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SHORTED OPERATORS WITH RESPECT TO
A PARTIAL ORDER IN A DUAL MODULE

BURCU UNGOR, SAIT HALICIOGLU AND ABDULLAH HARMANCI

(Communicated by F. Kittaneh)

Abstract. The purpose of this paper is to determine exactly the shorted operators in the sense of
linear functionals under the direct sum partial order.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1z and modules
are unitary right R-modules. For a right R-module Mg = M, S = Endg(M) denotes
the ring of all right R-module endomorphisms of M. It is well known that M is a left
S and right R-bimodule. Then M* := Homg(M,R) is a left R-right S-bimodule and
M* is called the dual module of M. Elements of M* are called linear functionals.

An element m € M is called a (Zelmanowitz) regular element if

m=me(m) = mom

for some @ € M*. A module M is called regular (in the sense of Zelmanowitz) if every
element of M is regular. For aring R, let a € R be a regular element (in the sense of
von Neumann). Then there exists ¢~ € R such that a = aa™a. It is well-known that
a € R is regular (in the sense of von Neumann) if and only if « is regular in Rg (or,
similarly, in the left R-module zR) (in the sense of Zelmanowitz).

Let M be a module. It is known that Homg(R,M) = M. Let m € M be regular,
say m = m@m where @ € M*. Then for the map m¢@: M — M, defined by

(m@)(x) =me(x) =mex, xeM,

we may conclude that m¢@ € S and that m¢ is an idempotentin S.
In [5], Blackwood et al. defined a relation <% on a ring R in the following way:
For a,b € R,
a<%b if bR=aR® (b—a)R.
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They proved that the relation <% is a partial order on the von Neumann regular rings
and called it the direct sum partial order.

Motivated by the concept of the direct sum partial order on von Neumann regular
rings, we extend this concept to the dual modules. In this direction, we introduce a di-
rect sum partial order on dual modules. We investigate in detail when linear functionals
are correlated according to the direct sum partial order.

The shorted operator arises in various contexts and contributes as a tool for solv-
ing many important issues (see [1, 2, 3, 4, 6, 7, 8]). In [1], Anderson introduced the
shorted operator in finite dimensional linear spaces in terms of an explicit matrix con-
struction. It was shown to be the solution to a maximization problem. In [2], the same
maximization problem was used to furnish the definition, and the definition is extended
to an arbitrary Hilbert space (not necessarily finite dimensional). The definition of the
shorted operator is given in [2] as follows: Given a closed subspace S of a Hilbert space
H , the shorted operator Ag of a positive operator A on § is defined as

As = max{D |0< D <A,ranD C S},
for the partial ordering
A < B & A, B are self-adjoint and B — A is positive.

The existence of such a maximum is guaranteed in [2]. In [8], Raissouli noticed that
the assumed condition “S is closed” is not necessary to define the shorted operator.
If H is a finite dimensional space, a physical interpretation of the shorted operator in
terms of electrical circuits can be found in [2]. Mitra and Puri obtained two explicit
representations for the shorted operator (in finite dimensional linear spaces), one in
terms of the g-inverse, the other in terms of the least squares inverse of a complex
matrix in [6]. Extension of shorted operator to convex functionals has been studied in
[8] by Raissouli.

For a shorted operator, it is natural to ask the following question: what should be
the analogue of Ag when the variable operator A is a linear functional? The answer of
this question is given in Theorem 2.21. As an application of shorted operators in dual
module theory, in this paper, our main aim is to determine maximal elements in a subset
of a dual module via the direct sum partial order.

2. Shorted operators in a dual module

Let M be aleft S-right R-bimodule where S = Endg(M). For the sake of brevity,
in the sequel, S will stand for the endomorphism ring of the module M considered. We
will denote the identity map in S by 1g.

Let R be aring and @ € R. In [5], an element b € R is said to be a von Neumann
inverse of a if aba = a. An element b € R is said to be weak von Neumann inverse of
a if bab=>b. If aba = a and bab = b, then b is called a strong von Neumann inverse
of a. In the following, we extend the aforementioned inverses to the general module
theoretic setting.
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DEFINITION 2.1. Let M be amodule and m € M.

