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CLASSES OF OPERATORS RELATED TO m–ISOMETRIC OPERATORS

SALAH MECHERI AND SID AHMED OULD AHMED MAHMOUD ∗

(Communicated by G. Misra)

Abstract. Isometries played a pivotal role in the development of operator theory, in particular
with the theory of contractions and polar decompositions and has been widely studied due to its
fundamental importance in the theory of stochastic processes, the intrinsic problem of modeling
the general contractive operator via its isometric dilation and many other areas in applied math-
ematics. In this paper we present some properties of n -quasi- (m,C) -isometric operators. We
show that a power of a n -quasi- (m,C) -isometric operator is again a n -quasi- (m,C) -isometric
operator and some products and tensor products of n -quasi- (m,C) -isometries are again n-quasi-
(m,C) -isometries.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space with inner
product 〈. | .〉 , B(H ) be the set of all bounded linear operators on H , and I = IH be
the identity operator. For every T ∈B(H ) its range is denoted by R(T ) , its null space
by N (T ) . The adjoint of T is denoted by T ∗ . A subspace M ⊂H is invariant for T
(or T -invariant) if TM ⊂M . As usual, the orthogonal complement and the closure of
M are denoted M⊥ and M respectively. We denote by PM the orthogonal projection
on M .

A conjugation is a conjugate-linear operator C : H −→ H , which is both involutive
(i.e., C2 = I) and isometric (i.e., 〈Cx |Cy〉 = 〈y | x〉 (∀ x,y ∈ H )).

Recall that if C is a conjugation on H , then ‖C‖= 1,
(
CTC

)k =CTkC and
(
CTC

)∗ =
CT ∗C for every positive integer k (see [14] and [15] for more details).

Throughout this paper, let m and n be natural numbers. An operator T ∈ B(H ) is
said to be :

m-isometry if

∑
0�k�m

(−1)m−k
(

m
k

)
T ∗m−kTm−k = 0, (1.1)
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or equivalently if

∑
0�k�m

(−1)m−k
(

m
k

)
‖Tkx‖2 = 0 ∀ x ∈ H . (1.2)

where

(
m
k

)
is the binomial coefficient. These class of operators have been introduced

and studied by J. Agler and M. Stankus in [2], [3] and [4]. In recent years, the m-
isometric operators have received substantial attention. Several authors have studied
the m-isometric operator. We refer the reader to [5, 6, 7, 8, 9, 10, 21] for further details.

It has been proved in [7] and [10] that the powers of an m-isometry are m-
isometries and some products of m-isometries are again m-isometries. On the other
hand, the perturbation of m-isometries by nilpotent operators has been considered in
[9], [8], [5] and the dynamics of m-isometries has been explored in [6] and other pa-
pers. Furthermore, Duggal studied the tensor product of m-isometries in [13]. In addi-
tion, m-isometry weighted shift operators have been discussed in [1] and the reference
therein. S. Mecheri and T. Parasad in [19] extended the notion of m-isometric operator
to the case of n -quasi-m-isometric operators of bounded linear operators on a Hilbert
space. An operator T ∈ B(H ) is said to be n -quasi-m-isometric operator if

T ∗n
(

∑
0�k�m

(−1)k
(

m
k

)
T ∗m−kTm−k

)
Tn = 0. (1.3)

The 1-quasi-isometries are shortly called quasi-isometries, such operators being firstly
studied in [22] and [23]. The study of quasi-2-isometries was found in [20].

In [11], M. Chō, E. Ko and J. Lee introduced (m,C)-isometric operators with conju-
gation C and studied properties of such operators. For an operator T ∈ B(H ) and
an integer m � 1 , T is said to be an (m,C)-isometric operator if there exists some
conjugation C such that

∑
0�k�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC = 0. (1.4)

According to definitions of m-isometry, n -quasi-m-isometry and (m,C)-isometry, The
authors in [24] define an n -quasi-(m,C)-isometry as follows. An operator T is said to
be an n -quasi-(m,C)-isometric operator if there exists some conjugation C such that

T ∗n
(

∑
0�k�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC

)
Tn = 0. (1.5)

It is easy to see that the class of n -quasi-(m,C)-isometry contains every (m,C)-isometric
operators with conjugation C . In general, this inclusion relation is proper (see [24]).
Many results about the class of n -quasi-(m,C)-isometric operators have been found in
[24].
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In this paper it is shown that the operators in this class have many interesting proper-
ties in common with m-isometries, n -quasi-m-isometries and (m,C)-isometric opera-
tors. In particular, we show that the powers of an n -quasi-(m,C)-isometry are n -quasi-
(m,C)-isometries and some products and tensor products of n -quasi-(m,C)-isometries
are again n -quasi-(m,C)-isometries. It has also been proved that the sum of an n -
quasi-(m,C)-isometry and a commuting nilpotent operator of degree p is a (n + p)-
quasi-(m+2p−2)-isometry.

