
Operators
and

Matrices

Volume 14, Number 1 (2020), 189–205 doi:10.7153/oam-2020-14-15

LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX

ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS

THROUGH COMMUTATIVE ZERO PRODUCTS

H. GHAHRAMANI, M. N. GHOSSEIRI AND L. HEIDARIZADEH

(Communicated by P. Šemrl)

Abstract. Let T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) be a block upper triangular matrix algebra and
let M be a 2-torsion free unital T -bimodule, where C is a commutative ring. Let Δ : T →M
be a C -linear map. We show that if Δ(X)Y +XΔ(Y)+Δ(Y)X +YΔ(X) = 0 whenever X ,Y ∈T
are such that XY = YX = 0 , then Δ(X) = D(X) + α(X) + XΔ(I) , where D : T → M is a
derivation, α : T → M is an antiderivation, I is the identity matrix and Δ(I)X = XΔ(I) for
all X ∈ T . We also prove that under some sufficient conditions on T , we have α = 0 . As a
corollary, we show that under given sufficient conditions, each Jordan derivation Δ : T → M
is a derivation and this is an answer to the question raised in [9]. Some previous results are also
generalized by our conclusions.

1. Introduction

In this paper, C will denote a commutative ring with unity and all algebras and
modules will be unital over C . Let A be an algebra. Recall that a C -linear map
Δ from A into an A -bimodule M is a Jordan derivation if Δ(xy + yx) = Δ(x)y +
xΔ(y)+Δ(y)x+yΔ(x) for all x,y∈A . It is called a derivation if Δ(xy) = Δ(x)y+xΔ(y)
for all x,y ∈ A . Also, Δ is called an antiderivation if Δ(xy) = Δ(y)x+ yΔ(x) for all
x,y ∈ A . If Δ is only additive, we say that Δ is an additive (Jordan, anti) deriva-
tion. For an element m ∈ M , the mapping Im : A → M given by Im(x) = xm−mx
is a derivation which will be called an inner derivation. Clearly, each derivation or
antiderivation is a Jordan derivation. The converse is, in general, not true (see [3]). The
question of determining the structure of Jordan derivations and the conditions under
which each Jordan derivation becomes a derivation attracted much attention of mathe-
maticians. Herstein [12] proved that every additive Jordan derivation on a prime ring
whose characteristic is not 2 is an additive derivation. Bre šar [5] proved that Herstein’s
result is true for 2-torsion free semiprime rings. Sinclair [20] proved that every con-
tinuous Jordan derivation on a semisimple Banach algebra is a derivation. Johnson
showed in [17] that any continuous Jordan derivation from a C∗ -algebra A into a Ba-
nach A -bimodule is a derivation. Further, Jordan derivations were studied on other
operator algebras (see [19, 21]). By a classical result of Jacobson and Rickart [14]
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every additive Jordan derivation on a full matrix ring over a 2-torsion free unital ring
is an additive derivation. The first author has proved in [8] that any additive Jordan
derivation from a full matrix ring over a unital ring into any 2-torsion free bimodule
(not necessarily unital) is an additive derivation which is a generalization of a result in
[14]. Also, in [4, 18], Jordan derivations of some rings (algebras) have been studied
that these algebras are generalizations of full matrix rings (algebras). Zhang and Yu
[22] showed that every Jordan derivation of triangular algebras is a derivation, and in
[6] their result was generalized to trivial extensions. In [11], the author studied the
Jordan derivations on a subring S of a full matrix ring that contains the all upper tri-
angular matrices over a 2-torsion free ring and showed that in this case every Jordan
derivation on S can be uniquely represented as the sum of a derivation and a special
Jordan derivation. Benkovič [3] determined Jordan derivations on triangular matrices
over commutative rings and proved that every Jordan derivation from the algebra of
all upper triangular matrices over a commutative ring into an arbitrary unital bimodule
over this algebra is the sum of a derivation and an antiderivation. In [9] the author gen-
eralized the main result of [3] to block upper triangular matrix algebras. In particular,
it is shown that any Jordan derivation from the block upper triangular matrix algebra
T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) into a 2-torsion free unital T -bimodule is the sum
of a derivation and an antiderivation, where C is a commutative ring; and at the end of
the article, the following question raised: under what conditions each antiderivation of
T is zero? In this paper we answer this question under some mild conditions.

There are many papers concerning the study of conditions under which Jordan
derivations of rings or algebras can be completely determined by the action on some
sets of points. We refer the reader to [1, 10, 13, 15, 16] and the references therein. In
this paper we consider the subsequent condition on a C -linear map Δ from an algebra
A into an A -bimodule M :

x,y ∈ A , xy = yx = 0 ⇒ Δ(x)y+ xΔ(y)+ Δ(y)x+ yΔ(x) = 0 (P).

