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INVERSE CONTINUITY OF THE NUMERICAL
RANGE MAP FOR HILBERT SPACE OPERATORS

BRIAN LINS* AND ILYA M. SPITKOVSKY

(Communicated by H. Radjavi)

Abstract. We describe continuity properties of the multivalued inverse of the numerical range
map fa :x— (Ax,x) associated with a linear operator A defined on a complex Hilbert space 7.
We prove in particular that f;” ! js strongly continuous at all points of the interior of the numerical
range W(A). We give examples where strong and weak continuity fail on the boundary and
address special cases such as normal and compact operators.

1. Introduction

Let ¢ be a complex Hilbert space with inner product (-,-) and norm || - || :=
(x,x). Let Z(H) denote the set of all bounded linear operators from 5 into
A and let S p :={x €  : ||x|| = 1} denote the unit sphere in .7 . For any operator
A€ B(H), the numerical range map of A is the map fy : S — C such that f4(x) :=
(Ax,x). The numerical range of A, denoted W(A), is the image of S, under f4,
W(A) := {fa(x) : x € S} . Throughout the paper, we use S, dS, convS, and extS to
represent the closure, boundary, convex hull, and extreme points of a set S, respectively.
In [3], two notions of continuity were defined for the set-valued inverse numerical
range map f, '. We say that f; ' is strongly continuous at z € W(A) when the direct
mapping fy is open in the relative topology of W(A) at all pre-images x € f, Y(2). If
there is at least one pre-image x € f; ' (z) for which fy is open, then f; ! is weakly
continuous at z. Strong continuity is sometimes just called continuity in the literature
on multivalued functions. The definition of weak continuity can be traced back to [2].
S. Weis observed [18] that the continuity of certain maximal entropy inference
maps on a quantum state space is equivalent to strong inverse continuity of a related
numerical range map. In this paper, we aim to extend the results of [3] and [12] to the
infinite dimensional setting. In the following Section, we recall some important facts
about numerical ranges and perturbation theory of operators. In Section 3, we prove
that the inverse numerical range map is strongly continuous on W(A) except, possi-
bly, at certain extreme points on the boundary. We also give necessary and sufficient
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conditions for strong and weak continuity to hold on the numerical range of a normal
operator. In Section 4, we characterize strong and weak continuity for other points on
the boundary of W(A) under certain additional assumptions. We conclude in Section 5
with several examples.

2. Preliminaries

A linear operator A defined on 7 has real and imaginary parts: ReA := %(A +
A*) and ImA := 5-(A—A*). Forany 0 < 6 < 27, the operator Re(e 9A) = cos 6 Re A +
sin@ImA is self-adjoint. The following proposition collects some well known results
from perturbation theory about analytic self-adjoint operator-valued functions. See,
e.g., [9, Chapter VII, Section 3].

PROPOSITION 2.1. Let A € Z(H). The operator valued function Re(e ®A) is
an analytic function of 0 € R, and its values are self-adjoint operators. For any fixed
6o, each isolated eigenvalue A of Re(e "0 A) with finite multiplicity splits into one or
several analytic functions A.(0) that correspond to eigenvalues of Re(e™®A) on an
interval around 6y. The corresponding spectral projections are also analytic functions

of 6.

The spectrum ¢(7T) of a self-adjoint operator T € %B(5) can be divided into the
discrete spectrum which consists of the isolated eigenvalues in ¢(7") with finite multi-
plicity and the essential spectrum which is everything else in o(T') [14, Section VIL3].
The analytic eigenvalue functions A(6) in Proposition 2.1 take values in the discrete
spectrum of Re(e A). Both the eigenvalue functions A (6) and the corresponding
spectral projections P(0) can be extended analytically to an interval in R as long as
A(8) does not intersect the essential spectrum of Re(e"%A) for any 6 in that interval
[9, Cht. VII, Section 3.2]. When A is compact, this means that an eigenvalue function
A(6) can be extended analytically as long as A(0) # 0. When we refer to an analytic
eigenvalue function A (6) of Re(e "%A) we will assume implicitly that A(0) is always
part of the discrete spectrum on its domain.

