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OPERATORS WITH MINIMAL PSEUDOSPECTRA

AND CONNECTIONS TO NORMALITY
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Abstract. This paper mainly studies the class of bounded linear operators A with minimal pseu-
dospectra σε (A) = σ(A)+Dε for some ε > 0 , where σ(A) denotes the spectrum of A , and Dε
denotes the open disk of radius ε centered at the origin. Some characterizations of the normality
of operators with minimal pseudospectra are provided in terms of only one ε−pseudospectrum.
Furthermore, a characterization of the normality of arbitrary N×N complex matrices is given
for N � 4 . Some applications to numerical ranges are also presented.

1. Introduction

Let B(H) denote the Banach algebra of all bounded linear operators on a complex
Hilbert space H with the identity I . If H is finite-dimensional, dim(H) = N , we
identify B(H) as the algebra CN×N of N ×N complex matrices. Let ‖·‖ denote
the operator norm induced by the inner product associated with H . For ε > 0, the
ε−pseudospectrum of an operator A ∈ B(H) is defined by

σε (A) :=
{

z ∈ C :
∥∥(zI−A)−1

∥∥ >
1
ε

}
. (1)

By convention we write
∥∥(zI−A)−1

∥∥ = ∞ if z ∈ σ(A) , the spectrum of A . The pseu-
dospectra {σε(A)}ε>0 of A are a family of strictly nested open sets, which grow to
fill the whole complex plane as ε → ∞ and shrink to σ(A) as ε → 0. Any con-
nected component of σε(A) has a nonempty intersection with σ(A) . Furthermore,⋂
ε>0

σε(A) = σ(A), and σε1(A) ⊂ σε2(A) for 0 < ε1 < ε2 . The pseudospectra can also

be defined in terms of perturbations of the spectrum. We have

σε(A) := {z ∈ C : z ∈ σ(A+E) for some E with ‖E‖ < ε} . (2)

Let Dε(λ ) denote the open disk of radius ε centered at λ ∈ C . For simplicity, we
write Dε to represent Dε(0) . We always have the inclusion σ(A)+Dε ⊆ σε(A) for all
ε > 0, where

σ(A)+Dε := {λ + z : λ ∈ σ(A) and z ∈ Dε}
=

⋃
λ∈σ(A)

Dε(λ ).
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For more details about the pseudospectra and the study of the resolvent norm∥∥(zI−A)−1
∥∥ , we refer the reader to [17, 18, 22] and the references therein.

An operator A ∈ B(H) is called normal if AA∗ = A∗A , where A∗ is the opera-
tor adjoint to A . It is called self-adjoint if A∗ = A . An interesting problem in oper-
ator theory is to investigate some conditions under which certain operators are nor-
mal. Several mathematicians have paid attention to this problem, see for example
[3, 11, 12, 13, 15, 20]. It is well-known that the pseudospectra of a normal operator
A are given by σε(A) = σ(A) + Dε for all ε > 0. The converse is also valid if H
is finite-dimensional. Jianlian Cui et al. [10] showed interesting characterizations of
some special operators in terms of the pseudospectrum. In particular, they proved that
an operator A is self-adjoint if and only if σε(A) ⊆ {z ∈ C : | Im(z)| < ε} for some
ε > 0. Let ρ(A) := sup

z∈σ(A)
|z| and ρε(A) := sup

z∈σε (A)
|z| denote the spectral radius and

the ε−pseudospectral radius of A respectively. Recently, Boling Jia and Youling Feng
[14] showed that A ∈ B(H) satisfies ρε(A) = ρ(A)+ ε for all ε > 0 if and only if
A is “approximately unitarily similar” to an operator of the form N ⊕M , where N is
normal and ρε(M) � ρε(N) = ρε(A) . In particular, if σε(A) = σ(A)+ Dε , we have
ρε(A) = ρ(A)+ ε . The main contribution of this paper is to derive new characteriza-
tions of the normality of certain operators in terms of only one ε−pseudospectrum. We
also present some applications to the numerical range.