2. Main results

We begin by the following theorem, which is a structure theorem for n -quasi-
(m,C)-isometric operators.

In [24], the authors studied the matrix representation of n -quasi-(m,C)-isometric op-
erator with respect to the direct sum of R(Tn) and its orthogonal complement. In
the following we give an equivalent condition for T to be n -quasi-(m,C)-isometric
operator.

THEOREM 2.1. Let C = C1 ⊕C2 be a conjugation on H where C1 and C2 are
conjugation on R(Tn) and N (T ∗n) , respectively. Assume that R(Tn) is not dense,
then the following statements are equivalent:

(1) T is an n-quasi-(m,C)-isometric operator.

(2) T =
(

T1 T2

0 T3

)
on H = R(Tn)⊕N (T ∗n) , where T1 is an (m,C1)-isometric

operator on R(Tn) , T n
3 = 0 , and σ(T ) = σ(T1)∪{0} where σ(T ) is the spec-

trum of T .

Proof. (1) ⇒ (2) . Consider the matrix representation of T with respect to the
decomposition H = R(Tn)⊕N (T ∗n) :

T =
(

T1 T2

0 T3

)
on H = R(Tn)⊕N (T ∗n).

Let P be the projection of H onto R(Tn). Since T is an n -quasi-(m,C)-isometric
operator, it follows that

P

(
∑

0�k�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC

)
P = 0.

This means that

∑
0�k�m

(−1)k
(

m
k

)
T ∗m−k
1 C1T

m−k
1 C1 = 0.

Hence T1 is an (m,C1)-isometric operator on R(Tn) .
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Let x = x1⊕ x2 ∈ R(Tn)⊕N (T ∗n) = H . If x ∈ N (T ∗n) , then

〈T3
nx2,x2〉 = 〈Tn(I−P)x,(I−P)x〉

= 〈(I−P)x,T ∗n(I−P)x〉 = 0.

Hence T3
n = 0. From [18, Corollary 7], it follows that σ(T )∪S = σ(T1)∪σ(T3) ,

where S is the union of certain of the holes in σ(T ) which is a subset of σ(T1)∩
σ(T3) . Further σ(T3) = {0} and σ(T1)∩σ(T3) has no interior points. So we have
σ(T ) = σ(T1)∪σ(T3) = σ(T1)∪{0}, by [18, Corollary 8].

(2) ⇒ (1) Suppose that

T =
(

T1 T2

0 T3

)
on H = R(Tn)⊕N (T ∗n)

where R(Tn) is the closure of R(Tn) , T1 is an (m,C1)-isometry and Tn
3 = 0. Since

Tn =

⎛
⎝Tn

1 ∑
0� j�n−1

T j
1 T2T

n−1− j
3

0 0

⎞
⎠ ,

we have

T ∗n( ∑
0�l�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC)Tn

=
(

T1 T2

0 T3

)∗n (
∑

0�k�m

(−1)k
(

m
k

)(
T1 T2

0 T3

)∗m−k (
C1 0
0 C2

)(
T1 T2

0 T3

)m−k (
C1 0
0 C2

))

×
(

T1 T2

0 T3

)n

=

⎛
⎜⎜⎝

T ∗n
1 DTn

1 T ∗n
1 D ∑

0� j�n−1
T j
1 T2T

n−1− j
3(

∑
0� j�n−1

T j
1 T2T

n−1− j
3

)∗
DTn

1

(
∑

0� j�n−1
T j
1 T2T

n−1− j
3

)∗
D ∑

0� j�n−1
T j
1 T2T

n−1− j
3

⎞
⎟⎟⎠ ,

where

D = ∑
0�k�m

(−1)k
(

m
k

)
T ∗m−k
1 C1T

m−kC1.

