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SHORTED OPERATORS WITH RESPECT TO

A PARTIAL ORDER IN A DUAL MODULE

BURCU UNGOR, SAIT HALICIOGLU AND ABDULLAH HARMANCI

(Communicated by F. Kittaneh)

Abstract. The purpose of this paper is to determine exactly the shorted operators in the sense of
linear functionals under the direct sum partial order.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1R and modules
are unitary right R-modules. For a right R-module MR = M , S = EndR(M) denotes
the ring of all right R-module endomorphisms of M . It is well known that M is a left
S and right R-bimodule. Then M∗ := HomR(M,R) is a left R-right S -bimodule and
M∗ is called the dual module of M . Elements of M∗ are called linear functionals.

An element m ∈ M is called a (Zelmanowitz) regular element if

m = mϕ(m) ≡ mϕm

for some ϕ ∈M∗ . A module M is called regular (in the sense of Zelmanowitz) if every
element of M is regular. For a ring R , let a ∈ R be a regular element (in the sense of
von Neumann). Then there exists a− ∈ R such that a = aa−a . It is well-known that
a ∈ R is regular (in the sense of von Neumann) if and only if a is regular in RR (or,
similarly, in the left R-module RR) (in the sense of Zelmanowitz).

Let M be a module. It is known that HomR(R,M) ∼= M . Let m ∈ M be regular,
say m = mϕm where ϕ ∈ M∗ . Then for the map mϕ : M → M , defined by

(mϕ)(x) = mϕ(x) ≡ mϕx, x ∈ M,

we may conclude that mϕ ∈ S and that mϕ is an idempotent in S .
In [5], Blackwood et al. defined a relation �⊕ on a ring R in the following way:

For a,b ∈ R ,
a �⊕ b if bR = aR⊕ (b−a)R.
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They proved that the relation �⊕ is a partial order on the von Neumann regular rings
and called it the direct sum partial order.

Motivated by the concept of the direct sum partial order on von Neumann regular
rings, we extend this concept to the dual modules. In this direction, we introduce a di-
rect sum partial order on dual modules. We investigate in detail when linear functionals
are correlated according to the direct sum partial order.

The shorted operator arises in various contexts and contributes as a tool for solv-
ing many important issues (see [1, 2, 3, 4, 6, 7, 8]). In [1], Anderson introduced the
shorted operator in finite dimensional linear spaces in terms of an explicit matrix con-
struction. It was shown to be the solution to a maximization problem. In [2], the same
maximization problem was used to furnish the definition, and the definition is extended
to an arbitrary Hilbert space (not necessarily finite dimensional). The definition of the
shorted operator is given in [2] as follows: Given a closed subspace S of a Hilbert space
H , the shorted operator AS of a positive operator A on S is defined as

AS = max{D | 0 � D � A, ranD ⊂ S},

for the partial ordering

A � B ⇔ A,B are self-adjoint and B−A is positive.

The existence of such a maximum is guaranteed in [2]. In [8], Raı̈ssouli noticed that
the assumed condition “S is closed” is not necessary to define the shorted operator.
If H is a finite dimensional space, a physical interpretation of the shorted operator in
terms of electrical circuits can be found in [2]. Mitra and Puri obtained two explicit
representations for the shorted operator (in finite dimensional linear spaces), one in
terms of the g -inverse, the other in terms of the least squares inverse of a complex
matrix in [6]. Extension of shorted operator to convex functionals has been studied in
[8] by Raı̈ssouli.

For a shorted operator, it is natural to ask the following question: what should be
the analogue of AS when the variable operator A is a linear functional? The answer of
this question is given in Theorem 2.21. As an application of shorted operators in dual
module theory, in this paper, our main aim is to determine maximal elements in a subset
of a dual module via the direct sum partial order.

2. Shorted operators in a dual module

Let M be a left S -right R-bimodule where S = EndR(M) . For the sake of brevity,
in the sequel, S will stand for the endomorphism ring of the module M considered. We
will denote the identity map in S by 1S .

Let R be a ring and a ∈ R . In [5], an element b ∈ R is said to be a von Neumann
inverse of a if aba = a . An element b ∈ R is said to be weak von Neumann inverse of
a if bab = b . If aba = a and bab = b , then b is called a strong von Neumann inverse
of a . In the following, we extend the aforementioned inverses to the general module
theoretic setting.
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DEFINITION 2.1. Let M be a module and m ∈ M .

(1) If m = mϕm for some ϕ ∈ M∗ , then ϕ is called a regular support of m and it
will be denoted by m(1) . Also, {m(1)} denotes the set of all regular supports of
m ∈ M .

(2) If ϕ = ϕmϕ for some ϕ ∈ M∗ , then ϕ is called a weak regular support of m
and it will be denoted by m(2) . Also, {m(2)} denotes the set of all weak regular
supports of m ∈ M .

(3) If m = mϕm and ϕ = ϕmϕ for some ϕ ∈ M∗ , then ϕ is called a strong regular
support of m and it will be denoted by m(1,2) . Also, {m(1,2)} denotes the set of
all strong regular supports of m ∈ M .

Let M be a module and ϕ ∈ M∗ . Set Hϕ = {m ∈ M | ϕ = ϕmϕ} . If m ∈ M is
regular, then there exists ϕ ∈M∗ with m =mϕm . It can be shown that ϕmϕ ∈ {m(1,2)} .
Hence m ∈ Hϕmϕ .

Consider the canonical map θ : M → M∗∗ from a module M into its double dual
M∗∗ := HomR(M∗,R) defined by

θ : M −→ M∗∗
m −→ θ (m) : M∗ −→ R

ϕ −→ (ϕ)(θ (m)) = ϕm.