It is clear that each Jordan derivation satisfies (P) , so the problem of determining the
structure of maps satisfying (P) is a generalization of the problem of determining the
structure of Jordan derivations. In [1] the authors considered the Condition (P) on a
continuous linear map Δ from a C∗ -algebra A into an essential Banach A -bimodule
M , and they showed that there exist a derivation D : A → M and a bimodule ho-
momorphism φ : A → M such that Δ = D + φ . In [8], the author considered an
additive map Δ from Mn(R) , the ring of all n× n matrices over a unital ring R ,
into a 2-torsion free unital Mn(R)-bimodule M which satisfies (P) and showed that
Δ(X) = D(X)+XΔ(I) , where D : Mn(R)→M is a derivation, I is the identity matrix
and Δ(I)X = XΔ(I) for all X ∈ Mn(R) . In [10] additive maps satisfying (P) on a tri-
angular ring (of course, in a more general sense) are studied, and in [13] additive maps
satisfying (P) on a generalized matrix ring are considered. Also, in [7] (continuous)
linear maps satisfying (P) on some operator algebras are investigated. Note that each of
the following conditions on a linear (or additive) map Δ : A → M implies (P) which
have been considered by a number of authors (see, for instance, [2, 7, 13, 15, 16, 23]
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and the references therein):

x,y ∈ A , xy = 0 ⇒ Δ(x)y+ xΔ(y) = 0;

x,y ∈ A , xy = yx = 0 ⇒ Δ(x)y+ xΔ(y) = 0;

x,y ∈ A , xy = 0 ⇒ Δ(x)y+ xΔ(y)+ Δ(y)x+ yΔ(x) = 0;

x,y ∈ A , xy+ yx = 0 ⇒ Δ(x)y+ xΔ(y)+ Δ(y)x+ yΔ(x) = 0.

Therefore, the results obtained for maps satisfying (P) still hold if any of the above
conditions is replaced by (P) .

In this paper we consider the problem of characterizing a C -linear map Δ satis-
fying (P) from T = T (n1,n2, · · · ,nk) , a block upper triangular matrix algebra, into
a 2-torsion free unital T -bimodule M . In Theorem 3.2, we show that there exists
a unique derivation D : T → M and a unique antiderivation α : T → M such that
Δ(X) = D(X)+ α(X)+ Δ(I)X and Δ(I)X = XΔ(I) for each X ∈ T , where α has a
certain property. This result generalizes [9, Theorem 3.2]. Also, Corollary 3.3 (and
hence Theorem 3.2) is a generalization of [3, Theorem 1.1]. In Theorem 3.2, it is not
necessarily true that α = 0 and this theorem doesn’t determine when α = 0. In Theo-
rem 3.6, we apply some sufficient conditions to the block upper trangular matrix algebra
T = T (n1,n2, · · · ,nk) , so that if the C -linear map Δ : T → M satisfies (P) and M
is a 2-torsion free unital T -bimodule, then there exists a derivation D : T →M such
that Δ(X) = D(X)+Δ(I)X , where XΔ(I) = Δ(I)X for each X ∈ T . Corollary 3.7 ex-
presses the conditions under which each Jordan derivation Δ : T → M is a derivation.
Therefore, Corollary 3.7 is an answer to the question posed in [9].

2. Preliminaries

We denote the algebra of all n×n matrices over C by Mn(C ) (n � 1), the subal-
gebra of all upper triangular matrices by Tn(C ) , and the subalgebra of all diagonal ma-
trices by Dn(C ) . Let n � 1 and assume that n = n1 +n2 + · · ·+nk , where n1,n2, · · · ,nk

(k � 1) is a finite sequence of positive integers. The block upper triangular matrix al-
gebra T = T (n1,n2, · · · ,nk) is a subalgebra of Mn(C ) of all matrices of the form

X =

⎡
⎢⎢⎢⎣

X11 X12 · · · X1k

0 X22 · · · X2k
...

...
. . .

...
0 0 · · · Xkk

⎤
⎥⎥⎥⎦ ,

where Xi j is an ni × n j matrix over C . Also, k is called the number of summands
of T (n1,n2, · · · ,nk) . Note that if k = 1 and n1 = n , then Mn(C ) = T (n1) is a block
upper triangular matrix algebra. Also, when k = n and ni = 1 for each 1 � i � k , then
T (n1,n2, · · · ,nk) = Tn(C ) .