The remainder of this paper is organized as follows. In Section 2, we present new
conditions in terms of one ε−pseudospectrum implying the normality of some opera-
tors. As an application, we present a simple proof of the non-stability of the spectrum
of a quasi-nilpotent operator under perturbations. We also prove that an arbitrary com-
plex matrix A ∈ CN×N , N � 4, is normal if and only if there exists ε0 > 0 such that
σε0(A) = σ(A)+Dε0 . Moreover, we construct a counter-example for the case N � 5.
If the ε−pseudospectrum of A ∈ B(H) consists of disjoint disks of radii ε for some
ε > 0, we show that A must be normal. In Section 3, we prove that the numerical
ranges of the class of operators with pseudospectra σε(A) = σ(A)+Dε are the closure
of the convex hull of their spectra. In Section 4, we use some known results and the
main result of Section 3 to show the existence of an invertible operator S such that
‖S‖∥∥S−1

∥∥ � 1+
√

2, SAS−1 has a normal dilation, and the numerical ranges of A and
SAS−1 have the same closure.

2. Some conditions on an operator implying normality

For a subset X of the complex plane, let co(X) denote the convex hull of X ,
int(X) denote the interior of X , X denote the closure of X , ∂X denote the boundary
of X , and d(z,X) denote the Euclidean distance from z ∈ C to X . We consider the
following conditions that an operator A ∈ B(H) may satisfy:

• (G1)
∥∥∥(zI−A)−1

∥∥∥ = 1
d(z,σ(A)) for all z /∈ σ(A),
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• (β ) each point of σ(A) is a bare point of σ(A) (That is, it lies on the circum-
ference of some closed disk that contains σ(A)).

Other conditions on a bounded linear operator that have been used to study the normal-
ity can be found in [2, 4]. We now add a new condition to the above.

• (β1) σ(A) has empty intersection with the interior of its convex hull, i.e. σ(A)∩
int(co(σ(A))) = /0 .

The following lemmas play a key role in establishing our results.

LEMMA 2.1. Let A ∈ B(H) . Then A satisfies the condition (G1) if and only if
σε(A) = σ(A)+Dε for all ε > 0 .

Proof. Let z ∈ σ(A)+Dε . Then z = λ +α for some λ ∈ σ(A) and 0 � |α| < ε .
This leads to

z ∈ σ(A)+ αI = σ(A+ αI)⊂ σε(A), by (2).

Thus we always have the inclusion σ(A)+ Dε ⊆ σε(A) . By (1), the condition (G1)
implies that σε(A) ⊆ σ(A)+Dε , and then σε(A) = σ(A)+Dε for all ε > 0.

Assume now that σε(A) = σ(A)+ Dε for all ε > 0. Let z /∈ σ(A) and set ε =
d(z,σ(A)) . Thus z is in the boundary of the set σ(A)+Dε , and so it is in the boundary

of σε(A) . Therefore
∥∥∥(zI−A)−1

∥∥∥ = 1
ε = 1

d(z,σ(A)) , and then A satisfies (G1) . �
Let A ∈ B(H) and M be a closed linear subspace of H . If for every x ∈ M ,

Ax ∈ M , we say that M is an invariant subspace of A . Let M⊥ denote the orthogonal
complement of M . If both M and M⊥ are invariant subspaces of A , we say that M is a
reduced subspace of A . We shall denote the set of all eigenvalues of A by σp(A) , and
the eigenspace associated with λ ∈ σp(A) by ker(λ I−A) . We note that an eigenspace
of A is an invariant subspace of A , but it is not a reduced subspace in general.

LEMMA 2.2. [10, Lemma 2.1] Let ε > 0 and A ∈ B(H) . Assume that λ ∈
σp(A) . If ker(λ I −A) is not a reduced subspace of A, then, there exists r > ε such
that Dr(λ ) ⊂ σε(A) .

