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Abstract. This paper is mainly concerned with the asymptotic stability of the solutions of a
perturbed abstract differential equation in Banach spaces. Let A be a generator of an expo-
nentially stable operator semigroup and let C(t), t � 0 be a linear bounded variable opera-

tor. Assuming that the perturbation F(t,x) is sufficiently small norm for the equation
dx
dt

=

Ax+C(t)x+F(t,x), we derive the Lyapunov asymptotic stability conditions. These results are
applied to partial differential equations.

1. Introduction

The problem of Lyapunov stability of infinite-dimensional dynamical systems has
received a considerable amount of interest in the past, see [3, 4, 5, 7, 10, 13, 14, 16].
One of the basic methods for the stability analysis is the direct Lyapunov method. By
that method, many strong result were established, see [5, 8], but finding the Lyapunov
functionals is usually a difficult mathematical problem. A fundamental approach to the
stability of diffusion parabolic equations is the method of upper and lower solutions. A
systematical treatment of that approach is given in [11].
Many problems in partial differential equations which arise from physical models can
be considered as ordinary differential equations in appropriate infinite dimensional
spaces, for which elegant theories and powerful techniques have recently been devel-
oped, see [1, 2, 9, 12]. The asymptotic stability of zero solution of the non-perturbed
parabolic equation was studied in [13, 14]. In the hypotheses from [13] and by assum-
ing that the perturbation is of sufficient small norm, the author proved the Lyapunov
stability and asymptotic stability of the zero solution of the perturbed equation. How-
ever, we extended in [15] previous results concerning the Lyapunov stability of some
non-autonomous nonlinear evolution equations in Banach spaces. Moreover, Gil [4]
investigated the stability of linear non-autonomous equations in a Banach space, which
can be considered as integrally small perturbations of autonomous equations. Recently,
Marx et al. [10] introduced the asymptotic behavior for nonlinear perturbed systems
with nominal linear part and the perturbed term is a nonlinear damping function via
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Lyapunov techniques in infinite-dimensional spaces. This result has been applied to the
Linearized Korteweg-de Vries equation and wave equation.
The aim of this paper is to study the Lyapunov stability and asymptotic stability of the
perturbed abstract differential equation based on the direct Lyapunov method when the
origin is an equilibrium point. We prove the existence and uniqueness of a mild solution
of the perturbed problem. In particular, we consider evolution equations with periodic
boundary conditions.
The remainder of this work is organized as follows. In Section 2, some preliminary re-
sults are summarized and assumptions are provided. The statement of the mains result
are provided in Section 3-4. Finally, an application is given in Section 5 to show the
effectiveness of our result. Our conclusion is given in Section 6.

2. Mathematical preliminaries

We will use the following notation throughout this paper: R
+ denotes the set of all

non-negative real numbers, X denotes a real or complex Banach space with the norm
‖.‖X . D(A) denotes the domain of the operator A, clM denotes the closure of a set
M and I the identity operator. For a bounded operator K, ‖K‖ is the operator norm.
Everywhere below A is a linear operator in X with domain D(A), generating a strongly
continuous semigroup T (t), that is,

A = lim
h−→0

T (h)− I
h

in the strong topology, and C(t), t � 0 is a linear bounded variable operator mapping
D(A) into itself. Put B(t) = A+C(t).
Consider the non-autonomous abstract differential equation

⎧⎪⎨
⎪⎩

dx
dt

= B(t)x(t)+F(t,x), t � s � 0,

x(s) = a,

(1)

where x(t) ∈ X is the system state and a fixed s ∈ R
+. Suppose now that the system

(1) satisfies the following assumptions:
(H1) The operator A : D(A) ⊂ X → X is a closed linear operator with cl(D(A)) = X ,
generates a strongly continuous semigroup on X , T (t), exponentially stable, that is,
there exist M � 1 and α > 0, such that ‖T (t)‖ � Me−αt , for any t ∈ R

+.
(H2) The nonlinear mapping F, defined on the Cartesian product of R

+ with a neigh-
borhood of 0 in X , is continuous, F(t,0) = 0 for all t � 0, there exist β > 0, D > 0
and x1, x2 in a neighborhood of 0 in X , satisfying the following inequality

‖F(t,x1)−F(t,x2)‖ � D maxβ (‖x1‖,‖x2‖)‖x1− x2‖. (2)

Put

J(t) =
∫ t

0
C(u+ s)du, t � 0,
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and
m(t) = ‖AJ(t)− J(t)B(t)‖, t � 0.

(H3) L := sup
t�0

(‖J(t)‖+
∫ t

0
‖T (t−θ )‖m(θ )dθ ) < 1.