We shall denote the identity matrix of Mn(C ) by I . Also, Ei j is the usual matrix
unit and xi, j is the (i j) th entry of X ∈Mn(C ) for 1 � i, j � n . Hence Ei jXE j j = xi, jEi j

for X ∈ Mn(C ) and 1 � i, j � n .
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Suppose that F1 = ∑n1
i=1 Ei and Fj = ∑

n j
i=1 Ei+n1+···+n j−1 for 2 � j � k , where

El = Ell . Then {F1, · · · ,Fk} is a set of nontrivial idempotents of T (n1,n2, · · · ,nk) such
that F1 + · · ·+Fk = I and FiFj = FjFi = 0 for 1 � i, j � k with i �= j . Moreover, we
have FjT (n1,n2, · · · ,nk)Fj

∼= Mnj(C ) for any 1 � j � k . We use D(n1,n2, · · · ,nk) for
the subalgebra of T (n1,n2, · · · ,nk) defined by

D(n1,n2, · · · ,nk) = F1T (n1,n2, · · · ,nk)F1 + · · ·+FkT (n1,n2, · · · ,nk)Fk.

Note that, if T (n1,n2, · · · ,nk) = Tn(C ) , then D(n1,n2, · · · ,nk) = Dn(C ) .
By [X ,Y ] =XY −YX we denote the commutator or the Lie product of the elements

X ,Y ∈ Mn(C ) .

3. Main results

Let M be a unital C -module. Given that cm = mc (c∈C ,m∈M ), the zero map
is the only linear derivation from C into M and each C -linear mapping T : C →M is
as follows: T (c) = cT (1) = T (1)c , where 1 is the unity of C and c∈C , it follows that
for each C -linear mapping Δ : C → M satisfying (P) we have Δ(c) = δ (c)+ Δ(1)c
and cΔ(1) = Δ(1)c for all c ∈ C , where δ is the zero derivation. In view of this fact
and [8, Theorem 2.1], we have the following lemma which will be needed in the proofs
of our results.

LEMMA 3.1. Let Mn(C ) , for n � 1 , be the algebra of all n× n matrices over
C and M be a 2 -torsion free unital Mn(C )-bimodule. Let Δ : Mn(C ) → M be a
C -linear map satisfying (P) . Then there exists a derivation δ : Mn(C ) → M such
that Δ(X) = δ (X)+XΔ(I) and Δ(I)X = XΔ(I) for each X ∈ Mn(C ) .

The following theorem is one of the main results of this paper.

THEOREM 3.2. Let T = T (n1,n2, · · · ,nk) be the block upper triangular algebra
in Mn(C ) (n � 1) and M be a 2 -torsion free unital T -bimodule. Let Δ : T → M
be a C -linear map satisfying (P) . Then there exist a derivation D : T → M and
an antiderivation α : T → M such that Δ(X) = D(X)+α(X)+Δ(I)X and Δ(I)X =
XΔ(I) for each X ∈ T , and α(D(n1,n2, · · · ,nk)) = {0} . Moreover, D and α are
uniquely determined.

Proof. We prove by induction on k , the number of summands of T . When
k = 1, T = Mn(C ) and D(n1) = Mn(C ) . By Lemma 3.1, there exists a deriva-
tion D : Mn(C ) → M such that Δ(X) = D(X)+ Δ(I)X and Δ(I)X = XΔ(I) for each
X ∈ Mn(C ) . In this case α = 0 is the only antiderivation such that α(D(n1)) = {0} .
Hereon the result is correct.

Assume inductively that k � 1 and the result holds for each block upper triangular
algebra T (n1,n2, · · · ,nk) with k summands.

Let T = T (n1,n2, · · · ,nk+1) ⊆ Mn(C ) be a block upper triangular algebra with
k + 1 summands. Set P = F1 and Q = I −P = F2 + · · ·+ Fk+1 . Then P and Q are
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nontrivial idempotents of T such that PQ = QP = 0. Also, QT P = {0} , PT P and
QT Q are subalgebras of T with unity P and Q , respectively, and we have the de-
composition T = PT P � PT Q � QT Q as a sum of C -linear spaces. Moreover,
PT P ∼= Mn1(C ) and QT Q ∼= T (n2,n3, · · · ,nk+1) ⊆ Mn−n1(C ) (C -algebra isomor-
phisms) is a block upper triangular algebra with k summands, where D(n2, · · · ,nk+1)∼=
F2T F2 + · · ·+Fk+1T Fk+1 .

Suppose M is a 2-torsion free unital T -bimodule and Δ : T → M is a C -
linear map satisfying (P) . Define Λ : T → M by Λ(X) = Δ(X)− IB(X) , where
B = PΔ(P)Q−QΔ(P)P . So Λ is a C -linear map which satisfies (P) and PΛ(P)Q =
QΛ(P)P = 0. Also, Λ(I) = Δ(I) . We establish the theorem for Λ .