For each analytic eigenvalue function A (6) with corresponding spectral projection
P(60), we can select an analytic path @(0) in . such that P(0)@(6) # 0 on the
interval where P(0) is analytic. By scaling, we can construct a real analytic family of

unit eigenvectors
«(6) . P(0)0(0)
1P(6)p(0)]]
corresponding to the eigenvalues A(0). The composition f4(x(6)) parametrizes a real
analytic curve that is contained in the numerical range of A. Following [8], we will refer
to such curves as the critical curves of A. Below we derive a well-known expression
for the critical curves in terms of the analytic eigenvalue functions of Re(e ?A).

2.1

£1(x(8)) = (Ax,x) = £ <e*f9Ax7x>
= ¢ (<Re(e_i9A)x,x> +1i <Im(e‘i9A)x,x>> .



INVERSE CONTINUITY FOR HILBERT SPACE OPERATORS 79

Note that & Re(e"?A) =Im(e~"?A). Also (x(0),x'(6)) =0 forall 6, since ||x(0)]| =
1 identically. Therefore,
2(8) = 45 (Re(e®4)x(6),x(0) )

= < (e70A)x x/> + <Im (e70A)x > <Re(eiieA)x’,x>

=2(6) (x,¥) + (Im(eA)x, x)

= <Im(e_’9A)x,x>.
Combining these equations, we have

fa(x(8)) =€ (A(0)+iA'(0)). (2.2)

If A(0) is the maximum (or minimum) eigenvalue of Re(e *?A) for some 6, then the
corresponding point on the associated critical curve will be on the boundary of W(A).
The following lemma gives a useful description of the boundary of W (A). These results
are well known, so we won’t prove them. See [13] for details.

LEMMA 2.2. Let A € #(H) and let |1(0) denote the maximum of the spectrum
of Re(e ™ A) forall © € R. Then,

W(A) = N {ze C:Re(e P2) <u(0)}.

0<6<2rm

Any z € dW(A) lies on a tangent line
Lg:={zcC:Re(e %7) =pu(0)} (2.3)

forsome 8 €R. For x€ S, f1(x) € Lg ifand only if x is an eigenvector of Re(e " A)
corresponding to the eigenvalue 11(0).

3. General results

We begin this section with a geometric lemma about spherical caps which is es-
sentially the same as [3, Lemma 3].

LEMMA 3.1. Let S be the surface of a sphere in the Euclidean space (R3,]|- )
and let x €S. Forany € >0, let C:={yeS:|x—y|<e}. FT:R—=R?isa
linear transformation, then T (C) is convex and there is a & > 0 such that 8T (S)+
(1-0)T(x) CT(C).

Proof. Observe that C is the intersection of S with an open half-space H . There-
fore convC = HNconvS. Suppose y € convC. Choose v # 0 in the null space of
T, and consider the line y+#v,z € R. At least one of the points where this line in-
tersects S will be in H. Therefore there is a point z € C such that T(z) = T(y)
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and so T(C) = T(convC) which proves that T(C) is convex. As the center of the
spherical cap C, x is in the open set H. We may chose 6 > 0 small enough so that
0S5+ (1—8)xCconvC,s0 8T(S)+(1-8)T(x) CT(C). O

The following proposition generalizes [3, Theorem 2] and [1 1, Lemma 2.3] from
the finite dimensional setting. Part of this result can be thought of as a generalization of
the Toeplitz-Hausdorff Theorem. Where the Toeplitz-Hausdorff Theorem guarantees
that the image of S under the numerical range map is a convex set, the proposition
below says that neighborhoods in S, also have convex images.

PROPOSITION 3.2. Suppose that A € B() and z = fs(x) where x € S . Fix
€>0,andlet U={y€Sy:|y—x| <&} bethe €-neighborhood around x in S .
Then f4(U) is convex, and there is a constant & > 0 such that SW(A) + (1 —6)z C

faU).