Recall that if H is infinite-dimensional, then A may have no eigenvalues. So,
we cannot directly use the previous lemma. Note that A ∈ B(H) is not invertible if
it is not bounded below: that is, if there is no c > 0 such that ‖Ax‖ � c‖x‖ for all
x ∈ H . The spectrum thus includes the set of approximate eigenvalues, which are those
λ ∈ C such that λ I − A is not bounded below: equivalently, it is the set of λ for
which there is sequence of unit vectors xn ∈ H , known as approximate eigenvectors,
such that lim

n→∞
‖(λ I−A)xn‖ = 0. The set of approximate eigenvalues is called the ap-

proximate point spectrum and denoted by σap(A) . Clearly, σp(A) ⊆ σap(A) and it is
well-known that ∂σ(A) ⊆ σap(A) ⊆ σ(A) . In particular, σap(A) is always nonempty,
see [1, Theorem 6.18]. Let K be a Hilbert space containing H as a subspace. A map
π : B(H)→B(K) is called a faithful ∗−representation if π(A+λB)= π(A)+λ π(B) ,
π(AB) = π(A)π(B) , π(A∗) = π(A)∗ , π(I) = I , and ‖π(A)‖ = ‖A‖ for all λ ∈ C and
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A,B ∈ B(H) . Using the approximate eigenvectors, Berberian [5] constructed a Hilbert
space K extension of H and a faithful ∗− representation π : B(H) → B(K) such that
σap(A) = σap(π(A)) = σp(π(A)) . Using Berberian’s construction, it becomes natu-
ral to speak of eigenvectors and eigenvalues of the representation of every operator
A ∈ B(H) in B(K) .

We may now use the previous lemmas and present our first main result which gives
a characterization of the normality of a class of operators or matrices in terms of only
one ε0−pseudospectrum.

THEOREM 2.1. Let A∈B(H) be an operator satisfying the condition (β1) . Then
A is normal if and only if σε0(A) = σ(A) + Dε0 for some ε0 > 0 . In particular, if
σε0(A) = σ(A)+Dε0 for some ε0 > 0 , then σε(A) = σ(A)+Dε for all ε > 0.

Proof. Assume first that A is normal. By the spectral theorem, the operator A
satisfies the condition (G1) . Thus Lemma 2.1 implies that σε (A) = σ(A)+Dε for all
ε > 0.

Assume now that σε0(A) = σ(A)+ Dε0 for some ε0 > 0. Berberian’s construc-
tion implies that there exist a Hilbert space K containing H as a subspace and a faithful
∗− representation π : B(H)→B(K) such that σap(A) = σap(π(A)) = σp(π(A)) . The
condition (β1) implies that int(σ(A)) = /0 , and then σ(A) = ∂σ(A) . Thus, the rela-
tion ∂σ(A) ⊆ σap(A) ⊆ σ(A) implies that σ(A) = σap(A) . Since π is in particular a
homomorphism, we obtain σ(A) = σ(π(A)) and then

σp(π(A)) = σap(A) = σ(A) = σ(π(A)).

This shows that the operator π(A) also satisfies the condition (β1) . We will now show
that π(A) is normal. Since π is a unital homomorphism and ‖π(A)‖ = ‖A‖ for all
A ∈ B(H) , we get

∥∥∥(zI−π(A))−1
∥∥∥ =

∥∥∥(π(zI−A))−1
∥∥∥ =

∥∥π
(
(zI−A)−1)∥∥ =

∥∥(zI−A)−1
∥∥

for all z∈ C . Then Definition (1) implies that σε(A) = σε (π(A)) for all ε > 0. Hence,
the hypothesis σε0(A) = σ(A)+Dε0 is equivalent to

σε0(π(A)) = σ(π(A))+Dε0.