(1) If m = mem for some @ € M*, then ¢ is called a regular support of m and it
will be denoted by mM) . Also, {m(l)} denotes the set of all regular supports of
meM.

(2) If @ = emo for some @ € M*, then ¢ is called a weak regular support of m
and it will be denoted by m(®) . Also, {m(z)} denotes the set of all weak regular
supports of m € M.

(3) If m=mem and ¢ = eme for some @ € M*, then ¢ is called a strong regular
support of m and it will be denoted by m12). Also, {m(1»)} denotes the set of
all strong regular supports of m € M.

Let M be a module and ¢ € M*. Set Hy ={meM | ¢ = ome}. If me M is
regular, then there exists @ € M* with m = m@m. It can be shown that gme € {m1-2)}.
Hence m € Hoppgp .

Consider the canonical map 0: M — M** from a module M into its double dual
M** := Homg(M*,R) defined by

0: M — M
m — O(m): M* — R
¢ — (9)(8(m)) = @m.

It is known that 6 is injective if and only if M is torsionless (i.e., M can be embedded
into some direct products of R). For any module M, its dual module M* is always
torsionless. The module M is also said to be reflexive if 0 is bijective. Finitely gener-
ated torsion-free modules over a Dedekind domain, finitely generated free modules and
the direct sum of countably many copies of the integers as a module over the integers
are some examples of reflexive modules. In the next result, we investigate under what
conditions the set Hy is nonempty for any ¢ in a dual module.

PROPOSITION 2.2. Let M be amodule and ¢ € M*. If Hy # 0, then @ is regular.
The converse holds if the canonical map 6 : M — M*™* is surjective.

Proof. Assume that Hy, # 0. Then ¢ = @m¢ for some m € M. Hence 6(m) €
M** . By the definition of 6, we obtain @(0(m))@ = em@ = ¢. Thus ¢ is regular. For
the converse, suppose that ¢ is regular and 6 is surjective. Then there exists o € M**
such that ¢ = @o.@. The surjectivity of 6 yields o = 6(m) for some m € M. It follows
that ¢ = pap = @(0(m))p = eme in the light of the definition of 6. Therefore
me Hy,andso Hy # 0.

COROLLARY 2.3. Let M be a module. If Hy # 0 for every ¢ € M*, then M* is
regular. The converse holds if the canonical map 0 : M — M** is surjective.

Some decompositions of a dual module M* as a left R-module and as a right
S-module are obtained as follows.
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THEOREM 2.4. Let M be a module, ¢ € M* and m € Hy. Then M* has the
following decompositions.

(1) M*=Ro®K where K ={o. € M* | om@ = 0} as a left R-module.
(2) M*=@S®L where L= {a € M* | pmoa. =0} as a right S-module.

Proof. (1) Let oo € M*. Then o = am@ + o(lg —me). Note that ame € Ro.
Being ¢ = @me implies a(lg —m@)me = 0 entailing that o:(1g —me@) € K. Hence
M* C Rp+ K. The reverse inclusion is obvious, and so M* = Rg + K. In order to see
that this sum is direct, let r¢ =k € RopNK where r € R and k € K. Since m € Hyp , we
have r¢ = rom¢ = km@ = 0. Thus RpNK = {0}. Therefore M* =Rp & K.

(2) Similar to the proof of (1).
We now characterize the set Hy, for any linear functional ¢.

LEMMA 2.5. Let M be a module, ¢ € M* and m € Hy. Then

Hy=m+ (1s—m@)M+M(1g — om).

Proof. Let m € Hy and K =m+ (15 —m@)M + M(1g — @m). For any
m+(ls—m@)m; +my(1g — pm) € K
where m,my € M, we have
@(m+ (s —m@)my +my(1g — pm)) o = pme = ¢.

This means m+ (1 —m@)m; +ma(1g — ¢m) € Hy, and so K C H,,. For the reverse
inclusion, let n € Hy. For n —m,m@n € M, we have

n=m+ (lg—me@)(n—m)+mon(lg— om) € K.