Proof. Let V be any two dimensional complex subspace of .7#. By choosing an
orthonormal basis for V, we may identify V with C?, and (V) with the set of 2-
by-2 matrices M, (C). Recall that M,(C) has an inner product (X,Y) = tr(Y*X) and
corresponding norm || X || = 1/tr(X*X). The following equation holds for any v,w € V
with [[v[| = [[w]| = 1.

[ —ww*||? = te((w* — ww*) (w* —ww™))
=2-=2tw(w'ww) 3.1
— 22w

Let X = {w*:veV,||v| =1}. The set of self-adjoint operators in Z(V) is a real
vector space of dimension four and X is the surface of a sphere with radius % in the
three dimensional affine subspace consisting of matrices with trace one [5].

Let C={w":ve UNV}. We will show that C is a spherical cap in X. Observe

that for v € V with |jv|| =1,

2y —x|* = 3v—x]* =2(2 - 2Re(x,v)) — § (2— 2Re (x,»))’
=2—2(Re{x,v))? (3.2)

>2=2|(x,v)* = " — x|,

Furthermore, equality holds in (3.2) if and only if Im(x,v) = 0. Therefore C is a
subset of the set {w* € T: [|w* —xx*||? < 22 — %84}. At the same time, if v € V with
[v]| =1 satisfies [[vv* —xx*||> < 2¢? — J&*, then we may assume without changing the
value of vw* that Im (x,v) = 0. This implies by (3.2) that ||v — x|| < € and therefore
w*€C.So C={w"eX:|w—xx*|| <2e>— %84} which is a spherical cap. This is
true, evenif x ¢ V.

Let Ay € M>(C) be the compression of A onto V. For any v € V, we have

fa(v) = {Av,y) = v Agy = tr(Aw™). (3.3)
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If we identify C with R?, then Lemma 3.1 implies that the image of C under the
real linear transformation X — tr(A,X) is a convex set. Furthermore, if x € V, then
there is a 6 > 0 such that the image of C also contains the image of 6X+ (1 — §)xx*.
The constant & can be selected based solely on the constant € without regard to the
particular subspace V. Since V may be chosen to contain any y € S, we may apply
(3.3) to conclude that f4(U) contains dW(A)+ (1 — 8)z. Now consider a linearly
independent pair u,v € U. Let V = span{u,v}. The image of the spherical cap C
corresponding to this subspace under the map X +— tr(A2X) will be convex and will
therefore contain the line segment connecting f4 (1) to f4(v). This proves that f4(U)
is convex. [

For the following results, recall that a limit, or accumulation, point of a set X
does not necessarily belong to X but contains at least one element of X in each of its
neighborhoods.

LEMMA 3.3. Let A€ B(H), z€ W(A), and 0 < & < 1. The set SW(A)+ (1 —
0)z contains a neighborhood of z in the relative topology of W(A) if and only if 7 is
not a limit point of extW (A).

Proof. We will prove the equivalent statement: z is a limit point of extW (A) if
and only if §W(A)+ (1 — )z does not contain a neighborhood of z in the relative
topology of W(A). To prove the forward implication, suppose that there is a sequence
of extreme points z;x € W(A)\{z} that converges to z. As extreme points, no z; can be
in 6W(A)+ (1—98)z. Moreover SW (A)+ (1 —8)z is closed, so there is a neighborhood
around each z; that contains an element wy in W(A) but outside W (A) + (1 — 0)z.
We can choose these wy so that they converge to z, proving that W (A) + (1 — )z
does not contain a neighborhood of z in W(A).

To prove the converse, suppose that w; € W(A) is a sequence that converges to
z and that each wy is outside the set OW(A)+ (1 — &§)z. The ray from z through wy
intersects W(A) in a line segment with one endpoint at z, and the other endpoint in
dW(A). Let z; denote this endpoint. Then wy = z+ A (zx —z) where 0 < A < 1. Since
wy is not in 8W(A)+ (1 — 8)z, A must be at least §. This means that 8|z — z| <
|wi —z|. Since wy converges to z, so does z;. Therefore z € dW(A). Each z; is either
an extreme point of W(A), or it is a convex combination of two such extreme points,
one of which must lie on the arc of JW(A) between z and z;. This proves that z is a
limit point of extW(A). O

The main result of this section now follows from Proposition 3.2.