It is known that θ is injective if and only if M is torsionless (i.e., M can be embedded
into some direct products of R). For any module M , its dual module M∗ is always
torsionless. The module M is also said to be reflexive if θ is bijective. Finitely gener-
ated torsion-free modules over a Dedekind domain, finitely generated free modules and
the direct sum of countably many copies of the integers as a module over the integers
are some examples of reflexive modules. In the next result, we investigate under what
conditions the set Hϕ is nonempty for any ϕ in a dual module.

PROPOSITION 2.2. Let M be a module and ϕ ∈M∗ . If Hϕ 
= /0 , then ϕ is regular.
The converse holds if the canonical map θ : M → M∗∗ is surjective.

Proof. Assume that Hϕ 
= /0 . Then ϕ = ϕmϕ for some m ∈ M . Hence θ (m) ∈
M∗∗ . By the definition of θ , we obtain ϕ(θ (m))ϕ = ϕmϕ = ϕ . Thus ϕ is regular. For
the converse, suppose that ϕ is regular and θ is surjective. Then there exists α ∈ M∗∗
such that ϕ = ϕαϕ . The surjectivity of θ yields α = θ (m) for some m∈M . It follows
that ϕ = ϕαϕ = ϕ(θ (m))ϕ = ϕmϕ in the light of the definition of θ . Therefore
m ∈ Hϕ , and so Hϕ 
= /0 .

COROLLARY 2.3. Let M be a module. If Hϕ 
= /0 for every ϕ ∈ M∗ , then M∗ is
regular. The converse holds if the canonical map θ : M → M∗∗ is surjective.

Some decompositions of a dual module M∗ as a left R-module and as a right
S -module are obtained as follows.
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THEOREM 2.4. Let M be a module, ϕ ∈ M∗ and m ∈ Hϕ . Then M∗ has the
following decompositions.

(1) M∗ = Rϕ ⊕K where K = {α ∈ M∗ | αmϕ = 0} as a left R-module.

(2) M∗ = ϕS⊕L where L = {α ∈ M∗ | ϕmα = 0} as a right S-module.

Proof. (1) Let α ∈ M∗ . Then α = αmϕ + α(1S −mϕ) . Note that αmϕ ∈ Rϕ .
Being ϕ = ϕmϕ implies α(1S −mϕ)mϕ = 0 entailing that α(1S −mϕ) ∈ K . Hence
M∗ ⊆ Rϕ +K . The reverse inclusion is obvious, and so M∗ = Rϕ +K . In order to see
that this sum is direct, let rϕ = k ∈ Rϕ ∩K where r ∈ R and k ∈ K . Since m ∈Hϕ , we
have rϕ = rϕmϕ = kmϕ = 0. Thus Rϕ ∩K = {0} . Therefore M∗ = Rϕ ⊕K .
(2) Similar to the proof of (1).

We now characterize the set Hϕ for any linear functional ϕ .

LEMMA 2.5. Let M be a module, ϕ ∈ M∗ and m ∈ Hϕ . Then

Hϕ = m+(1S−mϕ)M +M(1R−ϕm).

Proof. Let m ∈ Hϕ and K = m+(1S−mϕ)M +M(1R−ϕm) . For any

m+(1S−mϕ)m1 +m2(1R −ϕm) ∈ K

where m1,m2 ∈ M , we have

ϕ(m+(1S−mϕ)m1 +m2(1R −ϕm))ϕ = ϕmϕ = ϕ .

This means m+(1S−mϕ)m1 +m2(1R −ϕm) ∈ Hϕ , and so K ⊆ Hϕ . For the reverse
inclusion, let n ∈ Hϕ . For n−m,mϕn∈ M , we have

n = m+(1S−mϕ)(n−m)+mϕn(1R−ϕm) ∈ K.

Hence Hϕ ⊆ K . Thus Hϕ = K as claimed.
Inspired by the notion of the direct sum order on rings, we now introduce the direct

sum order in the setting of dual modules.

DEFINITION 2.6. Let M be a right R-module with S = EndR(M) and ϕ1,ϕ2 ∈
M∗ . We write

ϕ1 �⊕ ϕ2 i f ϕ2S = ϕ1S⊕ (ϕ2−ϕ1)S.

In the next results, we give some characterizations of the direct sum order for linear
functionals from different perspectives.

THEOREM 2.7. Let M be a module and ϕ1,ϕ2 ∈ M∗ with Hϕ2 
= /0 . Then the
following statements are equivalent.

(1) ϕ1 �⊕ ϕ2 ;
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(2) Rϕ2 = Rϕ1⊕R(ϕ2−ϕ1) .

Proof. (1) ⇒ (2) Let ϕ1 �⊕ ϕ2 . Then ϕ2S = ϕ1S⊕ (ϕ2−ϕ1)S . By the hypoth-
esis, ϕ2 = ϕ2mϕ2 for some m ∈ M . Since ϕ1S ⊆ ϕ2S , there exists f ∈ S such that
ϕ1 = ϕ2 f . Hence

ϕ2mϕ1 = ϕ2mϕ2 f = ϕ2 f = ϕ1

and so
ϕ2m(ϕ2 −ϕ1) = ϕ2mϕ2 −ϕ2mϕ1 = ϕ2−ϕ1.

From ϕ2mϕ1 = ϕ1 , we have ϕ1 = (ϕ1 +(ϕ2 −ϕ1))mϕ1 = ϕ1mϕ1 +(ϕ2 −ϕ1)mϕ1 . It
follows

ϕ1(1S −mϕ1) = (ϕ2 −ϕ1)mϕ1 ∈ ϕ1S∩ (ϕ2−ϕ1)S.