Hence Hy C K. Thus Hy, = K as claimed.
Inspired by the notion of the direct sum order on rings, we now introduce the direct
sum order in the setting of dual modules.

DEFINITION 2.6. Let M be a right R-module with S = Endg(M) and ¢, ¢, €
M* . We write

<@ if ¢S=@SDH(P2—1)S.

In the next results, we give some characterizations of the direct sum order for linear
functionals from different perspectives.

THEOREM 2.7. Let M be a module and @1,Q, € M* with Hy, # 0. Then the
following statements are equivalent.

D) @1 < 5
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(2) Ry =R ®R(p2— ¢1).

Proof. (1) = (2) Let @ <% @. Then ¢S = @18 @ (@2 — ¢1)S. By the hypoth-
esis, ¢ = @yme@, for some m € M. Since ¢S C ¢S, there exists f € S such that
@1 = ¢of . Hence

Prm@1 = Qm@rf = @2 f = @1
and so
G2m(P2 — Q1) = Q2mPy — PPy = P2 — Y.
From @yme; = @1, we have @1 = (@1 + (92 — ¢1))m@1 = @@y + (92 — 1)mey . It
follows
@1(1s —mo1) = (2 — @1)mo1 € P1SN (92— ¢1)S.
Since @;SN (@2 — ¢1)S = {0}, we obtain @;me; = ¢;. On the other hand, from
G2m(@2— @1) = 92— @1, we have @3 — @1 = (@1 + (92— 1) )m(@2 — ¢1) = Pim(P2 —
1)+ (@2 — @1)m(@2 — ¢1). This yields

o1m(@2 — @1) = (@2 — @1)(ls —m(Q2— ¢1)) € 1SN (P2 — ¢1)S = {0}.

Thus @;m(@; — @) =0. So we have @;m@, = @ym@; = ¢;. Therefore ¢; € R,
and so RQ; +R(¢@, — @1) C R, . The reverse inclusion is obvious. Then Rg, = Ro; +
R(@x—@1). Let riop =ra(@2— @1) € Ry NR(@, — 1) for some ry,r, € R. Multiply-
ing the equality by m; from the right, we obtain ry | = ri@m@; = r (@, — @) m@; =
0. Therefore R, = Rp; ®R(p2 — @1).

(2) = (1) Similar to the proof of (1) = (2).

THEOREM 2.8. Let M be a module and @1, @, € M* with Hy, # 0. Then the
following statements are equivalent.

1) @1 <% ¢.
(2) @SN (@2 —@1)S =R NR(¢2 — 1) = {0}.

Proof. (1) = (2) Clear by the definition of <% and Theorem 2.7.
(2) = (1) By hypothesis, ¢ = @am@, for some m € M. Then

@m(@1+ (P2 — 1)) = o1+ (2 — ¢1).
Hence @ym@; — @1 = (2 — @1) — @2m (@2 — 1), and so
(pom—1g)@1 = (1g — @2m) (P2 — @1) € RPN R(P2 — @1).

By (2), ¢omo; = ¢;. It follows ¢ € ¢S. This yields @S+ (@2 — ¢1)S C ¢S.
The reverse inclusion is obvious. Also by (2), ¢S = ¢;S® (¢2 — ¢1)S. Therefore
o <" .

We now prove that the relation <¥ is a partial order on a dual module M* when
the sets H, are nonempty for any linear functional ¢ € M*.
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THEOREM 2.9. Let M be a module. If Hy # 0 for any ¢ € M*, then the relation
<% is a partial order on M*.

Proof. Reflexivity: Let ¢ € M*. From ¢S = ¢S®0, we have ¢ <% ¢.
Antisymmetry: Let @1, 0 € M* with @ <% @, and @, <® ¢@;. Then ¢S = @;S®
(o — 01)S and 1S = @SB (1 — @)S. So 1S C @S and S C ¢;S. Hence
015 = S The decomposition of ¢S implies (¢; — @,)S = 0. Since $ has an identity,
P1=02.