THEOREM 3.4. Let A € B(H) and let z € W(A). If z is not a limit point of
extW (A), then fy is strongly continuous at z.

Proof. Fix xe f, !(z). By Proposition 3.2, the image f4(U) of any neighborhood
U around x in S will contain W (A) + (1 — )z for some & > 0. Then Lemma 3.3
implies that f4(U) contains a neighborhood of z in the relative topology of W(A), so
fa I is strongly continuous at z.  [J
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In the finite dimensional setting, the numerical range of a normal matrix is a con-
vex polygon, so Theorem 3.4 implies the inverse numerical range map is strongly con-
tinuous everywhere on that polygon. For normal operators defined on an infinite di-
mensional space, however, it is possible for strong and weak continuity of the inverse
numerical range map to fail. The sufficient condition for strong continuity in Theorem
3.4 turns out to be necessary for weak continuity when A is a normal operator.

THEOREM 3.5. Let A € B(H) be normal and z € W(A). If z is a limit point of
extW (A), then fy' is not weakly continuous at z.

Proof. Since W(A) is a convex set in the two dimensional real vector space C,
the set of extreme points of W(A) is closed. This means that z € W(A) NextW(A).
Any such z is an eigenvalue of A and any x € f,° ! (z) is an eigenvector corresponding

to z [1]. Fix one particular x € f,° !(z). Because the inner product is continuous,

the set of v € S such that |{x,v)| > ‘/75 is an open neighborhood of x. Any v in

this neighborhood can be decomposed as v = ax+ By where o = (x,v), y = ﬁ

is orthogonal to x, and B = ||v — ox||. The operator A is normal, so x is also an
eigenvector of A* [15, Theorem 12.12]. This lets us calculate f4(v):

(Av,v) = (aAx+ BAy, ox+ By)
= |af* (Ax,x) + B (Ax,y)
= |af* (Ax,x) + B (Ax,y)
= |o|* (Ax,x) + [ BI* (Ay,)
= a2+ B (Av,y) -

(Ay,x) + |BI* (Av,y)

4 Ba
+ B (y,A"x) + | BI* (Ay,y)

Since |ot|> 4+ [B|> =1 and |a|> > ., we conclude that f4(v) € W (A) + 1z for any
v in this neighborhood around z. By Lemma 3.3, %W(A) + %z does not contain a
neighborhood of z in the relative topology of W(A). Therefore f4 is not an open
mapping at x which means that f, ! is not weakly continuous at z. [J

4. Inverse continuity on the boundary

In this section we investigate strong and weak inverse continuity for points on the
boundary of the numerical range that are not covered by Theorem 3.4. Let us begin with
areview of what is known about the boundary of W(A) when A is a bounded operator
on an infinite dimensional Hilbert space. Recall that the essential numerical range of
an operator A € #() is the set We(A) = Ngey () W(A+K) where () is the
set of compact operators on ¢ . It is readily apparent that W, (A) is a closed, convex
subset of W(A). Fillmore et al. observed [6] that z € W,(A) if and only if there is a
sequence x, € S such that x, converges weakly to 0 while fy (x,) — z.

P. Lancaster [10] described the relationship between the boundary of the numerical
range and the essential numerical range. By [10, Theorem 1], the extreme points of
W(A) are contained in W(A) UW,(A).
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LEMMA 4.1. Let A € B(H) and let M denote the set of angles 0 for which
the maximum value of the spectrum of Re(e_ieA) is an isolated eigenvalue with finite
multiplicity. Let Ly be defined as in (2.3). Then 6 € M if and only if Lg "W (A) does
not contain elements of W,(A).