The proof will proceed in several steps:

Step 1. Λ(PXP) = PΛ(PXP)P and Λ(QXQ) = QΛ(QXQ)Q for all X ∈ T .

Let X ∈ T . Since P(QXQ) = (QXQ)P = 0, we have

Λ(P)QXQ+PΛ(QXQ)+ Λ(QXQ)P+QXQΛ(P) = 0. (3.1)

Multiplying this identity by P on both sides, we have 2PΛ(QXQ)P= 0. So PΛ(QXQ)P
= 0. Multiplying (3.1) on the left by P and on the right by Q , and using the fact that
PΛ(P)Q = 0, we arrive at PΛ(QXQ)Q = 0. Similarly, from (3.1) and the identity
QΛ(P)P = 0, we see that QΛ(QXQ)P = 0. Therefore, from above conclusions we
arrive at

Λ(QXQ) = QΛ(QXQ)Q

for all X ∈ T . Applying Λ to (PXP)Q = Q(PXP) = 0 we obtain

Λ(PXP)Q+PXPΛ(Q)+ Λ(Q)(PXP)+XΛ(PXP)= 0. (3.2)

From the identity Λ(QXQ) = QΛ(QXQ)Q , (3.2) and using a similar method as above
we get

Λ(PXP) = PΛ(PXP)P

for all X ∈ T .

Step 2. Λ(PXQ) = PΛ(PXQ)Q+QΛ(PXQ)P for all X ∈ T .

For all X ,Y ∈T we have (PXQ)(PYQ) = (PYQ)(PXQ) = 0. Applying Λ to this
identity, we find that

Λ(PXQ)PYQ+PXQΛ(PYQ)+ Λ(PYQ)PXQ+PYQΛ(PXQ) = 0.

Multiplying this equation on both sides by P and by Q , we get respectively

PXQΛ(PYQ)P+PYQΛ(PXQ)P = 0, (3.3)

and

QΛ(PXQ)PYQ+QΛ(PYQ)PXQ = 0. (3.4)
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We have (PXP+PXPYQ)(Q−PYQ) = (Q−PYQ)(PXP+PXPYQ) = 0 and so

Λ(PXP+PXPYQ)(Q−PYQ)
+ (PXP+PXPYQ)Λ(Q−PYQ)
+ Λ(Q−PYQ)(PXP+PXPYQ)
+ (Q−PYQ)Λ(PXP+PXPYQ) = 0

(3.5)

for all X ,Y ∈ T . Multiplying (3.5) by P on both sides, replacing X by P and then
using Step 1 and (3.3), we get

PΛ(PYQ)P = 0

for all Y ∈T . Also, (QXQ+PYQXQ)(P−PYQ) = (P−PYQ)(QXQ+PYQXQ) = 0
for all X ,Y ∈ T . Applying Λ to this identity, we find that

Λ(QXQ+PYQXQ)(P−PYQ)
+ (QXQ+PYQXQ)Λ(P−PYQ)
+ Λ(P−PYQ)(QXQ+PYQXQ)
+ (P−PYQ)Λ(QXQ+PYQXQ) = 0

(3.6)

for all X ,Y ∈ T . Multiplying (3.6) by Q on both sides, replacing X by Q and then
using Step 1 and (3.4), we arrive at

QΛ(PYQ)Q = 0

for all Y ∈ T . Now from previous equations it follows that

Λ(PXQ) = PΛ(PXQ)Q+QΛ(PXQ)P

for all X ∈ T .

Step 3.

PΛ(PXPYQ)Q = PXPΛ(PYQ)Q+PΛ(PXP)PYQ

−PXPYQΛ(Q)Q,
(3.7)

PΛ(PYQXQ)Q = PYQΛ(QXQ)Q+PΛ(PYQ)QXQ

−PΛ(P)PYQXQ,
(3.8)

and

PΛ(P)PYQ = PYQΛ(Q)Q (3.9)

for all X ,Y ∈ T .

Multiplying (3.5) by P on the left and by Q on the right and using Steps 1 and 2,
we get (3.7). Multiplying (3.6) by P on the left and by Q on the right and using Steps
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2 and 3, we obtain (3.8). Replacing X by P in (3.7) we find (3.9).

Step 4.
PXQΛ(PYQ)P = 0 and QΛ(PXQ)PYQ = 0

for all X ,Y ∈ T .