Since ϕ1S∩ (ϕ2 − ϕ1)S = {0} , we obtain ϕ1mϕ1 = ϕ1 . On the other hand, from
ϕ2m(ϕ2−ϕ1) = ϕ2−ϕ1 , we have ϕ2−ϕ1 = (ϕ1 +(ϕ2−ϕ1))m(ϕ2−ϕ1) = ϕ1m(ϕ2−
ϕ1)+ (ϕ2−ϕ1)m(ϕ2 −ϕ1) . This yields

ϕ1m(ϕ2 −ϕ1) = (ϕ2 −ϕ1)(1S −m(ϕ2−ϕ1)) ∈ ϕ1S∩ (ϕ2−ϕ1)S = {0}.

Thus ϕ1m(ϕ2 −ϕ1) = 0. So we have ϕ1mϕ2 = ϕ1mϕ1 = ϕ1 . Therefore ϕ1 ∈ Rϕ2 ,
and so Rϕ1 +R(ϕ2−ϕ1)⊆ Rϕ2 . The reverse inclusion is obvious. Then Rϕ2 = Rϕ1 +
R(ϕ2−ϕ1) . Let r1ϕ1 = r2(ϕ2−ϕ1)∈ Rϕ1∩R(ϕ2−ϕ1) for some r1,r2 ∈ R . Multiply-
ing the equality by mϕ1 from the right, we obtain r1ϕ1 = r1ϕ1mϕ1 = r2(ϕ2−ϕ1)mϕ1 =
0. Therefore Rϕ2 = Rϕ1 ⊕R(ϕ2−ϕ1) .
(2) ⇒ (1) Similar to the proof of (1) ⇒ (2).

THEOREM 2.8. Let M be a module and ϕ1,ϕ2 ∈ M∗ with Hϕ2 
= /0 . Then the
following statements are equivalent.

(1) ϕ1 �⊕ ϕ2 .

(2) ϕ1S∩ (ϕ2−ϕ1)S = Rϕ1∩R(ϕ2−ϕ1) = {0} .

Proof. (1) ⇒ (2) Clear by the definition of �⊕ and Theorem 2.7.
(2) ⇒ (1) By hypothesis, ϕ2 = ϕ2mϕ2 for some m ∈ M . Then

ϕ2m(ϕ1 +(ϕ2−ϕ1)) = ϕ1 +(ϕ2−ϕ1).

Hence ϕ2mϕ1−ϕ1 = (ϕ2−ϕ1)−ϕ2m(ϕ2 −ϕ1) , and so

(ϕ2m−1R)ϕ1 = (1R −ϕ2m)(ϕ2 −ϕ1) ∈ Rϕ1 ∩R(ϕ2−ϕ1).

By (2), ϕ2mϕ1 = ϕ1 . It follows ϕ1 ∈ ϕ2S . This yields ϕ1S + (ϕ2 − ϕ1)S ⊆ ϕ2S .
The reverse inclusion is obvious. Also by (2), ϕ2S = ϕ1S⊕ (ϕ2 −ϕ1)S . Therefore
ϕ1 �⊕ ϕ2 .

We now prove that the relation �⊕ is a partial order on a dual module M∗ when
the sets Hϕ are nonempty for any linear functional ϕ ∈ M∗ .
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THEOREM 2.9. Let M be a module. If Hϕ 
= /0 for any ϕ ∈ M∗ , then the relation
�⊕ is a partial order on M∗ .

Proof. Reflexivity: Let ϕ ∈ M∗ . From ϕS = ϕS⊕0, we have ϕ �⊕ ϕ .
Antisymmetry: Let ϕ1,ϕ2 ∈ M∗ with ϕ1 �⊕ ϕ2 and ϕ2 �⊕ ϕ1 . Then ϕ2S = ϕ1S⊕
(ϕ2 − ϕ1)S and ϕ1S = ϕ2S⊕ (ϕ1 − ϕ2)S . So ϕ1S ⊆ ϕ2S and ϕ2S ⊆ ϕ1S . Hence
ϕ1S = ϕ2S . The decomposition of ϕ1S implies (ϕ1−ϕ2)S = 0. Since S has an identity,
ϕ1 = ϕ2 .
Transitivity: Let ϕ1,ϕ2,ϕ3 ∈ M∗ with ϕ1 �⊕ ϕ2 and ϕ2 �⊕ ϕ3 . Then ϕ2S = ϕ1S⊕
(ϕ2 −ϕ1)S and ϕ3S = ϕ2S⊕ (ϕ3−ϕ2)S . In the light of these decompositions, ϕ1S ⊆
ϕ2S⊆ ϕ3S and ϕ1S∩(ϕ2−ϕ1)S = ϕ2S∩(ϕ3−ϕ2)S = {0} . We claim that ϕ1S∩(ϕ3−
ϕ1)S = {0} . Let ϕ1 f = (ϕ3 −ϕ1)g for some f ,g ∈ S . So ϕ1 f = (ϕ3 −ϕ2)g+(ϕ2 −
ϕ1)g . It follows ϕ1 f −(ϕ2−ϕ1)g = (ϕ3−ϕ2)g∈ ϕ2S∩(ϕ3−ϕ2)S = {0} . This shows
ϕ1 f = (ϕ2−ϕ1)g∈ϕ1S∩(ϕ2−ϕ1)S = {0} . Thus ϕ1 f = 0, and so ϕ1S∩(ϕ3−ϕ1)S =
{0} as claimed. On the other hand, by Theorem 2.7, Rϕ2 = Rϕ1 ⊕R(ϕ2 −ϕ1) and
Rϕ3 = Rϕ2 ⊕R(ϕ3 −ϕ2) . Similarly, these decompositions yield Rϕ1 ∩R(ϕ3 −ϕ1) =
{0} . Therefore ϕ1 �⊕ ϕ3 by Theorem 2.8.

Let M be a module and m1,m2 ∈ M . We write

m1 �⊕ m2 i f m2R = m1R⊕ (m2−m1)R.

By a similar discussion in the proof of Theorem 2.9, the relation �⊕ is a partial order
on a regular module. In the following, we obtain a connection between direct sum
partial orders for a module and its dual module.