Transitivity: Let @1, @2, @3 € M* with @; <% @, and @2 <% @3. Then @S = ;S ®
(02— @1)S and @35 = 25 D (@3 — ¢2)S. In the light of these decompositions, ¢S C
0SS C @3S and @SN (P2 — @1)S = @SN (@3 — ¢2)S = {0} . We claim that @SN (@3 —
¢1)S = {0}. Let @1 f = (93 — ¢1)g for some f.g €S. So @1f = (93— ¢2)g+ (¢ —
¢1)g - It follows @1 f — (02— ¢1)g = (@3 — 2)g € 25N (3 — ¢2)S = {0} . This shows
o1f = (2= ¢1)g € P1SN (@2 —¢1)S={0}. Thus ¢ f =0, and so @SN (g3 —1)S =
{0} as claimed. On the other hand, by Theorem 2.7, Rg; = Ry & R(¢, — ¢;) and
R@3 =Ry B R(p3 — @). Similarly, these decompositions yield R NR(@3 — @) =
{0} . Therefore ¢; <¥ @3 by Theorem 2.8.

Let M be a module and m,my € M. We write

mq <®m2 if ng:mlRGB(mg—ml)R.

By a similar discussion in the proof of Theorem 2.9, the relation <% is a partial order
on a regular module. In the following, we obtain a connection between direct sum
partial orders for a module and its dual module.

THEOREM 2.10. Let M be a module, my,my € M with my regular. If my <% mo,
then for every @, € {mém)}, there exists @ € {mgm)} such that @1 <% @s.

Proof. Let my <% my. Since my is regular, {mgl)} = (). This implies {mglg)} #0
by the fact that if ¢ € {mgl)}, then @my@ € {mgl’z)}. Let ¢ € {mgl’z)}. Define
Q1 = @ym @y € M*. We firstly claim that ¢, € {mgl’z)}. Since m; <@ my, m R CmyR,
and so m; = myr for some r € R. Then m; = myr = my@amyr = my@om;. Hence
my@amy = my@ymy — (my —my)@amy =my — (my—my ) @ym . Thisimplies m (@ym; —
1g) = —(my —my)@am; € myRN (my —my)R. Being my <% my yields miRN (my —
m;)R = {0}, and so m; = my@ym;. On the one hand, m@ym; = m;@ymQm; =
mi@ym; = my. This means @; € {mgl)}. On the other hand, using m = m;@my,
we have @m;@; = @, entailing that @; € {m(lz)}. Thus ¢, € {mgm)} as claimed.
Note that m;¢; = m ¢, and @;m; = @ym; by the fact m; = m@ym;. We now show
that @; <% @,. On the one hand, let @151 = (@2 — @1)s2 € ¢1SN (2 — ¢1)S for some
51,52 € S. Then my@Qs; = my@asy —mQ1sy. Since my@; = m @, we have m Qs =
0 entailing @m sy =0, and so @;s; = 0. This implies @;SN (@2 — ¢;)S = {0}.
On the other hand, let r1@; = r2(@> — @1) € ROy NR(@> — @) for some ry,rp € R.
Similarly, we obtain ry¢@;m; = 0 using @im; = @ym;. This entails r;Qm;@; = 0.
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Then ry@; = 0. It follows Rp; NR(@2 — ¢1) = {0}. Therefore @; < @, by Theorem
2.8.

We now give more characterizations of the direct sum order for linear functionals
as can be seen below.

PROPOSITION 2.11. Let M be a module and 1,0, € M. Then the following
are equivalent.

(1) @1 <% ¢ and Hyp, # 0.
(2) Hyp,NHgy, #0, Ro; SRy and ¢1S C @S.

Proof. (1) = (2) Let ¢; <% ¢ and Hy, # (. Then, by Definition 2.6, @;S C ¢S,
s0 @1 = @uf for some f € S. Also, Rp; C Rpy by Theorem 2.7. Since Hgp, # 0,
@2 = pame, for some m € M. Hence @) = ¢of = @am@yf = @am@; . Thus

Q1m@p = @amP; — (G2 — @1)mP; = Q1 — (P2 — Q1) mPy.

It follows

@1(mey — 1) = @im@; — @1 = — (@2 — @1)me; € Q1SN (@2 — @1)S.