Multiplying (3.5) and (3.6) on the left by Q and on the right by P , by Step 1, for
all X ,Y ∈ T we have

QΛ(PXPYQ)P = QΛ(PYQ)PXP;

QΛ(PXQYQ)P = QYQΛ(PXQ)P.
(3.10)

Let 1 � i , k � n1 and n1 � j , l � n be arbitrary. By (3.10) and (3.3), we have

Ei jΛ(Ekl)P = Ei jΛ(EkiEil)P = Ei jΛ(Eil)Eki

= Ei jΛ(Ei jE jl)Eki = Ei jE jlΛ(Ei j)Eki = EilΛ(Ei j)Eki

= −Ei jΛ(Eil)Eki = −Ei jΛ(EkiEil)P = −Ei jΛ(Ekl)P,

since Eki ∈ PT P , Ei j , Eil , Ekl ∈ PT Q , and Ejl ∈ QT Q . So Ei jΛ(Ekl)P = 0. Also,
by (3.10) and (3.4) we find that

QΛ(Ei j)Ekl = QΛ(EilEl j)Ekl = El jΛ(Eil)Ekl

= El jΛ(EikEkl)Ekl = El jΛ(Ekl)EikEkl = El jΛ(Ekl)Eil

= −El jΛ(Eil)Ekl = −QΛ(EilEl j)Ekl = −QΛ(Ei j)Ekl ,

since Eik ∈ PT P , Ei j , Eil , Ekl ∈ PT Q , and El j ∈ QT Q . Hence,

QΛ(Ei j)Ekl = 0.

For any X ,Y ∈ T , let

PXQ =
n1

∑
i=1

n

∑
j=n1+1

xi, jEi j

and

PYQ =
n1

∑
k=1

n

∑
l=n1+1

yk,lEkl.

From the equalities
Ei jΛ(Ekl)P = 0, QΛ(Ei j)Ekl = 0

and linearity of Λ , it follows that

PXQΛ(PYQ)P =
n1

∑
i=1

n

∑
j=n1+1

xi, jEi jΛ

(
n1

∑
k=1

n

∑
l=n1+1

yk,lEkl

)
P

=
n1

∑
i=1

n

∑
j=n1+1

n1

∑
k=1

n

∑
l=n1+1

xi, jyk,lEi jΛ(Ekl)P = 0,
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and

QΛ(PXQ)PYQ =
n1

∑
k=1

n

∑
l=n1+1

QΛ

(
n1

∑
i=1

n

∑
j=n1+1

xi, jEi j

)
yk,lEkl

=
n1

∑
k=1

n

∑
l=n1+1

n1

∑
i=1

n

∑
j=n1+1

xi, jyk,lQΛ(Ei j)Ekl = 0.

Step 5.

PΛ(PXPYP)P = PXPΛ(PYP)P+PΛ(PXP)PYP

−PXPYPΛ(P)P,

and
PΛ(P)PXP = PXPΛ(P)P

for all X ,Y ∈ T .

Define J : PT P → PMP by J(PXP) = PΛ(PXP)P . Clearly J is a well-defined
C -linear map. If PXPYP = PYPXP = 0 (X ,Y ∈ T ), by hypothesis and Step 1, it
follows that

PXPJ(PYP)+ J(PXP)PYP+PYPJ(PXP)+ J(PYP)PXP = 0.

So J satisfies (P) . Also, PMP is a 2-torsion free unital PT P -bimodule. By Lemma 3.1
and the facts that PT P ∼= Mn1(C ) and P = F1 is the identity element of this algebra,
there exists a derivation δ : PT P → PMP such that J(PXP) = δ (PXP)+PXPJ(P)
and J(P)PXP = PXPJ(P) for each X ∈ T . So, we have

J(PXPYP) = δ (PXPYP)+PXPYPJ(P)
= δ (PXP)PYP+PXPδ (PYP)+PXPYPJ(P)
= (J(PXP)−PXPJ(P))PYP

+PXP(J(PYP)−PYPJ(P))
+PXPYPJ(P)

= J(PXP)PYP+PXPJ(PYP)−PXPYPJ(P),

for all X ,Y ∈ T . Now using the definition of J and the equality J(P) = PΛ(P)P , we
conclude Step 5.

Step 6. There exist a derivation g : QT Q → QMQ and an antiderivation γ :
QT Q → QMQ such that

QΛ(QXQ)Q = g(QXQ)+ γ(QXQ)+QXQΛ(Q)Q,

and
QXQΛ(Q)Q = QΛ(Q)QXQ
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for all X ∈ T . Moreover, γ(F2T F2 + · · · +Fk+1T Fk+1) = {0} , and

PXQγ(QYQ) = 0

for all X ,Y ∈ T .

QMQ is a 2-torsion free unital QT Q-bimodule. Define G : QT Q → QMQ by
G(QXQ) = QΛ(QXQ)Q . Clearly G is a well-defined C -linear map. Let QXQYQ =
QYQXQ = 0 (X ,Y ∈ T ). From hypothesis and the definition of G , we see that

QXQG(QYQ)+G(QXQ)QYQ+QYQG(QXQ)+G(QYQ)QXQ = 0.