REMARK 1. It is shown in [12] that the fitness of the L1 -norm of T, that is,
∫ +∞

0
‖T (t)‖dt < ∞,

implies that T (t) is exponentially stable.

Obviously, x(t) = 0 is a solution of equation (1). We study its stability (in the sense
made precise below).
With the non-autonomous equation (1), we associate the integral equation

x(t) = T (t − s)a+
∫ t

s
T (t−θ )C(θ )x(θ )dθ +

∫ t

s
T (t −θ )F(θ ,x(θ ))dθ . (3)

Let s′ be a real number with s′ > s.

DEFINITION 1. We say that a function x(.;s,a) : [s,s′[→ X is an A-mild solution
of problem (1) on [s,s′[ if it is a solution of (3), for any t ∈ [s,s′[.

Obviously, a classical solution of (1) on [s,s′[ is also a solution of (3), hence an A-mild
solution of the above problem.

REMARK 2. Note that in [7], Ion studied this problem when C(t), t � 0 is a
linear bounded constant operator and proved the stability and asymptotic stability of
the zero solution. Moreover, Gil [4] assumed the equation (1) when F(t,x) = 0 and
under some conditions he proved that the system is exponentially stable.

Our concern regards the stability behavior of the equilibrium point x = 0. First, we
recall some definitions about stability in Lyapunov sense.

DEFINITION 2. ([6]) A classical (resp, A-mild) solution x(.;s0,a0) of problem
(1) is called stable if for every ε > 0 and every s > s0 there is a δ = δ (ε,s), such
that for every y ∈ X with ‖y− x(s;s0,a0)‖ � δ , the classical (resp. A-mild) solution
x(.;s,y) exits, is defined on [s,+∞[, and

‖x(t;s0,a0)− x(t;s,y)‖ < ε, ∀t � s � 0.

For the asymptotic stability we take the following definition.

DEFINITION 3. A classical (resp, A-mild) solution x(.;s0,a0) of problem (1) is
called asymptotically stable if it is stable and for every s > s0 there is a δ = δ (s) > 0,
such that for y ∈ X with ‖y− x(s;s0,a0)‖ � δ , the classical (resp. A-mild) solution
x(.;s,y) exits, is defined on [s,+∞[, and

‖x(t;s0,a0)− x(t;s,y)‖ −→ 0, as t −→ ∞.
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The following Lemma will also be required in our investigations.

LEMMA 1. Let w(t), f (t) and v(t) (0 � s � t � b � ∞) be functions whose
values are bounded operators. Assume that w(t) is integrable and f (t) and v(t) have

integrable derivatives on [0,b]. Then, with the notation jw(t) =
∫ t

0
w(u)du, one has

∫ t

0
f (u)w(u)v(u)du = f (t) jw(t)v(t)−

∫ t

0
[ f ′(u) jw(u)v(u)+ f (u) jw(u)v′(u)]du, t � b.

Proof. Clearly,

d
dt

f (t) jw(t)v(t) = f ′(t) jw(t)v(t)+ f (t)w(t)v(t)+ f (t) jw(t)v′(t).

Integrating this equality and taking into account that jw(0) = 0, we arrive at the re-
quired result. �

3. Existence and stability of the origin of the perturbed problem

We consider Cb = Cb([0,+∞[) the space of continuous bounded functions from
[0,+∞[ to X , endowed with the supremum norm ‖x‖0 = sup

t�0
‖x(t)‖.