Hence

T ∗n
(

∑
0�k�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC

)
Tn = 0 on H = R(Tn)⊕N (T ∗n).

Thus T is an n -quasi-(m,C)-isometric operator.

COROLLARY 2.1. If T is a n-quasi-(m,C)-isometric operator and R(Tn) is
dense, then T is an (m,C)-isometric operator.
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In [11], the authors showed that a power of an (m,C)-isometric operator is again a
(m,C)-isometric operator. In the following theorem we show that this remains true for
n -quasi-(m,C)-isometric operators.

THEOREM 2.2. Let C = C1 ⊕C2 be a conjugation on H where C1 and C2 are
conjugation on R(Tn) and N (T ∗n) , respectively. If T is a n-quasi-(m,C)-isometric
operator, then so is T k for every natural number k .

Proof. If R(Tn) is dense, then T is an (m,C)-isometric operator and so is Tk for
every positive integer k .

If R(Tn) is not dense. By Theorem 2.1 we write the matrix representation of T on
H = R(Tn)⊕N (T ∗n) as follows

T =
(

T1 T2

0 T3

)
on H = R(Tn)⊕N (T ∗n),

where T1 is an (m,C1)-isometric operator. By [11, Theorem 2.1], Tk
1 is an (m,C1)-

isometric operator. Since

Tk =

⎛
⎝Tk

1 ∑
0� j�k−1

T j
1 T2T

k−1− j
3

0 Tk
3

⎞
⎠ on H = R(Tn)⊕N (T ∗n).

Thus Tk for every natural number k is a n -quasi-(m,C)-isometric operator by Theo-
rem 2.1.

REMARK 2.1. The converse of Theorem 2.2 in not true in general as shown in the
following example.

EXAMPLE 2.1. Let C be a conjugation on C
2 defined by C(x1,x2) = (x2,x1) and

consider the operator matrix T =
(−1 −1

3 2

)
on C2 . A simple calculation shows that

T ∗3
(

T ∗3CT 3C− I

)
T 3 = 0 and T ∗

(
T ∗CTC− I

)
T �= 0. So, we obtain that T 3 is a

quasi-(1,C)-isometric operator, but T it is not a quasi- (1,C)-isometric operator.

It was observed that every (m,C)-isometric operator is an (k,C)-isometric operator for
every integer k � m. In the following proposition we show that this remains true for
n -quasi-(m,C)-isometric operator.

PROPOSITION 2.1. Let T ∈B(H ) and let C =C1⊕C2 be a conjugation on H
where C1 and C2 are conjugation on R(Tn) and N (T ∗n) , respectively. If T is an
n-quasi-(m,C)-isometric operator, then T is an l -quasi-(k,C)-isometric operator for
every positive integers k � m and l � n.



150 S. MECHERI AND O. A. M. SID AHMED

Proof. If R(Tn) is dense, then T is an (m,C)-isometric operator and hence T is
an (k,C)-isometric operator for every positive integer k � m .

If R(Tn) is not dense, by Theorem 2.1 we write the matrix representation of T on

H = R(Tn)⊕N (T ∗n) as follows T =
(

T1 T2

0 T3

)
where T1 = T/R(Tn) is an (m,C1)-

isometric operator and Tn
3 = 0. Obviously that T1 is an (k,C1)-isometric operator for

every integer k � m . The conclusion follows from the statement (2) of Theorem 2.1.

For an operator T ∈ B(H ) and a conjugation C , the operator Λm(T ) is defined by

Λm(T ) := ∑
0�k�m

(−1)k
(

m
k

)
T ∗m−kCTm−kC.

Then T is an (m,C)-isometric operator if and only if Λm(T ) = 0.

The following lemma gives another condition for which an n -quasi-(m,C)-isometric
operator became an n -quasi-(k,C)-isometric operator for k � m .

LEMMA 2.1. Let T ∈ B(H ) be an n-quasi-(m,C)-isometric operator where C
is a conjugation on H . If T (CTC) = (CTC)T , then T is an n-quasi-(k,C)-isometric
operator for every positive integer k � m.