Hence, G satisfies (P) . In view of the isomorphisms

QT Q ∼= T (n2,n3, · · · ,nk+1) ⊆ Mn−n1(C ),

D(n2, ...,nk+1) ∼= F2T F2 + · · ·+Fk+1T Fk+1

and induction hypothesis, there exist a derivation g : QT Q→QMQ and an antideriva-
tion γ : QT Q → QMQ such that QΛ(QXQ)Q = G(QXQ) = g(QXQ)+ γ(QXQ)+
QXQΛ(Q)Q and QXQΛ(Q)Q = QΛ(Q)QXQ for all X ∈T , and γ(D(n2, ...,nk+1)) =
γ(F2T F2 + · · ·+ Fk+1T Fk+1) = {0} . We will show that PXQγ(QYQ) = 0 for all
X ,Y ∈ T .

By (3.8) and (3.9), for all X ,Y,Z ∈ T we have

PΛ(PXQYQZQ)Q = PΛ((PXQ)(QYQZQ))Q
= PXQΛ(QYQZQ)Q+PΛ(PXQ)QYQZQ

−PXQYQZQΛ(Q)Q.

Replace X by YQZ in QΛ(QXQ)Q = g(QXQ) + γ(QXQ) + QXQΛ(Q)Q and then
multiply it by PXQ on the left. From above conclusion we obtain

PΛ(PXQYQZQ)Q = PXQg(QYQZQ)+PXQγ(QYQZQ)
+PXQYQZQΛ(Q)Q+PΛ(PXQ)QYQZQ

−PXQYQZQΛ(Q)Q
= PXQg(QYQZQ)+PXQγ(QYQZQ)

+PΛ(PXQ)QYQZQ.

On the other hand, by (3.8) and (3.9), for all X ,Y,Z ∈ T we have

PΛ(PXQYQZQ)Q = PΛ((PXQYQ)(QZQ))Q
= PXQYQΛ(QZQ)Q+PΛ(PXQYQ)QZQ

−PXQYQZQΛ(Q)Q
(3.11)
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Using again (3.8) for PΛ(PXQYQ)Q in the last equation and then replacing QΛ(QYQ)Q
by g(QYQ)+ γ(QYQ)+QYQΛ(Q)Q for all Y ∈ T , we arrive at

PΛ(PXQYQZQ)Q = PXQYQΛ(QZQ)Q+PΛ(PXQYQ)QZQ

−PXQYQZQΛ(Q)Q
= PXQYQΛ(QZQ)Q+PXQΛ(QYQ)QZQ

+PΛ(PXQ)QYQZQ−PXQYQΛ(Q)QZQ

−PXQYQZQΛ(Q)Q
= PXQYQg(QZQ)Q+PXQYQγ(QZQ)

+PXQYQZQΛ(Q)Q+PXQg(QYQ)QZQ

+PXQγ(QYQ)QZQ+PXQYQΛ(Q)QZQ

+PΛ(PXQ)QYQZQ−PXQYQΛ(Q)QZQ

−PXQYQZQΛ(Q)Q.

(3.12)

Comparing the two expressions (3.11) and (3.12) for PΛ(PXQYQZQ)Q , using Step 3,
the equality QΛ(Q)QXQ = QXQΛ(Q)Q (X ∈ T ) and the facts that g is a derivation
and γ is an antiderivation, we arrive at

PXQγ([QYQ,QZQ]) = 0 (3.13)

for all X ,Y,Z ∈ T . Now from the facts that Q = F2 + · · ·+Fk+1 and FjQ = QFj = Fj

for all 2 � j � k+1, we have

QXQ−
k+1

∑
j=2

FjXFj =

(
k+1

∑
j=2

Fj

)
QXQ−

k+1

∑
j=2

FjXFj

=
k+1

∑
j=2

(FjXQ−FjXFj)

=
k+1

∑
j=2

FjX(Q−Fj)

=
k+1

∑
j=2

[Fj,FjX(Q−Fj)]

(3.14)

for all X ∈ T . Note that Fj,FjX(Q−Fj) ∈ QT Q . By (3.13), (3.14) and γ(F2T F2 +
· · ·+Fk+1T Fk+1) = 0, we get

PXQγ(QYQ) = PXQγ

(
QYQ−

k+1

∑
j=2

FjYFj +
k+1

∑
j=2

FjYFj

)

= PXQγ

(
QYQ−

k+1

∑
j=2

FjYFj

)

=
k+1

∑
j=2

PXQγ([Fj,FjY (Q−Fj)]) = 0
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for all X ,Y ∈ T .

Step 7. Λ(I)X = XΛ(I) for all X ∈ T .