Proof. For 6 € R, let u(6) denote the maximum of the spectrum of Re(e "%A).
If 1(0) is not an isolated eigenvalue with finite multiplicity of Re(e "?A), then ()
is in the essential spectrum of Re(e~"%A). By Weyl’s criterion [14, Theorem VII.12]
there is a sequence x; € Sy such that | Re(e 0 A)x; — 1 (8)xi|| — 0 as k — o while x;
converges weakly to 0. Then <Re(e‘i9A)xk,xk> — 1(6). By passing to a subsequence,
we can assume that (Axy,x;) also converges, and the limit will be an element of W, (A)
that is contained in Lg.

Conversely, suppose that (1(8) is an isolated eigenvalue of Re(e ?A) with finite
multiplicity. There is a compact self-adjoint operator K such that the maximum element
of the spectrum of Re(e "9A) + K is strictly less than 1(8). Then W (A +K) does not
intersect Lg, so Lg cannot contain an element of W,(A). O

The following proposition is a summary of several results of Narcowich [13], re-
stated in terms of the essential numerical range with the help of Lemma 4.1.

PROPOSITION 4.2. Let A € B(). Any connected subset of dW (A) that is sep-
arated from W,(A) is a piecewise analytic curve. Each analytic portion is either a line
segment or can be parameterized by p(0)+iu'(0) on an open interval where 11(0)
is the maximum element of the spectrum of Re(e "%A) and wu(8) is also an isolated
eigenvalue with finite multiplicity on that interval. The points where the curve is not
analytic may accumulate, but only at endpoints of line segments in dW (A) that also
contain elements of W,(A). In particular, if W,(A)NIW(A) = &, then W (A) is a
finite union of analytic curves.

Each curved analytic portion of dW(A) described above is a critical curve corre-
sponding to the maximal eigenvalue of Re(e~?A) on an interval of values of 6. Flat
analytic portions correspond to angles 6 where the maximal eigenvalue function splits
into two or more eigenvalue functions with different slopes. We refer the interested
reader to [ 13] for more details.

LEMMA 4.3. Let A € B(H°). For each z € extW(A), let P(z) denote the or-
thogonal projection onto the closure of the span of f, ! (2). If fa is an open mapping
in the relative topology of W(A) at x € Sy and fx(x) =z € extW(A), then for any
sequence zj, € extW (A) that converges to z, P(zx)x — X.

Proof. Suppose by way of contradiction that P(z;)x does not converge to x. We
may assume by passing to a subsequence that there is an € > 0 such that ||P(z;)x —x|| >
2¢ for all 7. Choose any z; and y € f; ' (z). Then

2e < ||x— P(zp)x]||
< lx =yl + ly — P(ze)x]] (Triangle inequality)
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= e =yl +1P(ze)y — P(z)x]| (Since P(z)y =)
< e =yl + 1P [lx =l

< 2=yl

In particular, y is not in the neighborhood U = {y € S,» : ||x —y|| < €} around x.
Therefore f4(U) does not contain any z;, so f is not an open mapping at x. [

REMARK 4.4. In the statement of Lemma 4.3, we defined P(v) to be the orthog-
onal projection onto the closure of the span of f,'(v). In fact, the span of f,'(v) is
always a closed subspace when v € extW (A), so it is redundant to refer to its closure.

The main result of this section follows. It extends [ 1, Theorem 2.1] to operators
in infinite dimensions. This theorem does not completely characterize when weak and
strong continuity hold on dW(A) because it only applies to points where the corre-
sponding maximal eigenvalue of Re(e "A) is isolated and has finite multiplicity.

THEOREM 4.5. Let A € B(H°) and z € W(A) NextW(A). Let Lo be defined
as in Lemma 2.2. If z € Lg, where the maximum of the spectrum of Re(e %A) is an
isolated eigenvalue with finite multiplicity, then:

1. f;l is strongly continuous at z if and only if z is contained in only one critical
curve of A;

2. fo! is weakly continuous at z if and only if W (A) is analytic at 7 or 7 is an
endpoint of a flat portion of dW (A).