THEOREM 2.10. Let M be a module, m1,m2 ∈M with m2 regular. If m1 �⊕ m2 ,

then for every ϕ2 ∈ {m(1,2)
2 } , there exists ϕ1 ∈ {m(1,2)

1 } such that ϕ1 �⊕ ϕ2 .

Proof. Let m1 �⊕ m2 . Since m2 is regular, {m(1)
2 } 
= /0 . This implies {m(1,2)

2 } 
= /0

by the fact that if ϕ ∈ {m(1)
2 } , then ϕm2ϕ ∈ {m(1,2)

2 } . Let ϕ2 ∈ {m(1,2)
2 } . Define

ϕ1 = ϕ2m1ϕ2 ∈M∗ . We firstly claim that ϕ1 ∈{m(1,2)
1 } . Since m1 �⊕ m2 , m1R⊆m2R ,

and so m1 = m2r for some r ∈ R . Then m1 = m2r = m2ϕ2m2r = m2ϕ2m1 . Hence
m1ϕ2m1 =m2ϕ2m1−(m2−m1)ϕ2m1 = m1−(m2−m1)ϕ2m1 . This implies m1(ϕ2m1−
1R) = −(m2 −m1)ϕ2m1 ∈ m1R∩ (m2 −m1)R . Being m1 �⊕ m2 yields m1R∩ (m2 −
m1)R = {0} , and so m1 = m1ϕ2m1 . On the one hand, m1ϕ1m1 = m1ϕ2m1ϕ2m1 =
m1ϕ2m1 = m1 . This means ϕ1 ∈ {m(1)

1 } . On the other hand, using m1 = m1ϕ2m1 ,

we have ϕ1m1ϕ1 = ϕ1 entailing that ϕ1 ∈ {m(2)
1 } . Thus ϕ1 ∈ {m(1,2)

1 } as claimed.
Note that m1ϕ1 = m1ϕ2 and ϕ1m1 = ϕ2m1 by the fact m1 = m1ϕ2m1 . We now show
that ϕ1 �⊕ ϕ2 . On the one hand, let ϕ1s1 = (ϕ2 −ϕ1)s2 ∈ ϕ1S∩ (ϕ2 −ϕ1)S for some
s1,s2 ∈ S . Then m1ϕ1s1 = m1ϕ2s2−m1ϕ1s2 . Since m1ϕ1 = m1ϕ2 , we have m1ϕ1s1 =
0 entailing ϕ1m1ϕ1s1 = 0, and so ϕ1s1 = 0. This implies ϕ1S∩ (ϕ2 −ϕ1)S = {0} .
On the other hand, let r1ϕ1 = r2(ϕ2 −ϕ1) ∈ Rϕ1 ∩R(ϕ2 − ϕ1) for some r1,r2 ∈ R .
Similarly, we obtain r1ϕ1m1 = 0 using ϕ1m1 = ϕ2m1 . This entails r1ϕ1m1ϕ1 = 0.
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Then r1ϕ1 = 0. It follows Rϕ1∩R(ϕ2−ϕ1) = {0} . Therefore ϕ1 �⊕ ϕ2 by Theorem
2.8.

We now give more characterizations of the direct sum order for linear functionals
as can be seen below.

PROPOSITION 2.11. Let M be a module and ϕ1,ϕ2 ∈ M∗ . Then the following
are equivalent.

(1) ϕ1 �⊕ ϕ2 and Hϕ2 
= /0 .

(2) Hϕ1 ∩Hϕ2 
= /0 , Rϕ1 ⊆ Rϕ2 and ϕ1S ⊆ ϕ2S .

Proof. (1) ⇒ (2) Let ϕ1 �⊕ ϕ2 and Hϕ2 
= /0 . Then, by Definition 2.6, ϕ1S⊆ϕ2S ,
so ϕ1 = ϕ2 f for some f ∈ S . Also, Rϕ1 ⊆ Rϕ2 by Theorem 2.7. Since Hϕ2 
= /0 ,
ϕ2 = ϕ2mϕ2 for some m ∈ M . Hence ϕ1 = ϕ2 f = ϕ2mϕ2 f = ϕ2mϕ1 . Thus

ϕ1mϕ1 = ϕ2mϕ1− (ϕ2−ϕ1)mϕ1 = ϕ1 − (ϕ2−ϕ1)mϕ1.

It follows

ϕ1(mϕ1 −1S) = ϕ1mϕ1−ϕ1 = −(ϕ2−ϕ1)mϕ1 ∈ ϕ1S∩ (ϕ2−ϕ1)S.

Since ϕ1S∩(ϕ2−ϕ1)S = {0} , we have ϕ1 = ϕ1mϕ1 . This means m ∈Hϕ1 . Therefore
m ∈ Hϕ1 ∩Hϕ2 .
(2) ⇒ (1) Let Hϕ1 ∩Hϕ2 
= /0 , Rϕ1 ⊆ Rϕ2 and ϕ1S ⊆ ϕ2S . Being Hϕ1 ∩Hϕ2 ⊆ Hϕ2

yields Hϕ2 
= /0 . Since ϕ1S ⊆ ϕ2S , clearly, ϕ1S + (ϕ2 − ϕ1)S ⊆ ϕ2S . The reverse
inclusion is obvious. So ϕ2S = ϕ1S + (ϕ2 −ϕ1)S . In order to see that this sum is
direct, let ϕ1 f = (ϕ2−ϕ1)g ∈ ϕ1S∩ (ϕ2−ϕ1)S for some f ,g ∈ S . By (2), there exists
m ∈ Hϕ1 ∩Hϕ2 . Multiplying the equality by ϕ1m from the left, we have

ϕ1mϕ1 f = ϕ1m(ϕ2−ϕ1)g
ϕ1 f = ϕ1mϕ2g−ϕ1mϕ1g

= ϕ1mϕ2g−ϕ1g.