Proof. It is well known that Λm+1(T ) = T ∗Λm(T )(CTC)−Λm(T ) ([11]). Under
the assumptions that T is an n -quasi-(m,C)-isometric operator and satisfies T (CTC)=
(CTC)T , it follows

T ∗nΛm+1(T )Tn = T ∗n+1Λm(T )Tn(CTC)−T∗nΛm(T )Tn = 0.

Therefore T is an n -quasi-(m+1,C)-isometric operator.
Let T ∈ B(H ) . Denote by r(T ) the spectral radius of T , that is,
r(T ) = sup{ |λ | : λ ∈ σ(T ) }. We say that T is normaloid if r(T ) = ‖T‖ .

THEOREM 2.3. Let C = C1 ⊕C2 be a conjugation on H where C1 and C2 are
conjugation on R(Tn) and N (T ∗n) respectively. Let T ∈ B(H ) be an n-quasi-
(m,C)- isometric operator. Assume that T is power bounded and T1 = T/R(Tn) satisfies

T1C1T1C1 − I is normaloid, then T is an n-quasi-(1,C)-isometric operator.

Proof. We know that T admits the following matrix representation T =
(

T1 T2

0 T3

)
on H = R(Tn)⊕N (T ∗n). Since T is an n -quasi-(m,C)-isometric operator, it fol-
lows in view of Theorem 2.1 that T1 is an (m,C1)-isometric operator and Tn

3 = 0.
Furthermore T is power bounded then it is easy that T1 is power bounded and satis-
fies T1C1T1C1 − I is normaloid. By applying [11, Theorem 3.1] we obtain that T1 is
an (1,C1)-isometric operator. According to Theorem 2.1 we can deduce that T is an
n -quasi-(1,C)-isometric operator. Thus we complete the proof.
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LEMMA 2.2. ([17, Lemma 3.15]) If (a j) j is a sequence of complex numbers and
r,s,m, l are positive integers satisfying

∑
0�k�m

(−1)k
(

m
k

)
ark+ j = 0 (2.1)

and

∑
0�k�l

(−1)k
(

l
k

)
ask+ j = 0 (2.2)

for all j � 0 ,then

∑
0�k�q

(−1)k
(

q
k

)
apk = 0, (2.3)

where q is the greatest common divisor of r and s, and p is the minimum of m and l .

In [7] it was proved that if T r is an m-isometry and Ts is an l -isometry, then Tq is a
p -isometry, where q is the greatest common divisor of r and s , and p is the minimum
of m and l . In the following theorem we extend this result as follows

THEOREM 2.4. Let T ∈B(H ) such that T r is an (m,C)-isometry and T s is an
(l,C)-isometry, then Tq is a (p,C)-isometry, where q is the greatest common divisor
of r and s, and p is the minimum of m and l .

Proof.

T is an (m,C)− isometry ⇔ ∑
0�k�m

(−1)m−k
(

m
k

)
T ∗kCT kC = 0

⇔ ∑
0�k�m

(−1)m−k
(

m
k

)
T ∗kCT k = 0

⇔ ∑
0�k�m

(−1)m−k
(

m
k

)
〈CTkx | Tkx〉 = 0 ∀ x ∈ H .

Fix x∈H and denote a j = 〈CT jx | T jx〉 for j = 1,2, · · · . As T r is an (m,C)-isometric
operator the sequence (a j) j�0 verifies the recursive equation

∑
0�k�m

(−1)m−k
(

m
k

)
akr+ j = 0, for all j � 0.

Analogously, as T s is an (l,C)-isometric operator the sequence (a j) j�0 verifies the
recursive equation

∑
0�k�l

(−1)l−k
(

l
k

)
aks+ j = 0, for all j � 0.
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Applying Lemma 2.2 we obtain that

∑
0�k�p

(−1)p−k
(

p
k

)
akq = 0,

where q is the greatest common divisor of r and s , and p is the minimum of m and l .
Finally Tq is an (p,C)-isometric operator.

The following corollary is direct consequence of preceding theorem.

COROLLARY 2.2. Let T ∈ B(H ) and let r,s,m, l be positive integers. The fol-
lowing properties hold:

(1) If T is an (m,C)-isometric operator such that T s is an (1,C)-isometric operator,
then T is an (1,C)-isometric operator.

(2) If T r and T r+1 are (m,C)-isometries, then so is T .

(3) If T r is an (m,C)-isometric operator and Tr+1 is an (l,C)-isometric operator
with m < l , then T is an (m,C)-isometric operator.