Proof. Since z € Lg,, Re(e™'%z) is the maximum eigenvalue of Re(e "%A). If
we perturb the angle 6, the maximum eigenvalue of Re(e"®A) at 6 = 6y may split into
one or more eigenvalue functions A () that are analytic in a neighborhood of 6. Each
of these eigenvalue functions corresponds to a critical curve given by A(6) +iA’(0).
If all of the eigenvalue functions A(6) have the same slope at 6y, then z is the unique
point where Lg, intersects W(A). If the eigenvalue functions have different slopes at
6o, then the intersection of Lg, with W(A) will be a flat portion. In that case, z must
be an endpoint of the flat portion, since we have assumed that z € extW (A). From here,
we divide the proof into three cases.

I. z is in the relative interior of a curved analytic arc of dW (A).

II. z is a singularity where one curved analytic arc of dW(A) transitions to a flat
portion of the boundary.

II. z is a singularity where one curved analytic arc of dW (A) transitions to another.

We will show that f,° Lis weakly continuous at z in cases I and II, while weak
continuity fails in case III. We begin with case I. Suppose that z is contained in the
relative interior of one of the analytic curves defining the boundary of W(A). Any such
curve will be a critical curve of A. This critical curve can be expressed as f4(x(0))
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for some analytic family of eigenvectors x(6) of Re(e "®A). Then z = f4(xo) where
xo = x(6p) . If we take a neighborhood U around x in S, and consider f4(U), then
by Proposition 3.2, f4(U) is a convex subset of W(A) that contains a neighborhood
of the boundary around z. Therefore, it contains a neighborhood of z in the relative
topology of W(A), proving that f,” ! is weakly continuous at z.

Now consider case II, where z is the transition point from a flat portion to a curved
analytic portion of the boundary. The curved portion is one of the critical curves of A,
and can be parameterized by f4(x(0)) for some analytic family of eigenvectors of
Re(e 9A). Again z = f4(xo) where xo = x(8y). Let U be a neighborhood of xq in
S,». The image fa(U) contains a neighborhood of z on the curved portion of the
boundary. It is also a convex set that contains all points of W(A) in a neighborhood
of z on the flat portion of the boundary by Proposition 3.2. We conclude that f4(U)
contains a neighborhood of z in the relative topology of W(A) and therefore f, Uis
weakly continuous at z.

It remains to prove that weak continuity fails in case III, that is, when z is the
transition point for two different curved analytic portions of the boundary of W(A). The
two boundary portions adjacent to z will be given by distinct critical curves of A. Let
A(0) and p(6) denote the analytic eigenvalue functions of Re(e "®A) corresponding
to the two critical curves and let P(0) and Q(6) be their respective spectral projections.
Choose any x € f, ' (z). Since x cannot be in the range of both P(8) and Q(8), Lemma
4.3 implies that the map f4 is not open at x. Therefore f,° I is not weakly continuous
at z.

We have completed the characterization of weak continuity, but we still need to
verify the conditions for strong continuity to hold in cases I and II. Suppose there is
only one critical curve that passes through z. Let P(6) denote the spectral projection
corresponding to this critical curve. If x € f;!(z), then x is in the range of P(6).
Choose an analytic path @(0) in S» such that ¢(6y) = x and P(0)@(0) # 0 for all
0 in a neighborhood of ). Then x(6) given by (2.1) is an analytic family of unit
eigenvectors of Re(e™"®A), and the curve £ (x(0)) is the unique critical curve passing
through z.

Choose a neighborhood U = {y € S : |y —x|| < &} around x. Since the eigen-
vectors x(0) depend continuously on 8, the image f4(U) contains a neighborhood of
z in the critical curve that passes through z. If z happens to be the endpoint of a flat
portion of dW(A), then f4(U) also contains a neighborhood of z in that flat portion
by Proposition 3.2. Therefore f4(U) contains a neighborhood of z on the boundary of
W (A). Since f4(U) is convex by Proposition 3.2, we conclude that f4(U) contains a
neighborhood of z in the relative topology of W (A). This proves that f, ! is strongly
continuous at z.

