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ON EXTENSIONS OF SYMMETRIC OPERATORS

NAMIG J. GULIYEV

(Communicated by D. R. Farenick)

Abstract. We give an explicit description of all minimal self-adjoint extensions of a densely
defined, closed symmetric operator in a Hilbert space with deficiency indices (1,1) .

There is a widely used linearization technique in the theory of Sturm–Liouville
problems with boundary and/or discontinuity conditions polynomially dependent on
the eigenvalue parameter. One considers a Hilbert (or Pontryagin) space of the form
L2 ⊕Ck and constructs a self-adjoint operator in this space such that the eigenvalue
problem for this operator and the original boundary value problem become equivalent,
in the sense that their eigenvalues coincide, the eigenfunctions of the latter problem
are in one-to-one correspondence with the first components of the eigenvectors of the
former problem, and so on (see, e.g., [1], [2], [8], and the references therein). Fulton
[6, Remark 2.1] attributes this technique to Friedman [5, pp. 205–207]. The purpose
of this short paper is to show that a straightforward generalization of this technique
gives an explicit description of all minimal self-adjoint extensions of a densely defined,
closed symmetric operator with deficiency indices (1,1) (see below for definitions).

Let A be a densely defined, closed symmetric operator in a separable Hilbert space
H with deficiency indices (1,1) . Let {C,Γ0,Γ1} be a boundary triplet for A∗ . This
means that Γ0 , Γ1 : D(A∗)→ C are two linear mappings such that the abstract Green’s
identity

〈A∗x,y〉H −〈x,A∗y〉H = Γ1x ·Γ0y−Γ0x ·Γ1y, x,y ∈ D(A∗)

holds and the mapping Γ : D(A∗) → C2, x �→ (Γ0x,Γ1x) is surjective [4], [12, Chapter
14]. The domain of A then coincides with the kernel of Γ :

D(A) = {x ∈ D(A∗) | Γ0x = Γ1x = 0}. (1)

If Ã is a self-adjoint operator in a Hilbert space H̃ ⊃ H such that A ⊂ Ã , then Ã is
called a self-adjoint extension of A . A self-adjoint extension Ã is called minimal if no
nontrivial subspace of H̃�H is reducing for Ã [10, Section 4], or equivalently [12,
Lemma 5.17]

H̃ = span

{(
Ã−λ I

)−1
x

∣∣∣∣ x ∈ H, λ ∈ C\R

}
,
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where span denotes the linear span.
A holomorphic operator-valued function R(λ ) on C \R is called a generalized

resolvent of A if

R(λ ) = PH

(
Ã−λ I

)−1
∣∣∣∣
H

for some self-adjoint extension Ã , where PH is the orthogonal projection onto H . For
every generalized resolvent there is a unique (up to unitary equivalence) minimal self-
adjoint extension with this property (see [10, Theorem 8]). On the other hand, there is a
one-to-one correspondence between generalized resolvents R(λ ) and functions ω(λ )
holomorphic on the open upper half-plane C+ with |ω(λ )| � 1: for every x ∈ H the
value y := R(λ )x satisfies the equation

A∗y−λy = x

and the condition
(ω(λ )−1)Γ1y− i(ω(λ )+1)Γ0y = 0

(see [3]). Denoting

f (λ ) :=
iω(λ )+ i
1−ω(λ )

,

we obtain a one-to-one correspondence between generalized resolvents R(λ ) and
Herglotz–Nevanlinna functions f , i.e. functions holomorphic on C+ with Im f (λ ) � 0
(cf. [13, Subsection 1.2]). The above condition then becomes

Γ1y+ f (λ )Γ0y = 0. (2)

The “Dirichlet” condition Γ0y = 0 corresponds to f = ∞ . We will denote the gen-
eralized resolvent corresponding to f by Rf (λ ) . It should be noted that complete pa-
rameterizations of all generalized resolvents in terms of Herglotz–Nevanlinna functions
were first obtained independently by Naimark [11] and Krein [9].