By Step 1, we have

Λ(I) = PΛ(P)P+QΛ(Q)Q.

By Steps 5, 6 and (3.9), we arrive at

Λ(I)X = (PΛ(P)P+QΛ(Q)Q)(PXP+PXQ+QXQ)
= PΛ(P)PXP+PΛ(P)PXQ+QΛ(Q)QXQ

= PXPΛ(P)P+PXQΛ(Q)Q+QXQΛ(Q)Q
= XΛ(I)

for all X ∈ T .

Step 8. The mapping δ : T → M defined by

δ (X) = PΛ(PXP)P+PΛ(PXQ)Q+g(QXQ)+QΛ(Q)QXQ−Λ(I)X

is a derivation and the mapping α : T → M defined by

α(X) = QΛ(PXQ)P+ γ(QXQ)

is an antiderivation such that α(D(n1,n2, · · · ,nk+1)) = {0} . Moreover,

Λ(X) = δ (X)+ α(X)+ Λ(I)X

for all X ∈ T .

Obviously, δ is a C -linear map. Since QT P = {0} , it follows that PXYP =
PXPYP , PXYQ = PXPYQ+PXQYQ and QXYQ = QXQYQ . So we have

δ (XY ) = PΛ(PXYP)P+PΛ(PXYQ)Q
+g(QXYQ)+QΛ(Q)QXYQ−Λ(I)XY

= PΛ(PXPYP)P+PΛ(PXPYQ)Q+PΛ(PXQYQ)Q
+g(QXQYQ)+QΛ(Q)QXQYQ−Λ(I)XY.

Now, by Steps 3, 5 and the fact that g is a derivation, it is easy to see that

δ (XY ) = PXPΛ(PYP)P+PΛ(PXP)PYP−PXPYPΛ(P)P
+PXPΛ(PYQ)Q+PΛ(PXP)PYQ−PXPYQΛ(Q)Q
+PXQΛ(QYQ)Q+PΛ(PXQ)QYQ−PΛ(P)PXQYQ

+g(QXQ)QYQ+QXQg(QYQ)
+QΛ(Q)QXQYQ−Λ(I)XY.

(3.15)
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On the other hand, we have

δ (X)Y = PΛ(PXP)PYP+PΛ(PXP)PYQ+PΛ(PXQ)QYQ

+g(QXQ)QYQ+QΛ(Q)QXQYQ−Λ(I)XY.
(3.16)

also, by Steps 6, 7 we have

Xδ (Y ) = PXPΛ(PYP)P+PXPΛ(PYQ)Q+PXQg(QYQ)
+QXQg(QYQ)+PXQΛ(Q)QYQ+QXQΛ(Q)QYQ

−PΛ(P)PXPYP−PΛ(P)PXPYQ−PΛ(P)PXQYQ

−QΛ(Q)QXQYQ

= PXPΛ(PYP)P+PXPΛ(PYQ)Q+PXQg(QYQ)
+QXQg(QYQ)+PXQΛ(Q)QYQ−PΛ(P)PXPYP

−PΛ(P)PXPYQ−PΛ(P)PXQYQ.

(3.17)

Hence, by the fact that PXQg(QYQ) = PXQ(QΛ(QYQ)Q− γ(QYQ)−QYQΛ(Q)Q)
and PXQγ(QYQ) = 0 (for all X ,Y ∈ T ) from Step 6 and comparing (3.15) to (3.16)
and (3.17), we arrive at δ (XY ) = δ (X)Y +Xδ (Y ) . That is δ is a derivation.

It is clear that α is a linear map. On the other hand, for each X ,Y ∈ T , using
(3.10) and since γ is an antiderivation, we have

α(XY ) = QΛ(PXPYQ)P+QΛ(PXQYQ)P+ γ(QXQYQ)
= QΛ(PYQ)PXP+QYQΛ(PXQ)P+QYQγ(QXQ)

+ γ(QYQ)QXQ.

Moreover, by Steps 4 and 6, QΛ(PYQ)PXQ = PYQΛ(PXQ)P = 0 and PYQγ(QXQ) =
0 also, γ(QYQ)QXP = 0 by the fact that QT P = {0} . Hence, we see

α(XY ) = QΛ(PYQ)PXP+QYQΛ(PXQ)P+QYQγ(QXQ)
+ γ(QYQ)QXQ+QΛ(PYQ)PXQ+PYQΛ(PXQ)P
+PYQγ(QXQ)+ γ(QYQ)QXP

= Yα(X)+ α(Y )X .