THEOREM 2.5. Let S and T be in B(H ) and let C =C1⊕C2 be a conjugation
on H where C1 and C2 are conjugation on R(Sn) and N (S∗n) , respectively. Assume
that T and S are doubly commuting and T (CTC) = (CTC)T , T (CSC) = S(CTC)
and S∗CTC = CTCS∗ . If T is an n1 -quasi-(k,C)-isometric operator and S is an n2 -
quasi-(m,C)-isometric operator, then TS is a n′ = max{ n1,n2 } -quasi-(k+m−1,C)-
isometric operator.-

Proof. Since TS = ST , T (CSC) = S(CTC) and S∗CTC =CTCS∗ , it follows that

[T ∗,S∗] = [CTC,CSC] = [CTC,S∗] = 0.

By taking into account [16, Lemma 12] we obtain that

Λk+m−1(TS) = ∑
0� j�k+m−1

(
k+m−1

j

)
T ∗ jT ∗n′Λk+m−1− j(T )Tn′ CT jCS∗n

′
Λ j(S)Sn′ .

Furthermore as [T,S∗] = [T,CSC] = [CTC,S∗] = 0 we get

(TS)∗n
′
Λk+m−1(TS)(TS)n′

= ∑
0� j�k+m−1

(
k+m−1

j

)
T ∗ jT ∗n′Λk+m−1− j(T )Tn′ CT jCS∗n

′
Λ j(S)Sn′ .

Under the assumption that S is an n2 -quasi-(k,C)-isometric operator, we get in view
of Proposition 2.1 S∗n′Λ j(S)Sn′ = 0 for j � m and n′ � n2 . On the other hand, if
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j � m−1, then k+m−1− j � k+m−1−m+1 = k and so T ∗n′Λk+m−1− j(T )Tn′ = 0
by Lemma 2.1. Hence, TS is a n′ -quasi-(k+m−1,C)-isometric operator.

COROLLARY 2.3. Let S and T be in B(H ) are doubly commuting. Let C =
C1 ⊕C2 be a conjugation on H where C1 and C2 are conjugation on R(Sn) and
N (S∗n) , respectively. Assume that T(CSC) = (CSC)T , T (CTC) = (CTC)T and
S∗CTC = CTCS∗ . If T is an n1 -quasi-(k,C)-isometric operator and S is an n2 -
quasi-(m,C)-isometric operator, then TSq is a n′ = max{n1,n2} -quasi-(k+m−1,C)-
isometric operator for some positive integer q.

Proof. In view of Theorem 2.2 we have that Sq is an n2 -quasi-(m,C)-isometric
operator. Moreover T and Sq satisfy the conditions of Theorem 2.4. Hence TSq is a
n′ -quasi-(k+m−1,C)-isometric operator.

PROPOSITION 2.2. Let S and T be in B(H ) are doubly commuting. Assume
that T (CSC)= (CSC)T , T (CTC)= (CTC)T , S∗CTC=CTCS∗ and S(CSC)=(CSC)S.
If T is an n1 -quasi-(k,C)-isometric operator and S is an n2 -quasi-(m,C)-isometric
operator, then TS is a n′ = max{n1,n2} -quasi-(k+m−1,C)-isometric operator.

Proof. Under the assumptions that T (CTC) = (CTC)T and S(CSC) = (CSC)S ,
it follows form Lemma 2.1 that T is an n1 -quasi-(k+ 1,C)-isometric operator and S
is an n2 -quasi-(m+ 1,C)-isometric operator. By repeating the reasoning given in the
proof of Theorem 2.5 we check that

(
TS

)∗n′Λm+k−1(TS)
(
TS

)n′ = 0.

Therefore TS is a n′ -quasi-(m+ k−1)-isometric operator.

Let H ⊗H denote the completion, endowed with a reasonable uniform cross-norm,
of the algebraic tensor product H ⊗H of H and H . It is well known that if
x ∈ H ⊗H , there exists linearly independent sets (ui)i∈I and (vi)i∈I such that x =
∑
i∈I

ui⊗ vi. An inner product on H ⊗H is defines as

〈x⊗ y | u⊗ v〉 := 〈x | u〉〈y | v〉 where x,y,u,v ∈ H .