Since @SN (g2 —¢1)S = {0}, we have ¢; = @;m@; . This means m € Hy, . Therefore
m&€ Hyp NHy, .

(2) = (1) Let Hy, NHy, #0, Ry C Ry and @S C ¢»S. Being Hy NHy, C Hy,
yields Hyp, # 0. Since ¢S C ¢S, clearly, ¢S+ (@2 — ¢1)S C ¢S. The reverse
inclusion is obvious. So @5 = @S+ (@2 — @1)S. In order to see that this sum is
direct, let @1 = (@2 — @1)g € @1SN (@2 — ¢1)S for some f,g € S. By (2), there exists
m € Hy, N Hg, . Multiplying the equality by ¢;m from the left, we have

oimo1f = eim(¢2 — @1)g
OLf = @im@pag — pimQ1g
= Q1mp8 — P18.

Since RQ; C R, @1 = r¢y for some r € R. Then @1 f = rpom@rg — Q18 = r(ng —
18 =18 — @18 =0. Hence ¢1SN (@2 — ¢1)S = {0}. Thus 25 = ¢1S© (92 — ¢1)S.
Therefore @; <% ;.

THEOREM 2.12. Let M be a module and @1, @, € M* with Hy, # 0. Then the
following are equivalent.

(1) o1 <% .
(2) Foreach my € Hy,, @1 = @ima@2 = @2ma Q1 = Q1mo ;.

(3) For each my € Hy,, there exists my € Hy, such that oim; = @ym; = Qimy and
miQr =mp@ =nmy@Pi.
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(4) There exists m € Hp, such that @im = @xm and m@| = m@;.

Proof. (1) = (2) Assume that @; <% @,. This means 5 = @15 (@2 — ¢1)S,
and so @15 C ¢»S. Then ¢ = @, f for some f € S. Let my € Hy,. Hence @1 = o f =
o @a f = @ama @y . This yields Qima@1 = @2ma@1 — (92 — @1)ma1 = @1 — (2 —
®1)m2¢y , and 50

P11 — @1 = — (@2 — @1)mag1 € Q1SN (92— ¢1)S = {0}
entailing @, = @m, @, . Note that ¢ — @; = @am2 (@2 — ¢1). Then
(@2 —@1)m2(@2 — @1) = (92 — @1) — 12 (2 — @1).

Hence (@2 — ¢1)(ma2(@2 — @1) — 1s) = —pumz (@2 — ¢1) € 1SN (92 — ¢1)S = {0} . It
follows @my@y = @ym @ entailing @ = QM @; .

(2) = (3) Let my € Hyp, and consider the element m; = my@my; € M. Using ¢
Q1m @1, we have @m; @) = @ . This means m| € Hy, . Since @ = @m¢; and @ =
@amy @y, we obtain @ym; = @my and @ym; = Qmy, respectively. Hence @;m; =
@2my = Qymy. Similarly, being @1 = @ima@y and @1 = @1ma@y imply my @1 = ma @
and mj @y = my @y, respectively. Thus my @) =mi@y =m @y .

(3) = (4) Since Hyp, # 0, assume that my € Hy, . By (3), there exists m| € Hp, such
that @ym; = @ym; and myQy =m@,.

(4) = (1) Since Hy, # 0, let my € Hy,. Then by (4), there exists m; € Hy with
QO1my = QoM and my@Qy =mpQ. Hence

Prma Q1 = Q1M QMo Q1M Qg
= QimP2myPrm @y
= QimP2m @y
= Qim1Q1m1Q;
= Qim Q|
= 01

This yields my € Hy NHy, , and so Hy N Hyp, # 0. On the one hand, ¢ = @ym; @ =
@1m1 @2 € Ry entails Rp; C Ry . On the other hand, ¢ = @1m Q) = @am;@; € @25
yields ¢S C ¢»S. By Proposition 2.11, ¢; <% ¢,.

PROPOSITION 2.13. Let M be a module, ¢1,¢, € M* with Hy, # 0. If ¢ <%
@2, then Hy, C Hy, . The converse holds if Hy,_g,m)p, # O and Hy, (15—mg,) # 0 for
some m € Hy,.