Since Rϕ1 ⊆ Rϕ2 , ϕ1 = rϕ2 for some r ∈ R . Then ϕ1 f = rϕ2mϕ2g−ϕ1g = rϕ2g−
ϕ1g = ϕ1g−ϕ1g = 0. Hence ϕ1S∩ (ϕ2−ϕ1)S = {0} . Thus ϕ2S = ϕ1S⊕ (ϕ2−ϕ1)S .
Therefore ϕ1 �⊕ ϕ2 .

THEOREM 2.12. Let M be a module and ϕ1,ϕ2 ∈ M∗ with Hϕ2 
= /0 . Then the
following are equivalent.

(1) ϕ1 �⊕ ϕ2 .

(2) For each m2 ∈ Hϕ2 , ϕ1 = ϕ1m2ϕ2 = ϕ2m2ϕ1 = ϕ1m2ϕ1 .

(3) For each m2 ∈ Hϕ2 , there exists m1 ∈ Hϕ1 such that ϕ1m1 = ϕ2m1 = ϕ1m2 and
m1ϕ1 = m1ϕ2 = m2ϕ1 .
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(4) There exists m ∈ Hϕ1 such that ϕ1m = ϕ2m and mϕ1 = mϕ2 .

Proof. (1) ⇒ (2) Assume that ϕ1 �⊕ ϕ2 . This means ϕ2S = ϕ1S⊕ (ϕ2 −ϕ1)S ,
and so ϕ1S ⊆ ϕ2S . Then ϕ1 = ϕ2 f for some f ∈ S . Let m2 ∈ Hϕ2 . Hence ϕ1 = ϕ2 f =
ϕ2m2ϕ2 f = ϕ2m2ϕ1 . This yields ϕ1m2ϕ1 = ϕ2m2ϕ1 − (ϕ2 −ϕ1)m2ϕ1 = ϕ1 − (ϕ2 −
ϕ1)m2ϕ1 , and so

ϕ1m2ϕ1 −ϕ1 = −(ϕ2 −ϕ1)m2ϕ1 ∈ ϕ1S∩ (ϕ2−ϕ1)S = {0}

entailing ϕ1 = ϕ1m2ϕ1 . Note that ϕ2−ϕ1 = ϕ2m2(ϕ2−ϕ1) . Then

(ϕ2 −ϕ1)m2(ϕ2−ϕ1) = (ϕ2 −ϕ1)−ϕ1m2(ϕ2 −ϕ1).

Hence (ϕ2 −ϕ1)(m2(ϕ2 −ϕ1)−1S) = −ϕ1m2(ϕ2 −ϕ1) ∈ ϕ1S∩ (ϕ2 −ϕ1)S = {0} . It
follows ϕ1m2ϕ2 = ϕ1m2ϕ1 entailing ϕ1 = ϕ1m2ϕ2 .
(2) ⇒ (3) Let m2 ∈ Hϕ2 and consider the element m1 = m2ϕ1m2 ∈ M . Using ϕ1 =
ϕ1m2ϕ1 , we have ϕ1m1ϕ1 = ϕ1 . This means m1 ∈Hϕ1 . Since ϕ1 = ϕ1m2ϕ1 and ϕ1 =
ϕ2m2ϕ1 , we obtain ϕ1m1 = ϕ1m2 and ϕ2m1 = ϕ1m2 , respectively. Hence ϕ1m1 =
ϕ2m1 = ϕ1m2 . Similarly, being ϕ1 = ϕ1m2ϕ1 and ϕ1 = ϕ1m2ϕ2 imply m1ϕ1 = m2ϕ1

and m1ϕ2 = m2ϕ1 , respectively. Thus m1ϕ1 = m1ϕ2 = m2ϕ1 .
(3) ⇒ (4) Since Hϕ2 
= /0 , assume that m2 ∈ Hϕ2 . By (3), there exists m1 ∈ Hϕ1 such
that ϕ1m1 = ϕ2m1 and m1ϕ1 = m1ϕ2 .
(4) ⇒ (1) Since Hϕ2 
= /0 , let m2 ∈ Hϕ2 . Then by (4), there exists m1 ∈ Hϕ1 with
ϕ1m1 = ϕ2m1 and m1ϕ1 = m1ϕ2 . Hence

ϕ1m2ϕ1 = ϕ1m1ϕ1m2ϕ1m1ϕ1

= ϕ1m1ϕ2m2ϕ2m1ϕ1

= ϕ1m1ϕ2m1ϕ1

= ϕ1m1ϕ1m1ϕ1

= ϕ1m1ϕ1

= ϕ1.

This yields m2 ∈ Hϕ1 ∩Hϕ2 , and so Hϕ1 ∩Hϕ2 
= /0 . On the one hand, ϕ1 = ϕ1m1ϕ1 =
ϕ1m1ϕ2 ∈ Rϕ2 entails Rϕ1 ⊆ Rϕ2 . On the other hand, ϕ1 = ϕ1m1ϕ1 = ϕ2m1ϕ1 ∈ ϕ2S
yields ϕ1S ⊆ ϕ2S . By Proposition 2.11, ϕ1 �⊕ ϕ2 .

PROPOSITION 2.13. Let M be a module, ϕ1,ϕ2 ∈ M∗ with Hϕ2 
= /0 . If ϕ1 �⊕
ϕ2 , then Hϕ2 ⊆ Hϕ1 . The converse holds if H(1R−ϕ2m)ϕ1


= /0 and Hϕ1(1S−mϕ2) 
= /0 for
some m ∈ Hϕ2 .

