎞⎠ ,

(4.54)
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where Φ(λ ) =−(m−
1 (λ )+m+

1 (λ )+ im−
2 (λ )m+

2 (λ ))−1, λ ∈C+, and m±
j (λ ) are taken

from (4.52), (4.53). If system (4.49) is Hamiltonian (this means that ν̂ = 0), then
m-functions m−(·) and m+(·) in the sense of Definition 4.13 turn into m-functions
(Titchmarsh-Weyl functions) for Hamiltonian systems on R− and R+ respectively [17,
20, 24] and (4.54) takes the well known form [21, 25]

Ω(λ ) =
( −(m−(λ )+m+(λ ))−1 1

2 Iν − (m−(λ )+m+(λ ))−1m−(λ )
− 1

2 Iν +m+(λ )(m−(λ )+m+(λ ))−1 m+(λ )(m−(λ )+m+(λ ))−1m−(λ )

)
.

A connection of abstract objects from this section with symmetric systems is given
by the following proposition.

PROPOSITION 4.14. Let symmetric system (4.49) on R satisfies the above as-
sumptions and let Π = {Cν+ν̂ ⊕Cν ,Γ0,Γ1} and Πr = {Cν+ν̂ ⊕Cν ,Γr

0,Γr
1} be bound-

ary triplets (4.50), (4.51) for T−
max and −T+

max respectively. Then:

(1) Tmin is a coupling of A = T−
min and Ar = T+

min corresponding to boundary triplets
Π and Πr (see Definition 4.4).

(2) The characteristic matrix Ω(·) of the system is associated with the Weyl function
Mc(·) of the coupling Tmin (see Definition 4.7) via

Ω(λ ) = Mc(λ )+C, λ ∈ C+, (4.55)

where

C =C∗ =

⎛⎝ 0 0 − 1
2 Iν

0 0 0
− 1

2 Iν 0 0

⎞⎠ : C
ν ⊕C

ν̂ ⊕C
ν → C

ν ⊕C
ν̂ ⊕C

ν .

Proof. Statement (1) is immediate from (4.50), (4.51) and definition (4.32) of the
coupling. Moreover, combining (4.54) with (4.52), (4.53) and (4.40) we arrive at state-
ment (2).
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