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SOME NEW OPERATOR INEQUALITIES
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(Communicated by F. Hansen)

Abstract. In this article, we present some new inequalities for positive linear mappings that
can be viewed as super multiplicative inequalities. As applications, we deduce some numerical
radius inequalities. Then several inequalities for the numerical radius are presented with the aid
of convex functions.

1. Introduction

Let A() denote the C*-algebra of all bounded linear operators acting on a
Hilbert space 7. If A € Z(.7¢), the usual operator norm and the numerical radius of
A are defined, respectively, by

1Al = Hshlpl |Ax|| and @ (A) = Hshlpl | (Ax,x) |.

It can be also seen that ||A||= sup |(Ax,y)]|.
[l =llylI=1

For two Hilbert spaces 4] and 73, a linear mapping @ : J# — % is said to
be a positive linear mapping if it maps positive operators to positive operators. In this
context, recall that an operator A € () is said to be positive if (Ax,x) > 0 for all
x € . Further, ® is said to be unital if ®(/;) = b; I; being the identity operator in
BA).

The simplest example of a unital positive linear mapping is the state @, : B(H#°) —
C defined by ®@,(A) = (Ax,x), where x is a fixed unit vector.

Notice that for such @, we do have ®(A) = sup,_; |P+(A)|. Therefore, it is
expected that inequalities for positive linear mappings have their roles in obtaining
numerical radius inequalities.

This will be our first concern; to obtain new inequalities for positive linear map-
pings then to apply them and obtain numerical radius inequalities.

More precisely, it is known that a unital positive linear map ® does not necessarily
satisfy the inequality ®(A*)D(A) < ®(A*A) for an arbitrary A. However, in [5], it is
shown that this inequality is true for all 2-positive unital mappings ®. In this article,
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we prove a generalized form of this inequality that is valid for all unital positive linear
mappings. Indeed, we show that (see [13, Exercise 4.1])

D(A*)D(A) + D(A)D(A*) < D(A*A+AAY)

for all unital positive linear mappings @ : Z(H#) — AB(* ) and all A € B(H).
As a direct consequence of this inequality, we obtain

1
o(A)* < S lA"A +AA;

an inequality that has been shown in [10].

After that, reversed versions are shown with their applications.

Once this idea is finished, we move to the second target of this article, summa-
rized as follows. It is well known that ©(A) < ||A|| <2w(A) forany A € Z(5). Such
inequality is important in the computation of ®(A) because ||A|| is usually easier to
compute. However, the two bounds of the inequality are a little distant. This observa-
tion led numerous researchers to look for better comparisons between @(A) and ||A||.
We refer the reader to the recent references [ 15, 12] for more information.

Recall that if f is a convex function on a real interval J containing the spectrum
of the self adjoint operator A, then

[ ((Ax,x)) < (f(A)x,x) . (1.1)

Looking at this inequality and the definition of ®(A), it is expected that theory of
convex functions has an impact on inequalities governing the numerical radius. In
this article, we study several inequalities between f(@w(A)) and f(||A]|), where f is a
certain function. Our interest will be the classes of geometrically convex and convex
functions.

Recall that a function f :J C (0,00) — (0,00) is said to be geometrically convex if

f (Vab) < V(@ F@)

for all a,b € J. We refer the reader to [16] as a reference treating numerical radius
inequalities via geometrically convex functions.

The order A < B for two self adjoint operators A and B means that B— A is
positive. That is, (Ax,x) < (Bx,x) forall x € 7.

Given a self adjoint operator A € Z(7#°) with spectrum in an interval J and a
continuous function f :J — R, the operator f(A) is defined via functional calculus.

In this context, it is important to recall the following observations.

(i) f T € #(A) and f is a non-negative increasing function on [0,e°), then
LA = 1A ATDI (1.2)
(ii) (See [2, Corollary 2.6]) If S,T € A (S) are two positive operators, then

Ir(55) | < 50+ r 13)

for every non-negative convex function f on [0,o).
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The main goal of this article is to present new sharp comparisons between the
numerical radius and the operator norm, under the effect of a a certain function. For
example, we show that for a certain class of functions f,

1 1 £\ (1%
f(w(A))<ﬁf(llAH) 17 (AD + £ (1A DI,

which will imply
r 1 A r wr s
@) < Z I+ AT I > 1.