Proof. Let ϕ1 �⊕ ϕ2 . By Proposition 2.11, there exist f ∈ S and r ∈ R such
that ϕ1 = ϕ2 f = rϕ2 , also m ∈ Hϕ1 ∩Hϕ2 . Let x ∈ Hϕ2 . Then we have ϕ1 = ϕ1mϕ1 ,
ϕ2 = ϕ2mϕ2 = ϕ2xϕ2 . Hence

ϕ1xϕ1 = rϕ2xϕ2 f = rϕ2 f = rϕ1
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and

ϕ1 = ϕ1mϕ1 = rϕ2mϕ2 f = rϕ2 f = rϕ1.

Thus ϕ1 = ϕ1xϕ1 , and so x ∈ Hϕ1 . Therefore Hϕ2 ⊆ Hϕ1 .
Conversely, let m ∈ Hϕ2 with H(1R−ϕ2m)ϕ1


= /0 and Hϕ1(1S−mϕ2) 
= /0 . By Lemma
2.5, Hϕ2 = m+(1S−mϕ2)M +M(1R −ϕ2m) . Then for every m1,m2 ∈ M , n := m+
(1S −mϕ2)m1 +m2(1R −ϕ2m) ∈ Hϕ2 . By (2), m,n ∈ Hϕ1 . Multiplying this equality
by ϕ1 from the left and the right, we obtain

ϕ1(1S −mϕ2)m1ϕ1 + ϕ1m2(1R −ϕ2m)ϕ1 = 0

for every m1,m2 ∈ M , i.e., ϕ1(1S −mϕ2)Mϕ1 + ϕ1M(1R − ϕ2m)ϕ1 = {0} . It fol-
lows that ϕ1(1S −mϕ2)Mϕ1 = {0} and ϕ1M(1R − ϕ2m)ϕ1 = {0} . Hence ϕ1(1S −
mϕ2)Mϕ1(1S−mϕ2) = {0} and (1R−ϕ2m)ϕ1M(1R−ϕ2m)ϕ1 = {0} . By assumption,
there exist x ∈ H(1R−ϕ2m)ϕ1

and y ∈ Hϕ1(1S−mϕ2) . These mean (1R −ϕ2m)ϕ1x(1R −
ϕ2m)ϕ1 = (1R − ϕ2m)ϕ1 and ϕ1(1S −mϕ2)yϕ1(1S −mϕ2) = ϕ1(1S −mϕ2) . Thus
(1R − ϕ2m)ϕ1 = 0 and ϕ1(1S −mϕ2) = 0. This yields ϕ1 = ϕ2mϕ1 = ϕ1mϕ2 . So
ϕ1S ⊆ ϕ2S and Rϕ1 ⊆ Rϕ2 . Therefore ϕ1 �⊕ ϕ2 by Proposition 2.11.

In the next result, we characterize weak regular supports of a regular element in a
module in terms of the direct sum order on the dual module.

PROPOSITION 2.14. Let M be a module, m be a regular element of M and ϕ1 ∈
M∗ . Then the following are equivalent.

(1) ϕ1 ∈ {m(2)} .

(2) There exists ϕ ∈ {m(1,2)} such that ϕ1 �⊕ ϕ .

Proof. (1) ⇒ (2) Let ϕ1 ∈ {m(2)} . This means that ϕ1mϕ1 = ϕ1 . Since m ∈ M
is regular, there exists ϕ2 ∈ {m(1)} . Then mϕ2m = m . Set

ϕ = ϕ1 + ϕ2(m−mϕ1m)ϕ2.

Then

mϕm = mϕ1m+mϕ2mϕ2m+mϕ2mϕ1mϕ2m = m

since mϕ2m = m . Similarly, by making use of ϕ1mϕ1 = ϕ1 and mϕ2m = m , it is
easily checked that ϕmϕ = ϕ . Hence ϕ ∈ {m(1,2)} . Next we show ϕ1 �⊕ ϕ . We use
(ϕ1m)2 = ϕ1m and mϕ2m = m to have the following equalities:

ϕm = ϕ1m+ ϕ2(m−mϕ1m)ϕ2m = ϕ1m+ ϕ2m−ϕ2mϕ1m,

(ϕm)(ϕ1m) = ϕ1mϕ1m+ ϕ2mϕ1m−ϕ2mϕ1mϕ1m = ϕ1m,

(ϕ1m)(ϕm) = ϕ1mϕ1m+ ϕ1mϕ2m−ϕ1mϕ2mϕ1m = ϕ1m.
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Multiplying ϕmϕ1m = ϕ1m by ϕ1 from the right, we have ϕmϕ1 = ϕ1 . This implies
ϕ1S ⊆ ϕS . It follows that ϕS = ϕ1S+(ϕ −ϕ1)S . Also,

ϕ1mϕ = ϕ1m(ϕ1 + ϕ2(m−mϕ1m)ϕ2)
= ϕ1mϕ1 + ϕ1mϕ2mϕ2−ϕ1mϕ2mϕ1mϕ2

= ϕ1 + ϕ1mϕ2−ϕ1mϕ2

= ϕ1.

To prove ϕ1S∩(ϕ −ϕ1)S = {0} , let ϕ1 f = (ϕ −ϕ1)g ∈ ϕ1S∩(ϕ −ϕ1)S where f ,g ∈
S . Multiplying the latter from the left by ϕ1m , we have ϕ1mϕ1 f = (ϕ1mϕ −ϕ1mϕ1)g .
By making use of ϕ1mϕ1 = ϕ1 and ϕ1mϕ = ϕ1 , we have ϕ1 f = 0. Hence ϕ1S∩ (ϕ −
ϕ1)S = {0} . Therefore ϕ1 �⊕ ϕ .
(2) ⇒ (1) Assume that ϕ ∈ {m(1,2)} with ϕ1 �⊕ ϕ . Since ϕ = ϕmϕ , m ∈ Hϕ . So
Hϕ 
= /0 . By Proposition 2.13, ϕ1 �⊕ ϕ implies Hϕ ⊆ Hϕ1 . Since m ∈ Hϕ , m ∈ Hϕ1 .
Therefore ϕ1mϕ1 = ϕ1 , that is, ϕ1 ∈ {m(2)} . This completes the proof.