Proof. Let ¢; <% ¢,. By Proposition 2.11, there exist f € S and r € R such
that @; = @2 f = r¢,, also m € Hy, NHg, . Let x € Hyp, . Then we have ¢; = @imey,

O = ym@r = P2x¢> . Hence

QLXPL = rQx@2 f =rQaf =r@
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and
O1 = @imQy =r@m@yf =rQ2f =ro;.

Thus @ = @1x¢;, and so x € Hy, . Therefore Hy, C Hy, .

Conversely, let m € Hy, with H(1,_g,m)p, # 0 and Hp, (15— mp,) # 0. By Lemma
2.5, Hy, =m~+ (15— m@)M + M (1g — @am). Then for every my,my € M, n:=m+
(1s —m@o)my +my(1g — @om) € Hy, . By (2), m,n € Hy, . Multiplying this equality
by ¢; from the left and the right, we obtain

@1 (s —m@p)my @ + @umy(1g — @am); =0

for every my,mp; € M, i.e., @(lg —m@)Mep, + @ M(1g — @am)@; = {0}. Tt fol-
lows that ¢@;(1ls —m@)M¢@; = {0} and ;M(1g — @am)p; = {0}. Hence ¢;(1s —
m@ )My (ls—me@y) = {0} and (1g — @am) ;M (1g — @am)@; = {0} . By assumption,
there exist x € H(1,_gp,m)g, @and ¥ € Hyp (1,_mg,)- These mean (1g — @am)@ix(1g —
pom)@r = (1g — @am) @1 and @1 (s —m@2)ypi(ls — me) = @1(1s —m@z). Thus
(Ig = @am)@; = 0 and @ (lg —me@,) = 0. This yields ¢; = @m@; = Qm@,;. So
018 C ¢S and Rp; C R, . Therefore ¢ < ¢, by Proposition 2.11.

In the next result, we characterize weak regular supports of a regular element in a
module in terms of the direct sum order on the dual module.

PROPOSITION 2.14. Let M be a module, m be a regular element of M and ¢, €
M*. Then the following are equivalent.

() ¢ € {m?}.
(2) There exists @ € {m"?)} such that ¢; <% ¢.

Proof. (1) = (2) Let @ € {m®}. This means that @;m@, = ¢@,. Since m € M
is regular, there exists @, € {m1)}. Then m@,m = m. Set

¢ = Q1+ @2(m—mem) Q.

Then
mem = m@m -+ m@ym@rm + m@rme;m@rm = m
since m@ym = m. Similarly, by making use of ¢im¢p; = ¢ and m@ym = m, it is

easily checked that @m¢ = ¢ . Hence ¢ € {m(1?)}. Next we show ¢; <® ¢. We use
(@im)? = @im and m@,m = m to have the following equalities:

pm = Qm—+ Q2(m —m@m)@am = Qim+ Q2m — GamPm,

(om)(@im) = Qrmeim+ GxmPym — xmPymPym = Pym,

(@im)(om) = Qim@im+ Qym@rm — ymPymPym = QM.
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Multiplying ¢m@;m = @ym by ¢, from the right, we have ¢m¢; = ¢, . This implies
015 C ¢S. Tt follows that @S = @S+ (¢ — ¢)S. Also,

Qrmp = Qim(@1 + @2(m — moim) )
= Q1m@1 + Qrm@Pm @y — QPP mPs
= Q1+ Q1m@2 — Q1@
= 1.

To prove 1SN (¢ —¢1)S = {0}, let o1 f = (¢ — ¢1)g € 915N (¢ — ¢1)S where f.g €
S. Multiplying the latter from the left by @;m, we have @;mo; f = (@1m@ — @me;)g.
By making use of @ym@; = ¢; and ¢;m¢@ = @, we have @, f =0. Hence @SN (¢ —
¢1)S = {0}. Therefore ¢; <% .