Indirect consequences of the these inequalities will be sharpened versions of the
inequality w(A) < ||A]|.

With this theme, several relations will be presented for convex and geometrically
convex functions.

Before proceeding to the main results, we present the following comparison be-
tween two well known results from [1] and [6].
In [6], the following inequality has been already shown

o) <3 (JAP+o @), (14)
while in [1], the following inequality has been shown
a)(A)2<%H|A|2+|A*\2H+%(1)(A2). (1.5)
On the other hand, it is shown in [9] that if A € B (.57), then
[1ar+ 142 || < 142+ i,

In fact, the inequality (1.5) is stronger than (1.4). Indeed we have the following chain
of inequalities:

1 1
ot < 14+ S

1 2 1

< (I12]+1412) + S o (4%)
4 2
1 2

<5 (AP +o(4?)).

Though, this is not pointed out in [1].
2. Inequalities involving positive linear maps

In this section, we present new super multiplicative inequalities for positive linear
mappings with their applications. We know that [5, Corollary 2.8] if @ is a unital
2-positive linear map, then for any A € ., (the class of all 2 x 2 matrices)

DA")D(A) < D(AA). 2.1)

The extended version of this reads as follows.
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THEOREM 2.1. Let A € B (H). Then for any unital positive linear map @,

DA )D(A)+D(A)D(A*) < D(A*A+AAY). (2.2)

Proof. Let A = B+ iC be the Cartesian decomposition of A. Then B and C are
self-adjoint and
A"A+AAT =2 (B +C?). (2.3)

Notice that

(A7) D (A)+D(A)D(AY)
((B—HC *)®(B+iC)+ @ (B+iC)® ((B+iC)")
(B

=(®(B) —i®(C)) (@ (B) +i®(C)) + (@ (B) +i®(C)) (P (B) —i®(C))
=2(*(B +q>2 ©)

<2 (@ (B*)+®(C?)) (by (2.1)

=@ (2(B*+C?))

=P (A"A+AA") (by (2.3)).
This completes the proof.
As an application of Theorem 2.1, we have the following numerical radius inequal-

ity due to Kittaneh [10].

COROLLARY 2.1. Let A € B (). Then

1
w(A)* < SllaTa+aat]. (2.4)

Proof. Fix aunit vector x € 7 and define for T € B(¢), ®(T) = (Tx,x). Then
since @ is positive unital, Theorem 2.1 assures that

2 (A"x,x) (Ax,x) < ((A"A+AA")x,x) .

Taking the supremum over ||x|| = 1 implies the desired inequality.
As a complementary result to Theorem 2.1 we have the following reversed version.

THEOREM 2.2. Let A € B (H). Then for any unital positive linear map @,
D(A*A+AA") — (D(A)'D(A) + D (A)D(A)") < 2A(A)>, (2.5)
where A(A) = inf,ec ||A —z]|.
Proof. Since A*A+ AA* is self-adjoint, then A*A +AA* < 2||A||>. Therefore,

D (A" A+ AAY) — (O(A) D (A) + D (A) D(A)*) < 2|4 (2.6)
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On the other hand, if we replace A by A —z in (2.6) we get
@ (A*A+AA") — (O(A) "D (A) + D (A) D(A)") <2[|A 2>
By taking infimum over z € C, we get (2.5).
COROLLARY 2.2. Let A € B (). Then
0< % |A*A+AA*|| — 0 (A)* < A(A)?, 2.7)
where A(A) = infec ||A—z|.
Proof. 1If we take @ (T) = (Tx,x) in (2.2) and (2.5), then we have

[(Ax,x)|> < = (A*A+AA™x,x),

I\JI'—‘

and
(A*A+AAx,x) —2|(Ax,x) | <2A(A)%.

Now, by taking supremum over x € .7 with ||x|| = 1 we get the desired result.

REMARK 2.1. In [10], it has been shown that
1
ZlaA+aa"| < w(a), (2.8)

which is the reversed version of (2.4). Notice that this inequality is not optimal in the
trivial case A = I, the identity.

At this stage, it is interesting to compare between our inequality (2.7) and (2.8). This
reduces to the comparison between

1
A(A)? and i |A*A + AA¥. (2.9)

The inequality (2.7) would be sharper than (2.8) provided that A(A)? < 1[|A*A+AA*|.