Therefore, the condition (β1) implies that there is no r > ε0 such that Dr(λ ) ⊂
σε0(π(A)) for all λ ∈σ(π(A)) . By Lemma 2.2, we deduce that the eigenspace ker(λ I−
π(A)) reduces π(A) for every λ ∈ σ(π(A)) . It follows that ker(μI − π(A)) and
ker(λ I−π(A)) are orthogonal for distinct complex numbers μ ,λ ∈ σ(π(A)) , and then
K is spanned by

{
ker(λ I−π(A)) : λ ∈ σp(π(A)) = σ(π(A))

}
. Therefore, π(A) is a

diagonal normal operator. That is the underlying Hilbert space of π(A) is the closed
linear span of the eigenspaces.
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Recall that π(A) is normal if and only if π(A)∗π(A) = π(A)π(A)∗ . Since π is a
faithful ∗− representation, we obtain π(A∗A) = π(AA∗) , and then

‖A∗A−AA∗‖ = ‖π (A∗A−AA∗)‖ = ‖π(A∗A)−π(AA∗)‖ = 0.

We deduce that A∗A = AA∗ , and then A is normal. �
Note that the class of operators satisfying the condition (β ) is a subclass of the

operators satisfying (β1) . Thus, the same proof of Theorem 2.1 leads to the following
result.

COROLLARY 2.1. Let A ∈ B(H) be an operator satisfying the condition (β ) .
Then A is normal if and only if σε0(A) = σ(A)+Dε0 for some ε0 > 0 .

A bounded operator on a Hilbert space is said to be quasi-nilpotent if its spectrum
is the singleton {0} . Using the definition (2) of the pseudospectra and Theorem 2.1,
we obtain a simple proof of the non-stability of the spectra of quasi-nilpotent operators
under perturbations.

COROLLARY 2.2. Let A ∈ B(H) be a quasi-nilpotent operator, but not the zero
operator. Then for all ε > 0 , there exists r > ε such that Dr ⊂ σε(A) .

Proof. Assume for a contradiction that there exists ε0 > 0 such that σε0(A) =
σ(A)+Dε0 . Thus, σε0(A) = Dε0 and so Theorem 2.1 implies that A is normal. By the
spectral theorem, we get

‖A‖ = max{|λ | : λ ∈ σ(A)} = 0.

Thus, A = 0, a contradiction. �
As mentioned in the Introduction, a finite-dimensional matrix A is normal if and

only if σε(A) = σ(A)+Dε for all ε > 0. For an operator satisfying (β1) , a character-
ization of the normality in terms of one ε0−pseudospectrum is given in Theorem 2.1.
We may ask if it is possible to determine the normality of an arbitrary complex matrix
by studying only one pseudospectrum. The following theorems and example address
this question. Recall that, for a subset X ⊂ C , co(X) denotes the convex hull of X in
C and int(X) denotes the interior of X in C .

THEOREM 2.2. Let A ∈ CN×N be a complex matrix such that N � 4 . Then A is
normal if and only if σε0(A) = σ(A)+Dε0 for some ε0 > 0 .

Proof. If A is normal, then σε0(A) = σ(A)+Dε0 for all ε0 > 0. Assume that there
exists some ε0 > 0 such that σε0(A) = σ(A)+Dε0 . We want to show that A is normal.
Note that if A satisfies the condition (β1) , Theorem 2.1 implies that A is normal. Thus,
we only need to assume that A is a 4× 4 complex matrix which does not satisfy the
condition (β1) . Hence, A must have four distinct eigenvalues and only one of them is
in int(co(σ(A))) . Let λi,1 � i � 3, be the eigenvalues of A that lie on the boundary
of co(σ(A)) . Since σε0(A) = σ(A)+ Dε0 for some ε0 > 0, we get Dr(λi) �⊂ σε0(A)
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for all r > ε0 . Thus, Lemma 2.2 implies that the eigenspaces ker(λiI−A) are reducing
subspaces of A . This shows that A is unitarily similar to a diagonal matrix, and then A
is normal. �

Below, we construct an example to show that the previous result is not valid in
general if N � 5.