Conversely, suppose that more than one critical curve contains z. In case I, one
of these critical curves parameterizes dW (A) in a neighborhood of z, while in case II,
one of the critical curves parameterizes dW (A) to one side of z, while the portion of
the boundary on the other side of z is flat. In any event, each of these critical curves
corresponds to an eigenvalue function that is analytic in a neighborhood of 6. Let
u(0) denote the eigenvalue function corresponding to the critical curve that is part of
the boundary near z. Let A(0) be the eigenvalue function corresponding to one of the
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other critical curves, and let P(8) and Q(0) denote the analytic families of spectral
projections corresponding to A(0) and p(0), respectively. Since P(6) and Q(0)
correspond to different spectral subspaces of the self-adjoint operator Re(e "9A), their
ranges are orthogonal. We may choose a pre-image x € f, !(z) such that x is in the
range of P(6y), thatis P(6p)x = x. Then Q(6)x — 0 as 6 — 6y. By Lemma 4.3, f,
is not open at x, and therefore f,° ! is not strongly continuous at z. [

The next result is an immediate consequence of Proposition 4.2 and Theorem 4.5.

COROLLARY 4.6. Let A € B(). If W.(A)NIW(A) = &, then there are at
most finitely many points where strong (and thus weak) inverse continuity of f, U can

fail.

REMARK 4.7. For any compact operator A defined on an infinite dimensional
Hilbert space, W,(A) = {0}. If 0 ¢ dW(A), then Proposition 4.2 implies that the
boundary of W(A) is a finite union of critical curves, and Theorem 4.5 gives a complete
description of when weak and strong continuity hold for the inverse numerical range
map on the boundary. It is not clear what the necessary and sufficient conditions are for
f1! to be strongly or weakly continuous at 0 when 0 € W (A)NW(A). It is also not
clear what happens at the opposite end point of a flat portion of the boundary of W(A)
that also contains 0. These open questions are related to the possible structure of the
boundary of the numerical range of a compact operator near the origin.

5. Examples

Normal operators

EXAMPLE 5.1. Let ¢;, k € Z, denote the standard orthonormal basis for J# =
05(Z) and consider the compact normal operator A : ¢, — ¢, defined by

Aleg) = 0 ifk=0,
e %—f—ik% otherwise.

Since 0 € extW(A) and 0 is not an isolated element of extW (A), f, ' is not weakly
continuous at 0 by Theorem 3.5.

EXAMPLE 5.2. Let T : £,(N) — £»(N) be the normal operator (T (x)); = thx;

where 7T is an irrational root of unity. Then W(T') is the union of the open unit disk
with the set {7¥: k € N}. Each ¥ is an extreme point of W(T), and none of these
extreme points is isolated. By Theorem 3.5, f ! is not weakly continuous at any of
these extreme points.
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Non-normal compact operators

EXAMPLE 5.3. The numerical range of the 4-by-4 matrix

0ik0 O
ikib 0 0
A= 000 ik |’

0 0 ik —ib

where b,k > 0, is the convex hull of two ellipses and weak continuity fails for f,° !

0 [3, Example 9]. We can choose b and k small enough so that the numerical range of
Iy — A is contained in the unit circle. Here we use I to denote the identity matrix on
C* while I will denote the identity on the Hilbert space ¢,(N). We then consider the
operator

T=—1+@ (Il —1A) ™"
k=1

Observe that T’ is a compact operator on ¢ (N). Weak continuity of f; ! fails at each of
the points ek —1,keN by Theorem 4.5. So T is an example of a compact operator
with infinitely many weak continuity failures.