We define the operators H,Es,Gs as follows:

H : X → Cb

associating with a ∈ X the function H(a) is given by

H(a)(τ) = T (τ)a, τ � 0;

for every s � 0,
Es : Cb → Cb,

given by

Es(x)(τ) =
∫ τ

0
T (τ −θ )C(s+ θ )x(θ )dθ ;

and
Gs : Cb → Cb,

defined by

Gs(x)(τ) =
∫ τ

0
T (τ −θ )F(s+ θ ,x(θ ))dθ .

The fact that the operators H and Gs take values in the space Cb is a consequence of
Lemma 1 and 2 from [13]. On the other hand, we have the following inequalities:

‖H‖L (X ,Cb) � M,
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‖Gs(x)‖0 � K‖x‖β+1
0 , ∀x ∈ Cb,

and
‖Gs(x)−Gs(y)‖0 � Kmax(‖x‖β

0 ,‖y‖β
0 )‖x− y‖0, ∀x,y ∈ Cb,

with K =
MD
α

·
Assume that

‖J(t)‖ � q < 1, (q = const; t � 0).

Then, by Lemma 1, we get
∫ τ

0
T (τ −θ )C(s+ θ )x(θ )dθ

=T (0)J(τ)x(τ)−
∫ τ

0

[(
dT (τ −θ )

dθ

)
J(θ )x(θ )+T((τ −θ )J(θ )ẋ(θ )

]
dθ .

But,
dT (τ −θ )

dθ
= −AT (τ −θ ).

Then,
∫ τ

0
T (τ −θ )C(s+ θ )x(θ )dθ

=J(τ)x(τ)+
∫ τ

0
T (τ −θ )[AJ(θ )− J(θ )B(θ )− J(θ )F(θ ,x(θ ))]x(θ )dθ .

Thus, for x ∈ Cb,

‖Es(x)(τ)‖ �‖J(τ)x(τ)‖+
∫ τ

0
‖T (τ −θ )‖m(θ )‖x(θ )‖dθ

+
∫ τ

0
‖T (τ −θ )‖‖J(τ)‖‖F(θ ,x(θ ))‖x(θ )‖dθ

�L‖x‖0 +Kq‖x‖β+2
0 .

By taking the supremum for τ ∈ [0,+∞[, we obtain

‖Es(x)‖0 � L‖x‖0 +Kq‖x‖β+2
0 .

The same method leads us to

‖Es(x1)−Es(x2)‖0 � L‖x1− x2‖0 +Kq max(‖x1‖β
0 ,‖x2‖β

0 )‖x1− x2‖2
0, ∀x1,x2 ∈ Cb.

In the integral equation (3), where t > s, let us set t − s = τ and make the change
variable θ − s = θ ′. We obtain,

x(s+ τ) =T (τ)a+
∫ τ

0
T (τ −θ ′)C(s+ θ ′)x(s+ θ ′)dθ ′

+
∫ τ

0
T (τ −θ ′)F(s+ θ ′,x(s+ θ ′))dθ ′.

(4)
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For every continuous function x : R
+ → X and every s ∈ R

+, we define the function
x|s : R

+ → X , by x|s(θ ) = x(s + θ ), such that the previous integral equation can be
written as

x|s = Ha+Es(x|s)+Gs(x|s) (5)

Since x|s belongs to Cb, equation (5) is equivalent to the fixed point problem

φ = ϕ(a,φ),

where ϕ : X ×Cb → Cb is given by

φ = ϕ(a,φ) = Ha+Es(φ)+Gs(φ).

In the sequel, we will assumed some conditions that guarantee the existence and unique-
ness of solutions for the system (1).

THEOREM 1. Let rβ
1 + 2qrβ+1

1 <
1−L

K
. If ‖a‖ <

r1

M
(1− L−Krβ

1 − 2Kqrβ+1
1 ),

the mapping ϕ(a, .) is an uniform contraction from B(0,r1) ⊂ Cb to itself.

Proof. For any a ∈ X and any φ1,φ2 ∈ B(0,r) ⊂ Cb, we have

‖ϕ(a,φ1)−ϕ(a,φ2)‖0 � [L+Krβ +2Kqrβ+1]‖φ1−φ2‖0.