EXAMPLE 1. Let S :=
(

0 1
0 0

)
be the 2×2 shift matrix. We have σε(S) = Dε ′ ,

where ε ′ =
√

ε2 + ε (see [10, Proposition 2.4]). Let D be a diagonal matrix with
eigenvalues −4,−4i and 4+4i . Note that D is normal, and then its pseudospectra are
the union of the disks centered at the eigenvalues with radii ε .
Let now A := S⊕D ∈ C5×5 . The ε−pseudospectrum of A is then given by

σε(A) = σε(S)∪σε(D) = Dε ′ ∪ (σ(D)+Dε) .

For ε = 10, we have

σ10(A) = σ10(S)∪σ10(D) = D√
110∪ (D10(−4)∪D10(−4i)∪D10(4+4i)) .

Let Tr(λ ) denote the circle of radius r centred at λ ∈ C , i.e. Tr(λ ) = ∂Dr(λ ) . The
points of intersection between the circles of radius 10 about the three eigenvalues of

D are T10(−4)∩T10(−4i) =
{
(−2±√

46)(1+ i)
}

, T10(−4)∩T10(4+4i) = {−4+
10i,4− 6i} and T10(−4i)∩T10(4+ 4i) = {10− 4i,−6+ 4i} . In particular, note that
|(−2−√

46)(1+ i)| = (2+
√

46)
√

2 >
√

110 and |− 4+ 10i| = |10− 4i| = √
116 >√

110. Thus
D√

110 ⊂ D10(−4)∪D10(−4i)∪D10(4+4i),

that is σ10(S) = D√
110 ⊂ σ10(D), see Figure 1. Therefore

σ10(A) = σ10(D) = σ(D)+D10 = σ(A)+D10,

but A is not normal. In fact, for ε < 16
9 , σε (A) is the union of four disjoint disks such

that the radius of one of them is
√

ε2 + ε > ε .

If A is a finite-dimensional normal matrix or a linear bounded normal operator
such that σ(A) consists of isolated points, then the ε−pseudospectrum of A is the
union of disjoint disks of radii ε for some ε > 0. The following theorem shows that
this necessary condition is also sufficient.

THEOREM 2.3. Let A∈B(H) . If there exists ε0 > 0 such that the ε0−pseudospec-
trum σε0(A) of A consists of disjoint disks of radii ε0 , then A is normal.

Proof. The proof is similar to the proof of Theorem 2.1. The only difference is
that the operator A may not satisfy the condition (β1) . Assume that there exists ε0 > 0
such that σε0(A) consists of disjoint disks of radii ε0 . Then the spectrum σ(A) of A
consists of isolated points. So we obtain

σ(A) = ∂σ(A) ⊆ σap(A) ⊆ σ(A).
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Figure 1: The image on the left shows the 10-pseudospectrum of A = S⊕D , which is
the union of the disks centred at −4,−4i,4+4i with radii 10 and the disk centred at the
origin with radius

√
110. The image on the right shows the boundaries of σε(A) for

ε = 100,100.5,100.75,101 . The solid dots are the eigenvalues of A . The dashed triangle
is the boundary of the numerical range of A .

Thus σ(A) = σap(A) . By Berberian’s construction, there exist a Hilbert space K and a
faithful ∗− representation π : B(H) →B(K) such that σ(π(A)) = σp(π(A)) = σ(A) .
Since σε0(π(A)) = σε0(A) , Lemma 2.2 implies that all the eigenspaces of π(A) are
reducing subspaces. This implies that π(A) is diagonal normal operator, and then A is
normal. �

3. Numerical ranges of operators with minimal pseudospectra

Let 〈·, ·〉 denote the inner product in H . We recall that the numerical range of A
is defined by

W (A) := {〈Ax,x〉 : x ∈ H, ‖x‖ = 1} ,

and let W (A) denote its closure in C .

LEMMA 3.1. [21, Theorem 2] Let A ∈ B(H) and X ⊂ C be a closed convex
subset of the complex plane. Then W (A) ⊆ X if and only if

∥∥∥(zI−A)−1
∥∥∥ � 1

d(z,X)
for all z /∈ X .