Let M be a module, m ∈ M be regular and ϕ ∈ {m(1,2)} . Set e = ϕm ∈ R and
f = mϕ ∈ S . Then e2 = e , f 2 = f and m ∈ fMe . Consider the subset eM∗ f of M∗ .
Set Cϕ = {β ∈ eM∗ f | β �⊕ ϕ} . We define a maximal element in Cϕ as follows:
α ∈ Cϕ is maximal in Cϕ if α �⊕ β �⊕ ϕ implies α = β or β = ϕ . In the sequel,
we investigate the maximal elements in eM∗ f .

LEMMA 2.15. Let M be a module, e2 = e ∈ R, f 2 = f ∈ S and m ∈ fMe be
regular. If ϕ1 ∈ {m(2)} and ϕ2 ∈ {m(1,2)} such that ϕ1 �⊕ ϕ2 , then eϕ1 f �⊕ eϕ2 f .

Proof. By definition, ϕ2 ∈ {m(1,2)} implies m∈Hϕ2 , so Hϕ2 
= /0 . By Proposition
2.11, being ϕ1 �⊕ ϕ2 implies Rϕ1 ⊆ Rϕ2 and ϕ1S ⊆ ϕ2S . Then ϕ1 = ϕ2g = rϕ2 for
some g ∈ S and r ∈ R . Hence

ϕ1mϕ2 = rϕ2mϕ2 = rϕ2 = ϕ1

and
ϕ2mϕ1 = ϕ2mϕ2g = ϕ2g = ϕ1.

Note that m = fme . On the one hand,

(eϕ1 f )m(eϕ2 f ) = eϕ1( fme)ϕ2 f = eϕ1mϕ2 f = eϕ1 f .

This yields that R(eϕ1 f ) ⊆ R(eϕ2 f ) since eϕ1 fm ∈ R . On the other hand,

(eϕ2 f )m(eϕ1 f ) = eϕ2( fme)ϕ1 f = eϕ2mϕ1 f = eϕ1 f .

It follows that (eϕ1 f )S ⊆ (eϕ2 f )S since meϕ1 f ∈ S . Since ϕ1 ∈ {m(2)} , we obtain
(eϕ1 f )m(eϕ1 f ) = eϕ1mϕ1 f = eϕ1 f , this implies m ∈ Heϕ1 f . Also, being ϕ2 ∈ {m(2)}
entails (eϕ2 f )m(eϕ2 f ) = eϕ2mϕ2 f = eϕ2 f , and this implies m ∈ Heϕ2 f .
Hence m ∈ Heϕ1 f ∩Heϕ2 f and so Heϕ1 f ∩Heϕ2 f 
= /0 . By Proposition 2.11, we get
eϕ1 f �⊕ eϕ2 f . This completes the proof.
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REMARK 2.16. Let M be a module, m ∈ M and ϕ1 ∈ {m(2)} and ϕ2 ∈ {m(1,2)}
such that ϕ1 �⊕ ϕ2 . Set e1 = ϕ1m , f1 = mϕ1 and e2 = ϕ2m , f2 = mϕ2 . Being
ϕ1 �⊕ ϕ2 implies Rϕ1 ⊆ Rϕ2 and ϕ1S ⊆ ϕ2S .

Let R be a ring and e2 = e , f 2 = f ∈ R . Kaplansky defines e � f if e = e f = f e .

LEMMA 2.17. By the notation as given in Remark 2.16, ϕ1 �⊕ ϕ2 implies e1 � e2

in R and f1 � f2 in S .

Proof. Assume that ϕ1 �⊕ ϕ2 . Then Rϕ1 ⊆ Rϕ2 and ϕ1S ⊆ ϕ2S . Multiplying
Rϕ1 ⊆Rϕ2 from the right by m , we get Re1 ⊆Re2 . Hence e1 = e1e2 . Since ϕ1S⊆ϕ2S ,
ϕ1 = ϕ2g for some g ∈ S . Thus e2e1 = ϕ2mϕ1m = ϕ2mϕ2gm = ϕ2gm = ϕ1m = e1 .
Therefore e1 � e2 in R . Similarly, multiplying ϕ1S ⊆ ϕ2S from the left by m , we get
f1S ⊆ f2S . This implies f1 = f2 f1 . Being Rϕ1 ⊆ Rϕ2 entails ϕ1 = rϕ2 where r ∈ R ,
so f1 f2 = mϕ1mϕ2 = mrϕ2mϕ2 = mrϕ2 = mϕ1 = f1 . Therefore f1 � f2 .

Let M be a module, m ∈ M be regular and ϕ ∈ {m(1,2)} . Set e = ϕm ∈ R and
f = mϕ ∈ S . In the following, we determine the maximal elements in the subset eM∗ f .

THEOREM 2.18. Let M be a module, m ∈ M and ϕ ∈ {m(1,2)} . Then α ∈ Cϕ is
maximal if and only if for any β ∈ M∗ with β �⊕ ϕ such that Rα ⊆ Rβ ⊆ M∗ f and
αS ⊆ βS ⊆ eM∗ , we have α = β or β = ϕ .

Proof. For the sufficiency, let α ∈ Cϕ . Take β ∈ Cϕ with α �⊕ β �⊕ ϕ . Note
that β = eβ f . Since m ∈ Hϕ and β �⊕ ϕ , by Proposition 2.13, Hϕ ⊆ Hβ , and so
Hβ 
= /0 . Being α �⊕ β and Proposition 2.11 imply αS ⊆ βS = eβS ⊆ eM∗ and
Rα ⊆ Rβ = Rβ f ⊆ M∗ f . By hypothesis, α = β or β = ϕ . Therefore α is maximal
in Cϕ .