(2) = (1) Assume that @ € {m('?} with ¢; <% ¢. Since ¢ = pme, m € Hy. So
Hy # 0. By Proposition 2.13, ¢; <% ¢ implies Hy, C Hyp, . Since m € Hp, m € Hy, .
Therefore @ym@; = @y , that is, @; € {m®}. This completes the proof.

Let M be a module, m € M be regular and ¢ € {m(1?)}. Set e = @m € R and
f=m@cS. Then e =¢, f2= f and m € fMe. Consider the subset eM* f of M*.
Set 6p ={B ceM*f|B <® @}. We define a maximal element in %, as follows:
o € 6, is maximal in €, if o <¥ B <% @ implies a = 3 or = ¢. In the sequel,
we investigate the maximal elements in eM* f.

LEMMA 2.15. Let M be a module, ¢* =e¢ € R, f> = f €S and m € fMe be
regular. If @1 € {m®} and @y € {m"2)} such that @, <% @a, then e f <% ey f.

Proof. By definition, ¢, € {m1"?)} implies m € Hy, , so Hy, # 0. By Proposition
2.11, being @, <? ¢, implies Rp; C R, and @15 C @25. Then @ = @rg = r@, for
some g € S and r € R. Hence

Qim@y =rPam@r =1z = @1
and

Qrm@Q; = P2mP2g = P28 = P1.
Note that m = fme. On the one hand,

(eprf)m(e@rf) = e@i(fme)prf = eprmpaf = ey f.

This yields that R(e@; f) C R(e@,f) since e, fm € R. On the other hand,

(epaf)m(e@if) = e@a(fme) Q1 f = emif = e@yf.

It follows that (eq; f)S C (e@f)S since me@;f € S. Since ¢ € {m®}, we obtain
(e@rf)m(eqi f) =e@ime f = e f, this implies m € H,g, 7. Also, being @ € {m>}
entails (e f)m(e@af) = e@am@yf = e, f, and this implies m € H,p, .

Hence m € Hegp, f NMHeg, s and so Heg, r M Hegyr # 0. By Proposition 2.11, we get
e@1f <% e@yf. This completes the proof.
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REMARK 2.16. Let M be a module, m € M and ¢ € {m®} and ¢, € {m(1?)}
such that @; <% ¢@,. Set e; = oim, fi = m@, and e; = @ym, f» = m@,. Being
@1 <9 ¢, implies Rp; C Ry and ¢S C ¢»S.

Let R be aringand e? = e, f> = f € R. Kaplansky defines e < f if e = ef = fe.

LEMMA 2.17. By the notation as given in Remark 2.16, @ <% @, implies e; < e
inRand fi < fr in S.

Proof. Assume that @; <% @,. Then R C R, and ¢S C ¢»S. Multiplying
R@| C R, from the rightby m, we get Re; C Re; . Hence e =eje;. Since @15 C 015,
@1 = @og for some g € S. Thus exe; = Qxmpim = QrmPagm = Qrgm = Qym = ey .
Therefore e; < e in R. Similarly, multiplying ¢S C ¢,S from the left by m, we get
f1S C f»S. This implies f; = f>f1. Being Rgp; C R, entails ¢; = r@, where r € R,
S0 f1fr = m@ym@r, = mr@ym@y = mr@, = m@; = f1. Therefore f| < f>.

Let M be a module, m € M be regular and ¢ € {m!"?)}. Set e = om € R and
f=mo € S. In the following, we determine the maximal elements in the subset eM* f.

THEOREM 2.18. Let M be amodule, m € M and ¢ € {m'?)}. Then o € €, is
maximal if and only if for any B € M* with B <% ¢ such that Roo C R C M*f and
oS C BS CeM*, we have o =3 or B = o.

Proof. For the sufficiency, let o € 6. Take B € €, with o <¥ B <% ¢. Note
that B = eBf. Since m € Hy, and B <% ¢, by Proposition 2.13, H, C Hg, and so
Hg # 0. Being o <% B and Proposition 2.11 imply oS C BS = eBS C eM* and
Ro CRB =RBf C M*f. By hypothesis, & = 8 or B = ¢. Therefore o is maximal
in €.