Using Lemmas 2.1 and 3.1, we obtain the following result.

THEOREM 3.1. Let A∈B(H) . If σε(A)= σ(A)+Dε for all ε > 0 , then W (A)=
co(σ(A)) .

Proof. By the spectral inclusion and the convexity of the numerical range, we
have co(σ(A)) ⊆W (A) . Assume that σε(A) = σ(A)+ Dε for all ε > 0. By Lemma
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2.1, we obtain the following inequality

∥∥∥(zI−A)−1
∥∥∥ =

1

d(z,σ(A))
� 1

d(z,co(σ(A)))
, for all z /∈ co(σ(A)) .

The inclusion W (A) ⊆ co(σ(A)) follows then from Lemma 3.1. �
The converse of Theorem 3.1 is true if dim(H) � 4. This is a consequence of

Johnson’s result [15, Theorem 3].

PROPOSITION 3.1. [15, Theorem 3] Let A ∈ C
N×N . We have W (A) = co(σ(A))

if and only if A is normal or A is unitarily similar to A1⊕A2 , where A1 is normal and
W (A2) ⊆W (A1) .

Suppose that A ∈ C4×4 is not normal but W (A) = co(σ(A)) . Then Johnson’s
proposition implies that A is unitarily similar to A1⊕A2 with A1 normal and W (A2)⊆
W (A1) . This is impossible if A2 is nonnormal: if A2 is nonnormal, then it must be
2×2 or 3×3. In these cases, W (A1) is either a line segment or a point, while W (A2)
has a nontrivial interior in C , making the inclusion W (A2) ⊆W (A1) impossible.

PROPOSITION 3.2. Let A∈CN×N such that N � 4 and W (A) = co(σ(A)) . Then
σε(A) = σ(A)+Dε for all ε > 0 .

The converse of Theorem 3.1 is not valid in general if dim(H) > 4. Counter-
examples may be constructed via the direct sum similar to the construction of Example
1. In fact, if S is the 2× 2 shift matrix and D := diag(−4,−4i,4 + 4i) , then the
numerical range of A = S⊕D is given by

W (A) = co(W (S)∪W(D)) = co
(

D 1
2
∪ co(σ(D))

)
= co(σ(D)) = co(σ(A))

since D 1
2
⊂ co(σ(D)) and 0 ∈ co(σ(D)) , see Figure 1. However, there exist some

ε > 0 such that σε (A) �= σ(A)+Dε . Indeed, we have σε (A) = σ(A)+Dε if and only
if σε(S) ⊆ σε(D) .

Although, the converse of Theorem 3.1 is not true in general, we observe the
following particular case.

THEOREM 3.2. Let A ∈ B(H) such that σ(A) = W (A) . Then σε(A) = σ(A)+
Dε for all ε > 0 .

Proof. We always have

σ(A)+Dε ⊆ σε (A) for all ε > 0. (3)

For the converse inclusion, note that (3) is equivalent to

∥∥∥(zI−A)−1
∥∥∥ � 1

d(z,σ(A))
for all z /∈ σ(A).
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By Lemma 3.1, we get∥∥∥(zI−A)−1
∥∥∥ � 1

d(z,W (A))
=

1

d(z,σ(A))
for all z /∈ σ(A).

Therefore, ∥∥∥(zI−A)−1
∥∥∥ =

1

d(z,σ(A))
for all z /∈ σ(A).

which is equivalent to σε(A) = σ(A)+Dε for all ε > 0 by Lemma 2.1. �

REMARK 1. It was shown in [15] that if σ(A) ⊆ ∂W (A) , then A is normal. In
particular, we have σε(A) = σ(A) + Dε for all ε > 0. The operators satisfying the
hypothesis of Theorem 3.2 may not be normal. Consider for instance the shift operator
S in the infinite-dimensional complex Hilbert space H = �2(N) . We have σ(S) =
W (S) , but S is not normal.