Unfortunately, we do not have an explicit comparison between the two quantmes
However we see that when A = I, the identity, we have A(A)> =0 and %[|A*A+
AA*|| = Z’ making (2.7) sharper than (2.8) for the case A = 1.

Moreover, it turns out that (2.7) is sharper than (2.8) when A is a positive definite
matrix. Notice than, for such matrices, A(A) = r4 where ry4 is the radius of the smallest
interval containing the eigenvalues of A, see [4]. So, if A is positive with smallest
eigenvalue m and largest eigenvalue M, we have

M— M?
AA) = " o AP < 2
2 4
On the other hand, for such A,
1 JAlP a2
—JATA+AAT|| = — = —.
Jaasan =8 ==
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Therefore, for 0 <m <A <M, we do have
2 1 * *
AAY < fllA%a+Ax",

and hence (2.7) is sharper than (2.8).

Notice that (3.4) provides an additive reverse of (2.2) that is valid for all operators
A € B(5). In what follows, we present a multiplicative version that is valid only
for accretive-dissipative operators. Recall that an operator A € (s¢) is said to be
accretive-dissipative if A = B+ iC for positive operators B and C. First, a lemma from

[L1].

LEMMA 2.1. Let ® be a unital positive map on B(H). If A€ B(H) is a
positive operator satisfying 0 <m < A < M for some scalars m < M, then

2
®(A%) < %@(A)? (2.10)

THEOREM 2.3. Let A € () with the Cartesian decomposition A = B+ iC
such that 0 < m < B,C < M for some scalars m < M. Then for any unital positive
linear map @,

(M+m)2

D(ATA+AAT) <
( + ) AMm

(@ (A*)D(A) + D (A) D (A*)). (2.11)

Proof. By employing the inequality (2.10), one can write

(M +m)*

P(AA+AAT) =2 (@ (B) +@(C7)) < -

(q>(3)2 + q>(c>2)

= (@A) (A) T (A) B (AY),

which proves (2.11).
As an application, we have the following comparison between ||A]| and w(A).

COROLLARY 2.3. Let A € B () with the Cartesian decomposition A = B+ iC
such that 0 <m < B,C < M for some scalars m < M. Then
M+m

1Al <
2m

o(A). (2.12)

<

Proof. Letting ®(A) = (Ax,x) in Theorem 2.3 and taking the supremum over
||lx|| = 1, we obtain
(M +m)?

2
T @A)’ (2.13)

1
Sllaa+aar] <
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On the other hand, we have [9, Inequality (33)] ||A]|* < ||[A*A + AA*||. Therefore, (2.13)
implies
M+m

2m

1Al < o(A),

<

as desired.
It is worth mentioning here that if A € Z () is a positive operator satisfying
0 <m< A<M for some scalars m < M, then (2.5) implies that (see [3])

@ (42) < D(A)+ M.

By applying the same procedure as in the proof of Theorem 2.3, and using the inequality
(2.14) we get

D (A*A+AA") < (M —m)* + D (A*)D(A) +D(A)D(AY). (2.15)

(2.14)

REMARK 2.2. It follows from inequality (2.1) that
@ (A) <<I>(|A|2)7 (2.16)

whenever @ is a unital 2-positive linear map. However, the inequality |® (A)| < D (|A])
is not always true. If 0 < m < |A| < M and @ is unital and 2-positive, then
M+m

2v/Mm

Actually, if @ is unital and 2-positive, then we have

|®(A)] <

D (|A]) .

@A) <@ (A7) ©y@.16)

(M +m) 2
< (ja)? by 2.10).

Since the function f(¢) = /¢ is operator monotone, taking square root of both sides
implies the desired inequality.

3. More estimates of numerical radii using convex functions

We begin this section by extending the inequality (1.5) to the following general
form.

THEOREM 3.1. Let A € B () and let f be a non-negative increasing convex
function. Then

Fo@7) < 5|7 (14R) + 7 (14F) |+ 3/ (@(4%)).
In particular, for any r > 1,

r 1 r * r 1
o (A)¥ < ZH\AE e +50(4%)"
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Proof. Since f is increasing and convex, the inequality (1.5) implies

f (@) <f(}1 H|A|2+|A*|2H+§w<A2))

1 AP+ A
<z<f< 2 )+f<w(A2))>
2 %2
:% f(%) +%f(w(A2)) (by (1.2))

i (r)+r (0 f)[+ 30 eva,

<

as desired.
Notice that (1.5) follows from Theorem 3.1 by letting f(¢) =1.