We are now ready to construct our minimal self-adjoint extension corresponding
to a Herglotz–Nevanlinna function f . This function has a unique representation of the
form [12, Appendix F]

f (λ ) = h0λ +h+
∫ +∞

−∞

(
1

t−λ
− t

1+ t2

)
dσ(t),

where h0 � 0, h ∈ R , and ∫ +∞

−∞

dσ(t)
1+ t2

< ∞

(the reader may refer to [7, Appendix A] for some examples of such representations). If
h0 > 0 then we consider the Hilbert space H̃ := H⊕L2(R;dσ)⊕C with inner product
given by

〈x̃, ỹ〉
H̃

:= 〈x0,y0〉H +
∫ +∞

−∞
x1(t)y1(t)dσ(t)+

x2y2

h0
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for

x̃ =

⎛
⎝x0

x1

x2

⎞
⎠ , ỹ =

⎛
⎝y0

y1

y2

⎞
⎠ ∈ H̃,

and define the operator

Ãx̃ :=

⎛
⎜⎝

A∗x0

tx1(t)−Γ0x0

Γ1x0 +hΓ0x0 +
∫ +∞
−∞

(
x1(t)− t

1+t2
Γ0x0

)
dσ(t)

⎞
⎟⎠ ,

with

D(Ã) := {x̃ ∈ H̃ | x0 ∈ D(A∗), tx1(t)−Γ0x0 ∈ L2(R;dσ), x2 = −h0Γ0x0}.

If h0 = 0 then we set H̃ := H⊕L2(R;dσ) , and define Ã by

Ãx̃ :=
(

A∗x0

tx1(t)−Γ0x0

)

and

D(Ã) :=
{

x̃ ∈ H̃

∣∣∣∣ x0 ∈ D(A∗), tx1(t)−Γ0x0 ∈ L2(R;dσ),

Γ1x0 +hΓ0x0 +
∫ +∞

−∞

(
x1(t)− t

1+ t2
Γ0x0

)
dσ(t) = 0

}
.

The extension Ã is canonical (i.e. H̃ = H) if and only if f is a real constant (or ∞).

THEOREM. For each Herglotz–Nevanlinna function f the operator Ã defined
above is a minimal self-adjoint extension of the operator A with the corresponding
generalized resolvent R f (λ ) .

Proof. We will consider the case h0 > 0; the other case can be proved similarly.
To prove the self-adjointness, let ỹ , z̃ ∈ H̃ be such that

〈Ãx̃, ỹ〉
H̃

= 〈x̃, z̃〉
H̃
, (3)

for all x̃ ∈ D(Ã) . Taking into account (1) and setting x1(t) ≡ 0 = x2 we obtain

〈Ax0,y0〉H = 〈x0,z0〉H, x0 ∈ D(A).

Hence y0 ∈ D(A∗) and z0 = A∗y0 . By surjectivity of Γ , there exists x0 ∈ D(A∗) with
Γ0x0 = 0 and Γ1x0 = 1. Then for this x0 and x1(t) ≡ 0 the equality (3) gives y2 =
−h0Γ0y0 . Setting x0 = 0 in (3) we get

∫ +∞

−∞
x1(t)(ty1(t)−Γ0y0− z1(t))dσ(t) = 0,
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for all x1(t) ∈ L2(R;dσ) with tx1(t) ∈ L2(R;dσ) . Since such functions are dense in
L2(R;dσ) , we obtain ty1(t)−Γ0y0 = z1(t) ∈ L2(R;dσ) . Finally choosing x0 ∈ D(A∗)
with Γ0x0 = 1, the equality (3) yields

z2 = Γ1y0 +hΓ0y0 +
∫ +∞

−∞

(
y1(t)− t

1+ t2
Γ0y0

)
dσ(t).

Thus ỹ ∈ D(Ã) and Ãỹ = z̃ .
To see that the generalized resolvent corresponding to Ã is Rf (λ ) , it suffices to

check that if

ỹ =

⎛
⎝y0

y1

y2

⎞
⎠ =

(
Ã−λ I

)−1

⎛
⎝x

0
0

⎞
⎠ ,

then y0 satisfies (2), and this is straightforward. Finally, to check the minimality, we
need to verify that the linear span of all ỹ of this form with all possible values of x ∈ H
and λ ∈ C\R is dense in H̃ . To this end, let z̃ ∈ H̃ be orthogonal to all such ỹ , i.e.

〈z̃, ỹ〉
H̃

= 〈z0,y0〉H +
∫ +∞

−∞
z1(t)

Γ0y0

t −λ
dσ(t)− z2Γ0y0 = 0,

for all y0 ∈ D(A∗) . Surjectivity of Γ implies z0 = 0 and

∫ +∞

−∞

z1(t)
t−λ

dσ(t) = z2, λ ∈ C\R.

Now the Stieltjes–Perron inversion formula [12, Theorem F.2] applied to the regular
complex Borel measure z1 dσ yields z1(t) = 0 for dσ -a.e. t and consequently z2 = 0.
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