We choose a positive real number r1 satisfying the condition

L+Krβ
1 +2Kqrβ+1

1 < 1 ⇐⇒ rβ
1 +2qrβ+1

1 <
1−L

K
,

and find that, for ‖φ‖0 � r1, ϕ(a,φ) is an uniform contraction with respect to a. If
‖a‖ � r0, then

‖ϕ(a,φ)‖0 � Mr0 +(Krβ
1 +Kqrβ+1

1 )r1.

By imposing this last quantity to be less than r1, we find the restriction

r0 <
r1

M
(1−L−Krβ

1 −2Kqrβ+1
1 ).

This ends the proof of Theorem 1. �

PROPOSITION 1. For every s � 0 and any ‖a‖ small enough, there is an unique
A-mild solution of problem (1).

Proof. We consider ‖a‖ < r0, with r0 defined in the proof of Theorem 1. By
The Uniform Contraction Principle and Theorem 1, we have the existence of an unique
fixed point φ∗(a) ∈ B(0,r1) ⊂ Cb of the mapping ϕ(a, .). We define the function x :
[s,+∞[→ X ,

x(t;s,a) = φ∗(a)(t− s), t � s.

This is the solution of problem (3), that is, the A-mild solution of problem (1). This
ends the proof. �
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THEOREM 2. Assume that (H1)− (H3) hold. Then, the A-mild solution x(t) =
0, t � 0, of equation (1) is stable.

Proof. The solution x(t) = 0 can be regarded as x(.;s0,0) for any s0 � 0.
For s � 0 and ε > 0, we choose δ < min{ε,r1}, with

rβ
1 +2qrβ+1

1 <
1−L

K
,

and

δ1 = min{δ ,
δ
M

(1−L−Kδ β −2Kqδ β+1)}.
By Theorem 1, we have for ‖a‖ < δ1 the A-mild solution x(t;s,a) exists for t � s, is
unique and ‖x(t;s,a)‖ < ε, for any t � s. This finished the proof. �

4. Asymptotic stability of the origin of the perturbed problem

The main result of this paper is given by the following Theorem:

THEOREM 3. Under assumptions (H1)− (H3), the A-mild solution x(.;s,0) =
0, s � 0, of equation (1) is asymptotically stable.

Proof. Let ε > 0 be given such that Kεβ +Kqεβ+1 <
1−L

3
· We take δ1 as in

the proof of Theorem 2 and a with ‖a‖ < δ1. Using the equation (4), one has

‖x(s+ τ)‖ �‖T (τ)a‖+‖
∫ τ

0
T (τ −θ ′)C(s+ θ ′)x(s+ θ ′)dθ ′‖

+‖
∫ τ

0
T (τ −θ ′)F(s+ θ ′,x(s+ θ ′))dθ ′‖

�Me−ατ‖a‖+L‖x|s‖0 +K‖x|s‖β+1
0 +Kq‖x|s‖β+2

0 .

From the proof of Theorem 2, it follows that ‖x|s‖0 < ε, and thus

‖x(s+ τ)‖ � Me−ατ‖a‖+Lε +Kεβ+1 +Kqεβ+2.

We choose τ1, such that Me−ατ1 <
1−L

3
· Then, for τ � τ1,

‖x(s+ τ)‖ � 2
1−L

3
ε +Lε =

(
2
3

+
L
3

)
ε.

Hence, for τ � τ1, we have

‖x(s+ τ)‖ � λ ε, λ =
2
3

+
L
3

< 1,

that is
‖x|s+τ1‖0 � λ ε.
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Due to equation (4), we obtain

‖x(s+ τ1 + τ)‖ � Me−ατ‖x(s+ τ1)‖+L‖x|s+τ1‖0 +K‖x|s+τ1‖β+1
0 +Kq‖x|s+τ1‖β+2

0

and
‖x(s+ τ1 + τ)‖ � λ 2ε, τ > τ1.

That is
‖x|s+2τ1‖ � λ 2ε.

By induction, we obtain that for t > s+nτ1, the inequality ‖x(t)‖ � λ nε holds, imply-
ing that

‖x(t;s,xs)‖ −→ 0, as t −→ ∞.