We construct an operator T̃ on the tensor product of Hilbert spaces. Let T be an
operator on H and S be an operator on H . We define

T̃ := T ⊗S : H ⊗H −→ H ⊗H by

T̃ (x) =
(
T ⊗S

)(
∑
i∈I

ui⊗ vi

)
= ∑

i∈I
T (ui)⊗S(vi).
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In [12, Lemma 4.5], it was proved that if C and D be conjugations on H . Then C⊗D
is a conjugation on H ⊗H .

LEMMA 2.3. If T ∈ B(H ) and C and D are conjugations on H respectively.
Then T is an n-quasi-(m,C)-isometric operator if and only if the tensor product T ⊗ I
(resp.I⊗T ) is an n-quasi-(m,C⊗D)-isometric operator.

Proof. A straightforward computation gives

(
T ⊗ I

)∗n( ∑
0�k�m

(−1)m−k
(

m
k

)(
T ⊗ I

)∗k(
C⊗D

)(
T ⊗ I

)k(
C⊗D

))(
T ⊗ I

)n

= T ∗n
(

∑
0�k�m

(−1)m−k
(

m
k

)
T ∗kCT kC

)
⊗ I.

From this we can get that T is an n -quasi-(m,C)-isometric operator if and only if T ⊗ I
is an n -quasi-(m,C⊗D)-isometric operator.

As application of Lemma 2.3 and Proposition 2.2, we get the following theorem.

THEOREM 2.6. Let T and S∈B(H ) such that T is an n1-quasi-(m,C)-isometric
operator and S is an n2 -(k,D)-isometric operator where C and D are conjugations
on H , respectively. If T(CTC) = (CTC)T and and S(DSD) = (DSD) , then T ⊗S is
an n′ = max{n1,n2} -quasi-(m+ k−1,C⊗D)-isometric operator.

Proof. It is well known that T ⊗ S =
(
T ⊗ I

)(
I ⊗ S

)
=

(
I ⊗ S

)(
T ⊗ I

)
. In view

of Lemma 2.3 we have that T ⊗ I is an n1 -quasi-(m,C⊗D)-isometric operator and
I⊗S is an n2 -quasi-(k,C⊗D)-isometric operator. On the other hand, note that T ⊗ I
and I⊗S satisfy all conditions in Proposition 2.2. We conclude that (T ⊗ I)(I⊗S) is a
n′ -quasi-(m+ k−1,C⊗D)-isometric operator.

LEMMA 2.4. Let T,Q ∈ B(H ) such that TQ = QT , then for m � 2

Λm(T +Q) = ∑
i+ j+k=m

(
m

i, j,k

)(
T +Q

)∗i
Q∗ jΛk(T )CT jCCQiC

where

(
m

i, j,k

)
=

m!
i! j! k!

.

Proof. The proof follows by similar arguments as in the proof of [25, Lemma 2].

It was proved in [8, Thoerem 3.1] that if T ∈B(H ) is an m-isometry and Q∈B(H )
is an nilpotent operator of order p such that TQ = QT , then T +Q-is an (m+2p−2)-
isometry. In the following theorem we show that this remains true for (m,C)-isometric
operators.
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THEOREM 2.7. Let T,Q ∈ B(H ) . Assume T commutes with Q. If T is an
(m,C)-isometric operator and Q is a nilpotent operator of order p. Then T +Q is an
(m+2p−2,C)-isometric operator where C is a conjugation on H .

Proof. We need to show

Λm+2p−2
(
T +Q

)
= 0.

In view of Lemma 2.4 we have

Λm+2p−2
(
T +Q

)
= ∑

i+ j+k=m+2p−2

(
m+2p−2

i, j,k

)(
T ∗ +Q∗)i

Q∗ jΛk(T )CT jCCQiC.

(i) If max{i, j} � p , then CQiC = 0 or Q∗ j = 0.

(ii) If max{i, j} � p−1, then k � m and hence Λk(T ) = 0.

From (i) and (ii) we get Λm+2p−2
(
T +Q

)
= 0.

In the following theorem we investigate the nilpotent perturbations of an n -quasi-
(m,C)-isometric operator.