For the necessity, let α ∈ Cϕ be a maximal element in Cϕ . Let β ∈ M∗ such
that β �⊕ ϕ and Rα ⊆ Rβ ⊆ M∗ f and αS ⊆ βS ⊆ eM∗ . Since e ∈ R and f ∈ S are
idempotent elements, β = β f and β = eβ . So β = eβ f ∈ eM∗ f . It implies β ∈ Cϕ .
Since α �⊕ ϕ , β �⊕ ϕ and Hϕ 
= /0 , by Proposition 2.13, Hϕ ⊆ Hα and Hϕ ⊆ Hβ .
This entails Hϕ ⊆ Hα ∩Hβ , so Hα ∩Hβ 
= /0 . By Proposition 2.11, α �⊕ β . By the
maximality of α , we have α = β or α = ϕ .

REMARK 2.19. Let M be a module, m ∈ M be regular and ϕ ∈ {m(1,2)} . Set
e = ϕm ∈ R and f = mϕ ∈ S . Then e2 = e , f 2 = f and m ∈ fMe . Note that m =
fm = me = fme .

PROPOSITION 2.20. By the notation as given in Remark 2.19, Cϕ = eM∗ f ∩
{m(2)} .

Proof. Let α ∈ Cϕ . This means α = eα f and α �⊕ ϕ . Since m ∈ Hϕ , Hϕ 
= /0 .
By Proposition 2.13, Hϕ ⊆ Hα . It follows m ∈ Hα , i.e., α = αmα . This implies
α ∈ {m(2)} . Then α ∈ eM∗ f ∩{m(2)} , and so Cϕ ⊆ eM∗ f ∩{m(2)} . For the reverse
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inclusion, let α ∈ eM∗ f ∩{m(2)} . Since α ∈ eM∗ f , it is enough to show α �⊕ ϕ . Note
that m ∈ Hα ∩Hϕ , so Hα ∩Hϕ 
= /0 . From α = eα f , we have α = eα = ϕmα ∈ ϕS
and α = α f = αmϕ ∈ Rϕ . Then αS ⊆ ϕS and Rα ⊆ Rϕ . By Proposition 2.11,
α �⊕ ϕ . Hence α ∈ Cϕ . Thus eM∗ f ∩{m(2)} ⊆Cϕ . Therefore Cϕ = eM∗ f ∩{m(2)} ,
as asserted.

Let max Cϕ denote the set of all maximal elements of Cϕ .

THEOREM 2.21. By the notation as given in Remark 2.19, if max Cϕ 
= /0 , then

max Cϕ = {eβ f ∈ eM∗ f | β ∈ {m(1,2)}}.
Proof. If ϕ ∈ eM∗ f , then max Cϕ = /0 . So we must assume that ϕ 
∈ eM∗ f . Let

α ∈ max Cϕ . By Proposition 2.20, α ∈ {m(2)} . Then there exists β ∈ {m(1,2)} such
that α �⊕ β according to Proposition 2.14. Also Lemma 2.15 yields α = eα f �⊕
eβ f . We claim that eβ f �⊕ ϕ . Note that (eβ f )m(eβ f ) = eβ ( fme)β f = eβmβ f =
eβ f . This shows m∈Heβ f , and so m ∈Hϕ ∩Heβ f . Hence Hϕ ∩Heβ f 
= /0 . On the one
hand, eβ f = ϕmβ f ∈ ϕS , so (eβ f )S ⊆ ϕS . On the other hand, eβ f = eβmϕ ∈ Rϕ ,
so R(eβ f ) ⊆ Rϕ . By Proposition 2.11, we have eβ f �⊕ ϕ , as claimed. Being α �⊕
eβ f �⊕ ϕ and maximality of α in Cϕ entail α = eβ f or eβ f = ϕ . The second case
cannot be because of ϕ 
∈ eM∗ f . Thus α = eβ f . Therefore max Cϕ ⊆ {eβ f | β ∈
{m(1,2)}} .

For the reverse inclusion, let eα f ∈ eM∗ f where α ∈ {m(1,2)} . Since

(eα f )m(eα f ) = eα( fme)α f = eαmα f = eα f ,

we have eα f ∈ {m(2)} . By Proposition 2.20, eα f ∈ Cϕ . Now assume that eα f �⊕

β �⊕ ϕ where β ∈ Cϕ . Again by Proposition 2.20, β = eβ f ∈ {m(2)} . Then β 
= ϕ
from the fact that ϕ 
∈ eM∗ f . We assert that eα f = eβ f . Since eα f �⊕ eβ f , we
have the decomposition eβ f S = eα f S⊕ (eβ f − eα f )S . Also, by Proposition 2.13,
eβ f �⊕ ϕ implies Hϕ ⊆ Heβ f . Then m ∈ Heβ f , i.e., (eβ f )m(eβ f ) = eβ f . On the
other hand, the inclusions eα f S⊆ eβ f S and Reα f ⊆ Reβ f yield eα f = eβ f g = reβ f
for some g ∈ S and r ∈ R . Hence

(eβ f )m(eα f ) = eβ ( fme)β f g = eβmβ f g = eβ f g = eα f .

Since f = mϕ , α ∈ {m(1)} and eα f = (eβ f )m(eα f ) , we have

eβ f − eα f = eβ f − (eβ f )m(eα f )
= eβ f − eβmα f
= eβ f − eβmαmϕ
= eβ f − eβmϕ
= eβ f − eβ f
= 0.

Thus eα f = eβ f , as asserted. This means eα f ∈ max Cϕ , so {eβ f | β ∈ {m(1,2)}} ⊆
max Cϕ . Therefore max Cϕ = {eβ f | β ∈ {m(1,2)}} .
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