THEOREM 3.2. Let A € B () andlet f be a non-negative increasing geomet-

rically convex function. If in addition f is convex, then

Fl@(A) < —=F(IAD £ (AD + £ (A2

1
V2
In particular, for any r > 1,
o (A) < —=AlF|Ar + ") 2
V2

The constant % is best possible in (3.1).

Proof. If A€ B () and x,y € A, then [8, pp. 75-76]

[(Ax,y)| < v/ (|A]x,x) (|A*]y,y).
Let x € /7 be a unit vector. We have
[(Ax,x)|
(1A ]x,x) (|A*|x, x)
1
2

<

S

(1A 2,0) 3 ((ALx,x) (1A% ) (1A ) (GJA ) (|| x,2))

N

(ALxx) 2 ((JA]x,) (A" 15,5)F 4+ (A" |x,%) 2 (([A]x,) (47 |x,5))3]

1

N

MH.N'HQQ

3 | (5 G+ D0 (Gan

(S
=

+(JA]x,x)

)|

(At (3 0AI+A D0 ) 4 ) (5 0AT+1 D )

(3.1)

(3.2)
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That is,
! D) b by (A x)d
0] < 2o {101+ 1)) (Al gl )]

Taking the supremum over x € . with |x|| = 1, and using the fact that |||A]|| =
I[A*[II = lIA]l, we get

1 iy L
E(HAII [[A[+1A™([1)2. (3.3)

Now, since f is increasing geometrically convex and convex, it follows from the in-

equality (3.3) that
) \/<A s ([ =5])
=\/f<A||>Hf(A%A*')H (by (1)

s \/%f(A)”f(A)JFf(A*I)II (by (1.3))

0(A) <

H A+ 1A%

[(@(A)) < f( 1A]

as required.

The inequality (3.2) follows directly from (3.1) by letting f (¢) =¢"(r > 1).

It remains to show that the constant % in (3.1) is the best constant. Assume that
a constant C > 0 exists such that

F (@A) AN £ (14D +£ (14D 3.4)

forall A€ B (). Nowif A is anormal operator, then || f (JA]) +f(\A*|)||—2 ILF (AN
=2f(]|A]|) and f (@ (A)) = f(||A]|). Consequently, (3.4) implies - 7S C; proving the

1
sharpness of the constant 7

The first consequence of Theorem 3.2 is the following two-term refinement of
®(A) < ||A]|. For the proof, we need to recall the basic inequality of Davidson and
Power [7, Lemma 3.3], which asserts that for positive operators A,B € Z(), we
have

A+ B| < max{[|A]l||B]}} + |AB]*. (3.5)

COROLLARY 3.1. Let A € B (). Then

o)< /3 -+ e < S 1an a1+ 1a21d) < .

Proof. The first inequality is already shown in (3.3). The second inequality fol-
lows from (3.5) and taking into account that || [A| |A*| || = ||A?||. For the third inequal-
ity we used the fact that HA2 H <JJAJP.

In the following result, we present a relation for the numerical radius of the product
of two operators.
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) (3.6)

PROPOSITION 3.1. Let A,B € HB (). Then

oa) < 3= ({11 + 151 4P

2V2

Proof. 1t follows from the Cauchy—Schwarz inequality that

|(B*Ax,x)| = |(Ax, Bx)| <|[|Ax]| || Bx]| = v/ (Ax, A"x) (Bx, Bx) = ¢ (14Px.x) {|Bx.x).
By the same arguments as before one can get

s < 55 ({ (o o)) () () ))

Taking supremum over x € JZ with ||x|| = 1, we deduce the desired inequality (3.6).

COROLLARY 3.2. Let A € B (). Then

L (10 + 1)

The constant % is best possible in the sense that it cannot be replaced by a smaller
constant.

o (4) < qunHw AP

Proof. The first inequality follows directly from (3.6) by letting B* = A, while the
second inequality is obtained from the fact that H AP* + \A*|2H < ||4%|| + |A|1%, see for
example [1, Lemma 2.3].
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