THEOREM 2.8. Let T and Q ∈ B(H ) . Assume that TQ = QT commutes,
TCQC = CQCT and TCTC = CTCT where C is a conjugation on H . If T is an
n-quasi-(m,C)-isometric operator and Q is a nilpotent operator of order p. Then
T +Q is a (n+ p)-quasi-(m+2p−2,C)-isometric operator.

Proof. We need to show(
T +Q

)γΛm+2p−2
(
T +Q

)(
T +Q

)γ = 0 where γ = n+ p.

In view of Lemma 2.4 we have

Λm+2p−2
(
T +Q

)
= ∑

i+ j+k=m+2p−2

(
m+2p−2

i, j,k

)(
T ∗ +Q∗)i

Q∗ jΛk(T )CT jCCQiC

and (
T +Q

)∗γΛm+2p−2
(
T +Q

)(
T +Q

)γ

=
(

∑
0�r�2γ

(
γ
r

)
T ∗(γ−r)Q∗r

)

×
(

∑
i+ j+k=m+2p−2

(
m+2p−2

i, j,k

)(
T ∗ +Q∗)i

Q∗ jΛk(T )CT jCCQiC

)

×
(

∑
0�s�2γ

(
γ
s

)
T γ−sQs

)
.
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Now observe that if max{i, j} � p , then CQjC = 0 or Qi = 0. and hence

(
T ∗ +Q∗)i

Q∗ jΛk(T )CT jCCQiC = 0.

However , if max{i, j} � p− 1, then k � m . Using the fact that T is an n -quasi-m-
isometry and TCTC = CTCT , we get

T ∗(n+p−r)Λk(T )Tn+p−s = 0 for r ∈ { 0, · · · , p } and s ∈ { 0, · · · , p}

and

T ∗(n+p−r)Q∗rΛk(T )Tn+p−sQs = 0 for r∈{ p+1, · · · ,n+ p} and s∈{ p+1, · · · ,n+ p}.

Combining the above arguments we deduce that(
T +Q

)n+pΛm+2p−2
(
T +Q

)(
T +Q

)n+p = 0.

Thus T +Q is a (n+ p)-quasi-(m+2p−2)-isometric operator. Therefore the theorem
is proved.

EXAMPLE 2.2. Let C be a conjugation on C3 defined by C(x1,x2,x3)= (x3,x2,x1)

and consider the operator matrix T =

⎛
⎝1 0 α

0 1 0
0 0 1

⎞
⎠ on C3 . Then T = I + Q . Since

Q2 = 0, it follows from Theorem 2.8 that T is a (n+ 2)-quasi-(m+ 2,C)-isometric
operator.
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[12] M. CHŌ, J.E. LEE AND H. MOTOYOSHIA, On [m,C] -Isometric Operators, Filomat 31:7 (2017),
2073–2080.

[13] B. P. DUGGAL, Tensor product of n -isometries, Linear Algebra and its Applications 437 (2012),307–
318.

[14] S. R. GARCIA AND M. PUTINAR, Complex symmetric operators and applications, Trans. Amer.
Math. Soc. 358(2006), 1285–1315.

[15] S. R. GARCIA, E. PRODAN AND M. PUTINAR, Mathematical and physical aspects of complex sym-
metric operators, J. Phys. A: Math. Theory 47(2014) 353001 (54pp).

[16] C. GU, Structures of left n -invertible operators and their applications, Studia Mathematica 226 (3)
(2015).

[17] K. HEDAYATIAN AND A. M. MOGHADDAM, Some properties of the spherical m-isometries, J. Op-
erator 79:1(2018), 55–77.

[18] J. KYU HAN, H. YOUL LEE AND W. YOUNG LEE, Invertible completions of 2×2 upper triangular
operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119–123.

[19] S. MECHERI AND T. PRASAD, On n-quasi-m-isometric operators, Asian-European Journal of Math-
ematics 9 (2016), (8 pages).

[20] S. MECHERI AND S. M. PATEL, On quasi-2 -isometric operators, Linear and Multlinear Algebra
(2017), https://doi.org/10.1080/03081087.2017.1335283.

[21] S. M. PATEL, 2 -isometric operators, Glas. Mat. 37 (57) (2002), 141–145.
[22] S. M. PATEL, A note on quasi-isometries, Glas. Mat. 35 (55) (2000) 307–312.
[23] S. M. PATEL, A note on quasi-isometries II, Glas. Mat. 38 (58) (2003) 111–120.
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