Hence, A-mild null solution of problem (1) is asymptotically stable. This ends the
proof. �

To illustrate Theorem 3, we consider the following equation⎧⎨
⎩

ẋ(t) = Ax(t)+ c(t)C0x(t)+F(t,x),

x(0) = a
(6)

where A and F two operators satisfying the hypothesis (H1) and (H2). C0 is a con-
stant operator and c(t) is a scalar real continuous function bounded on [0,+∞[. So,

C(t) = c(t)C0. Let, θ0 = sup
t

ic(t) with ic(t) =
∣∣∣∣
∫ t

0
c(u)du

∣∣∣∣ . We obtain,

m(t) = ‖AJ(t)− J(t)B(t)‖� ic(t)(‖AC0−C0A‖+ |c(t)|‖C2
0‖)

� ic(t)(‖AC0−C0A‖+‖C2
0‖).

On the other hand, ∫ t

0
‖T (t −θ )‖dθ � M

α
, t � 0.

As a consequence of Theorem 3, we have the following result.

COROLLARY 1. Under assumptions (H1) and (H2), if the inequality

θ0(‖C0‖+
M
α

(‖AC0−C0A‖+‖C2
0‖)) < 1

holds, then A-mild null solution of problem (6) is asymptotically stable.

EXAMPLE 1. Consider the system (6) with c(t) = cos(wt)(w > 0). Then, ic(t) �
1
w

and m(t) � 1
w

(‖AC0−C0A‖+‖C2
0‖). Therefore, if

‖C0‖+
M
α

(‖AC0−C0A‖+‖C2
0‖) < w,

then A-mild null solution of problem (6) is asymptotically stable.
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5. A partial differential equation with periodic boundary conditions

As an application, we study a partial differential equation to illustrate the applica-
bility of our result.
Consider the perturbed problem⎧⎨

⎩
∂u(x, t)

∂ t
=

∂u(x,t)
∂x

+(−b+ c(t)a(x))u(x,t)+ xu2(x, t), u(x,0) = u0(x),

u(0, t) = u(1, t), (t � 0), (0 � x � 1)
(7)

with a positive constant b, a(x) is a real differentiable function and c(t) is the same
as in the previous section. The partial differential equation can be formulated to an
abstract differential equation on X = L2(0,1) of the form

du
dt

(t) = Au(t)+C(t)u(t)+F(t,u(t)), t � 0, u(0) = u0,

where the operator A is defined by

Au(x,t) =
∂u(x,t)

∂x
−bu(x,t), u ∈ D(A),

with D(A) = { f ∈ L2(0,1) : f ′ ∈ L2(0,1); f (0) = f (1)}, C(t) = c(t)a(x)I, and

F(t,u(x,t)) = xu2(x,t), t � 0, 0 � x � 1.

We have,

< Au,u > =
∫ 1

0

(
du(x)
dx

−bu(x)
)

u(x)dx =
∫ 1

0

(
1
2

du2(x)
dx

−bu2(x)
)

dx

=
1
2
(u2(1)−u2(0))−b

∫ 1

0
u2(x)dx = −b

∫ 1

0
u2(x)dx.

Let v(t,x) is the solution of
dv
dt

= Av. Then,

d
dt

< v,v >= 2 < Av,v >� −2b < v,v > .

Therefore,
‖T (t)‖ � e−bt , t � 0.

Moreover, the perturbation F satisfies the condition (2). On the other hand, we have

(Aa(x)−a(x)A)u(x) =
d(a(x)u(x))

dx
−a(x)

du(x)
dx

= a′(x)u(x), u ∈ D(A).

Let, θ0 = sup
t

∣∣∣∣
∫ t

0
c(u)du

∣∣∣∣ . Due to the hypothesis (H3), we obtain the following.

COROLLARY 2. Under assumptions (H1) and (H2), if the inequality

θ0(|a(x)|+ 1
b
(|a′(x)|+ |a(x)|2)) < 1, 0 � x � 1,

holds, then A-mild null solution of problem (7) is asymptotically stable.
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6. Conclusion

In this paper, we have studied the problem of Lyapunov stability of a perturbed
abstract differential equation in a Banach space. In this case, we introduced the exis-
tence and uniqueness of solutions of system. Moreover, sufficient conditions have been
derived to guarantee the asymptotic stability for a class of perturbed systems. As an
illustration, we gave an example of partial differential equation with periodic boundary
conditions.
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