We conclude this section by an application of Theorem 3.1 to Triangular Toeplitz
operators. Recall that an upper triangular Toeplitz operator T on the Hilbert space
H = �2(N) is defined by the infinite matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a0 a1 a2 · · ·

a0 a1
. . .

a0
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where ak ∈ C for k � 0. A Toeplitz operator T is lower triangular if its transpose T t

is upper triangular. We say T is triangular if it is lower or upper triangular.

Let T be a triangular Toeplitz operator. The symbol f (z) of T is defined by the

function f (z) =
∞
∑

k=0
akzk . We assume that T has absolutely summable coefficients,

i.e.
∞
∑

k=0
|ak| < ∞ . Thus f is analytic in D and continuous in D . It is well-known

[19] that σ(T ) = f
(
D

)
and σε(T ) = f

(
D

)
+Dε for all ε > 0. For related results on

pseudospectra of Toeplitz operators, we refer the reader to [6, 7].

COROLLARY 3.1. Let T be a triangular Toeplitz operator with absolutely sum-
mable coefficients. Then W (T ) = co(σ(T )) .

Proof. Assume first that T is upper triangular. Then σε(T ) = σ(T )+Dε for all
ε > 0, and so Theorem 3.1 implies that W (T ) = co(σ(T )) . If T is lower triangular,
then its transpose T t is upper triangular. Therefore,

W (T ) = W (T t) = co
(
σ(T t)

)
= co(σ(T )) . �

We note that Corollary 3.1 is already known in the Toeplitz operator literature, see
[6, Theorem 7.11]. It is presented here as an immediate application of Theorem 3.1.
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4. Normal ∂W (A)−dilation

The observation of this section is motivated by the results obtained in [23] and the
fact that similarity transformations do not preserve the numerical range in general. Us-
ing pseudospectral tools, we show the existence of an operator S satisfying interesting
properties such as the inclusion W (SAS−1) ⊆W (A) .

Let X be a compact set in the complex plane. We say A ∈ B(H) has a normal
∂X−dilation if there is a larger Hilbert space K containing H as a closed subspace and
a normal operator N on K with spectrum σ(N) ⊆ ∂X such that

r(A) = PHr(N)|H for all r ∈ R (X) ,

where PH : K →H denotes the orthogonal projection of K onto H and R (X) denotes
the algebra of rational functions whose poles lie off X .

THEOREM 4.1. Let A ∈ B(H) . Then there exists an invertible operator S ∈
B(H) satisfying the following properties.

(i) ‖S‖‖S−1‖ � 1+
√

2,

(ii) The operator SAS−1 has a normal ∂W (A)−dilation,

(iii) W (SAS−1) ⊆W (A) .

We need some definitions and known results for the proof of the previous theorem.
Let X be a compact set in the complex plane. Let A ∈ B(H) with σ(A) ⊆ X , and
define ρ : R (X) −→ B(H) by ρ(r) := r(A) . The homomorphism ρ is bounded if
there exists a constant k > 0 such that

‖ρ‖ := sup
‖r‖X =1

‖ρ(r)‖ � k,

where ‖r‖X := sup
z∈X

|r(z)| . We denote the algebra of matrix-valued rational functions

whose poles lie off X by Rm (X) , and set

‖ρ‖cb := inf

{
k > 0 : ‖R(A)‖ � k sup

z∈X
‖R(z)‖ for all R ∈ Rm (X)

}
.

Then we say that ρ is completely bounded if ‖ρ‖cb is finite. If ρ is contractive
(‖ρ‖ � 1), then X is called a spectral set for A . When ρ is only bounded with
‖ρ‖ � k , then X is called a k-spectral set for A . If ρ is completely contractive
(‖ρ‖cb � 1), then we shall call X a complete spectral set for A . When ρ is only
completely bounded with ‖ρ‖cb � k , then we shall call X a complete k-spectral set for
A .

Crouzeix-Palencia’s Theorem [8]: Let A ∈ B(H) . Then the homomorphism
f �→ f (A) , from the algebra of all holomorphic functions on W (A) and continuous on
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W (A) into B(H) , is completely bounded by 1+
√

2. In other words, the closure of
the numerical range W (A) is a complete 1+

√
2−spectral set for the operator A .