For the necessity, let o € €, be a maximal element in €,. Let B € M* such
that B <% ¢ and R CRB C M*f and aS C S C eM*. Since e € R and f € S are
idempotent elements, B = Bf and B =ef. So B =eff € eM*f. It implies B € €.
Since oo <% @, B <% ¢ and Hy # 0, by Proposition 2.13, H, C Hy and Hy C Hpg.
This entails Hy C Hy NHp, so Hy N Hg # 0. By Proposition 2.11, o <% B. By the
maximality of o, we have o« = f8 or ot = .

REMARK 2.19. Let M be a module, m € M be regular and ¢ € {m12)}. Set
e=@emcRand f=m@ cS. Then e =e, f>=f and m € fMe. Note that m =
fm=me= fme.

PROPOSITION 2.20. By the notation as given in Remark 2.19, €, = eM* f N

{m®)}.

Proof. Let ot € €. This means o = eo.f and o <% @. Since m € Hy, Hy # 0.
By Proposition 2.13, Hy C Hy. It follows m € Hy, ie., oo = amo,. This implies
o € {m?}. Then o € eM* fN{m@P}, and so €, C eM*f N {m?}. For the reverse
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inclusion, let o € eM™* f N {m(z)}. Since o € eM* f, it is enough to show o <% ¢. Note
that m € HyNHy, so HyNHyp # 0. From o = eaf, we have a = eot = pmor € ¢S
and oo = oof = om@ € Rep. Then aS C ¢S and Ra C Rp. By Proposition 2.11,
o <% ¢. Hence o € €. Thus eM*fN{m>} C €, . Therefore €, = eM* fN{m>)},
as asserted.

Let max 6, denote the set of all maximal elements of €, .

THEOREM 2.21. By the notation as given in Remark 2.19, if max €y # 0, then
max ¢y ={effeceM f|PB e {m1:2}},

Proof. If ¢ € eM” f, then max €, = 0. So we must assume that ¢ ¢ eM* f. Let
o € max %,. By Proposition 2.20, o € {m(®}. Then there exists 8 € {m(1:?)} such
that @ <® B according to Proposition 2.14. Also Lemma 2.15 yields o = eotf <%
e f. We claim that e f <% ¢. Note that (e f)m(eff) =eB(fme)Bf = efmPf =
eff. This shows m € H,g;, and so m € HyNH,pg¢. Hence Hy N H,pg¢ # 0. On the one
hand, e f = emPBf € ¢S, so (eff)S C @S. On the other hand, efff = efm¢p € R,
so R(eff) C Rp. By Proposition 2.11, we have e f <% ¢, as claimed. Being o0 <¥
eff <% ¢ and maximality of & in 6, entail oo = eff or e f = ¢. The second case
cannot be because of ¢ & eM*f. Thus o = ef3f. Therefore max €, C {eff | B €
{m1 2}

For the reverse inclusion, let eocf € eM* f where o € {m1:?)}. Since

(eof)m(eaf) = ea(fme)af = eamaf = eof,
we have eaf € {m®}. By Proposition 2.20, eaf € %p. Now assume that eof <%
B <% @ where B € %,. Again by Proposition 2.20, B = eff € {m®}. Then B # ¢
from the fact that ¢ & eM* f. We assert that eaf = eBf. Since eof <% e f, we
have the decomposition ef3 /S = eo fS® (e f —eof)S. Also, by Proposition 2.13,
eBf <% ¢ implies Hy, C H,gy. Then m € Hygy, i.e., (eBf)m(eBf) =eff. On the
other hand, the inclusions eo.fS C ef3 /S and Rec.f C Ref f yield ea.f =eBfg=reff
for some g € S and r € R. Hence

(eBf)m(ecf) = eB(fme)Bfg =efmPfg=eBfg=eoaf.
Since f =mo, o € {m(V} and eaf = (eff)m(eaf), we have

eff—eaf =epf—(eff)meaf)

=eff—efmof
= eff—efmamo
=eff—efmo
=eff—eBf

=0.

Thus eof = eB f, as asserted. This means eo.f € max €y, so {eff| B € {m!?}} C
max %, . Therefore max ¢, = {eBf | B € {m1:2)}}.
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