EXAMPLE 5.4. Let 5 = L*(0,1). The Volterra operator V : J# — J# is

zfotf(s)ds

It is well known that the Volterra operator is a compact linear operator. Halmos points
out [7, Problem 150] (see also [4, Example 9.3.13]) that the numerical range of V is
the closed set W (V) lying between the curves

1 —cos(t) , .t—sint

t— 2 +i 7 <t < 2m,

where the values at = 0,27 are taken to be the corresponding limits. There is a flat
portion on the imaginary axis with endpoints i/(27) and —i/(27). We will show that
the inverse numerical range map is strongly continuous everywhere on W (V).

Let us review some facts about the Volterra operator, see [4, Example 9.3.13] for
details. The adjoint of V is (V*£)(r) = [ f(s)ds. Let Vi denote the real part of e~*0V
and note that

Vo =1(e 0V +efvr).

Aslong as 6 # 0 or &, the eigenvalues and corresponding unit eigenvectors of Vy are

sin 6 71(26+2 )
n , faut)=e€" " h 7.
A = 20 L onn Ju(t) = where n €

In particular, each eigenvalue has a one dimensional eigenspace and so the critical
curves corresponding to each eigenvalue are well defined (see Figure 1). The boundary
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Figure 1: The critical curves of the Volterra operator.

of the numerical range is the critical curve corresponding to the maximal eigenvalue
and therefore the inverse numerical range map is strongly continuous at all points on
the boundary curve, except possibly the two endpoints by Theorem 4.5. Strong conti-
nuity also holds at all points in the relative interior of the flat portion of the boundary
by Theorem 3.4. All that remains is to verify that fj, ! is strongly continuous at the
endpoints of the flat portion, +i/(27).

The real part of V is the rank one orthogonal projection onto the constant func-
tions. Let 7 = {f € A : [, f(t)dt =0}. The compression of V onto .7 is a normal
operator, and the functions e 2" | n € Z\ {0} are an orthonormal basis of eigenvectors
with corresponding eigenvalues i/(27n).

The boundary curve of W (V') can be parameterized by fy (e=>"?) for 6 € [, —7].
The functions e~2% are the the unique pre-images of corresponding points on the
boundary curve. This is true, even at the endpoints where 8 = +m. Because the image
of fy at ¢¥?™ contains a neighborhood of the boundary of W (V) around +i/(2x), it
follows that fy is strongly continuous at both +i/(2).

Weighted shift operators

EXAMPLE 5.5. The numerical range of a weighted shift operator is either an open
or closed circular disk centered at the origin [16, Proposition 16]. Conditions for deter-
mining whether the disk is closed or open can be found in [17]. We will demonstrate
that the inverse numerical range map f, ! of any weighted shift operator A is strongly
continuous everywhere in W(A).

Let A be a weighted shift operator on ¢3(Z) such that there is a bounded se-
quence of scalars oy € C for which (Ax)ry1 = ogxx. If W(A) is open, then f; Ui
strongly continuous on W(A) by Theorem 3.4. Suppose therefore that W(A) is closed
and choose x € ¢5(Z) with ||x|| = 1 such that (Ax,x) is equal to the numerical radius
o(A) :=sup{| (Ay,y)| : ¥y € l2(Z),||y]| = 1}. Fix 7€ C with |7] =1. Let y € £, be
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defined by y; = 7¥x;. Note that f3(y) = (Ay,y) = 3, 0™ T° = 7 (Ax,x). Fix £ > 0
and note that

2 k 2112 k 2
Ix=yP=Y =1l < Y [ —1P+3e
keZ —N<k<N

for some N sufficiently large. When 7 is sufficiently close to 1, |7 —1]> < m

forall k€ {—N,...,N}. In that case, ||x—y||* < &. Therefore the map fy is relatively
open at x since the image of a neighborhood of x contains a neighborhood of w(A)
on the boundary of W(A). It follows that f, ' is strongly continuous at w(A). By
rotational symmetry, f,° ! is strongly continuous at all points of the boundary of W(A)
that are part of the numerical range. It is worth mentioning that there are weighted shift
operators where W, (A) = W (A) and for such operators the strong continuity of f, ' on
the boundary cannot be derived from Theorem 4.5. See [17, Note V.4] for details on
the construction of such examples.
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