Paulsen’s Theorem [16, Theorem 9.1]: Let A be an operator algebra, and let
ρ : A −→ B(H) be a unital completely bounded homomorphism. Then there exists
an invertible operator S with ‖S‖∥∥S−1

∥∥ = ‖ρ‖cb such that Sρ(·)S−1 is a completely
contractive homomorphism. In particular, if X is a complete k−spectral set for A ,
then there exists an invertible operator S ∈ B(H) such that ‖S‖∥∥S−1

∥∥ � k and X is a
complete spectral set for SAS−1 .

Arveson’s Theorem [16, Corollary 7.8]: Let A ∈ B(H) , and let X be a spec-
tral set for A . Then X is a complete spectral set for A if and only if A has a normal
∂X−dilation.

Proof of Theorem 4.1. Crouzeix-Palencia’s Theorem shows that W (A) is a com-
plete 1 +

√
2−spectral set for A . Then Paulsen’s Theorem implies that there ex-

ists an invertible operator S ∈ B(H) with ‖S‖‖S−1‖ � 1 +
√

2 such that W (A) is
a complete spectral set for the operator SAS−1 . Therefore, by Arveson’s Theorem, the
operator SAS−1 has a normal ∂W (A)−dilation. Hence, there exist a larger Hilbert
space K containing H as a subspace and a normal operator N ∈ B(K) with spectrum
σ(N) ⊆ ∂W (A) such that

r
(
SAS−1) = PHr(N)|H for all r ∈ R

(
W (A)

)
,

where PH is the orthogonal projection of K onto H . This completes the proof of (i)
and (ii) . Let now x ∈ H . Then, we have

〈SAS−1x,x〉 = 〈PHN|H x,x〉 = 〈Nx,x〉.
Thus, we obtain W (SAS−1) ⊆W (N) = co(σ(N)) . Therefore,

W (SAS−1) ⊆ co(σ(N)) ⊆ co(∂W (A)) = W (A).

This completes the proof of (iii) . �

REMARK 2. The proof of (i) and (ii) in the previous theorem was provided in [9]
for the upper bound 12 instead of the sharper constant 1+

√
2. We present it here for

the sake of completeness.

REMARK 3. Using the pseudospectra, we obtain a different proof of (iii) in The-
orem 4.1. We have(

zI−SAS−1)−1
= PH (zI−N)−1

|H for all z /∈W (A).

Then, we get, for all z /∈W (A) ,
∥∥∥(

zI−SAS−1)−1
∥∥∥ =

∥∥∥PH (zI−N)−1
|H

∥∥∥ �
∥∥∥(zI−N)−1

∥∥∥ =
1

d(z,σ(N))
� 1

d(z,W (A))
.
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Therefore Lemma 3.1 implies that W (SAS−1) ⊆W (A) .

In the case that A ∈ B(H) satisfies σε(A) = σ(A)+Dε for all ε > 0, the containment
W (SAS−1) ⊆W (A) holds with equality.

COROLLARY 4.1. Let A ∈ B(H) be a bounded operator with pseudospectra
σε(A) = σ(A)+Dε for all ε > 0 . Then there exists an invertible operator S ∈ B(H)
satisfying the following properties.

(i) ‖S‖‖S−1‖ � 1+
√

2,

(ii) The operator SAS−1 has a normal ∂W (A)−dilation,

(iii) W (SAS−1) = W (A) .

Proof. The properties (i) and (ii) are established in the proof of Theorem 4.1, so
we only need to prove (iii) . Theorems 3.1 and 4.1 imply that W (SAS−1) ⊆ W (A) =
co(σ(A)) . On the other hand, we have σ(A)= σ(SAS−1)⊆W(SAS−1) . Thus co(σ(A))
⊆W (SAS−1) , and so W (SAS−1) = W (A) = co(σ(A)) . �
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