Let F1X1F1+F2X2F2+ · · ·+Fk+1Xk+1Fk+1 be an arbitrary element of D(n1,n2, · · ·,nk+1) .
Since γ(F2T F2 + · · ·+ Fk+1T Fk+1) = {0} , F1Q = QF1 = 0, PFj = FjP = 0 and
FjQ = QFj = Fj for any 2 � j � k , it follows that

α(F1X1F1 +F2X2F2 + · · ·+Fk+1Xk+1Fk+1)
=QΛ(P(F1X1F1 +F2X2F2 + · · ·+Fk+1Xk+1Fk+1)Q)P

+ γ(Q(F1X1F1 +F2X2F2 + · · ·+Fk+1Xk+1Fk+1)Q)
=γ(F2X2F2 + · · ·+Fk+1Xk+1Fk+1) = 0.
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Therefore, α(D(n1,n2, · · · ,nk+1)) = {0} . Now by Steps 1, 2 and 6, for every X ∈ T
we have

Λ(X) = PΛ(PXP)P+PΛ(PXQ)Q+QΛ(PXQ)P+QΛ(QXQ)Q
= PΛ(PXP)P+PΛ(PXQ)Q+QΛ(PXQ)P+g(QXQ)

+ γ(QXQ)+QΛ(Q)QXQ−Λ(I)X + Λ(I)X
= δ (X)+ α(X)+ Λ(I)X .

By the above results and the definition of Λ we obtain

Δ(X)− IB(X) = Λ(X) = δ (X)+ α(X)+ Λ(I)X

for all X ∈ T , where δ : T → M is a derivation, α : T → M is an antiderivation
and α(D(n1,n2, · · · ,nk+1)) = {0} . Also, Δ(I) = Λ(I) and so, Δ(I)X = XΔ(I) for all
X ∈ T . Define D : T → M by D(X) = δ (X)+ IB(X) . Hence D is a derivation and

Δ(X) = D(X)+ α(X)+ Δ(I)X

for all X ∈ T .
Finally, we will show that D and α are uniquely determined. Suppose that

Δ(X) = D′(X)+ α ′(X)+ Δ(I)X (X ∈ T ), where D′ : T → M is a derivation, α ′ :
T → M is an antiderivation and α ′(D(n1,n2, · · · ,nk+1)) = {0} . Hence, we have

D′(X)+ α ′(X)+ Δ(I)X = D(X)+ α(X)+ Δ(I)X (X ∈ T ).

So, D′ −D = α ′ −α . Therefore, α ′ −α : T → M is both a derivation and an an-
tiderivation. Hence

(α ′ −α)([X ,Y ]) = 0

for all X ,Y ∈ T . As in the proof of Step 6, it can be shown that

X −
k+1

∑
j=1

FjXFj =
k+1

∑
j=1

[Fj,FjX(I−Fj)] (k � 1,X ∈ T ).

Since (α ′ −α)(D(n1,n2, · · · ,nk+1)) = {0} , it follows that

(α ′ −α)(X) = (α ′ −α)

(
X −

k+1

∑
j=1

FjXFj +
k+1

∑
j=1

FjXFj

)

= (α ′ −α)

(
X −

k+1

∑
j=1

FjXFj

)

=
k+1

∑
j=1

(α ′ −α)([Fj,FjX(I−Fj)])

= 0.

So α ′ = α and hence D′ = D . This completes the proof of the theorem.
The following corollary is immediate.
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COROLLARY 3.3. Let Tn(C ) (n � 1) be an upper triangular matrix algebra and
M be a 2 -torsion free unital Tn(C )-bimodule. Let Δ : Tn(C )→M be a C -linear map
satisfying (P) . Then there exist a derivation D : Tn(C )→M and an antiderivation α :
Tn(C )→M such that Δ(X) = D(X)+α(X)+Δ(I)X and α(Dn(C )) = {0} , XΔ(I) =
Δ(I)X for all X ∈ Tn(C ) . Moreover, D and α are uniquely determined.

If M is a 2-torsion free unital T (n1,n2, · · · ,nk)-bimodule and Δ : T →M is a Jordan
derivation, then Δ satisfies (P) and Δ(I) = 0, and so we have the following corollary
which is the main result of [9]. Thus Theorem 3.2 is a generalization of [9, Theorem
3.2].

COROLLARY 3.4. Let T = T (n1,n2, · · · ,nk) be a block upper triangular matrix
algebra in Mn(C ) (n � 1) and M be a 2 -torsion free unital T -bimodule. Suppose
that Δ : T →M is a Jordan derivation. Then there exist a derivation D : T →M and
an antiderivation α : T → M such that Δ = D+ α and α(D(n1,n2, · · · ,nk)) = {0} .
Moreover, D and α are uniquely determined.

By Corollary 3.4 (or Corollary 3.3) we have the following corollary, which is proved in
[3]. So Theorem 3.2 (and Corollary 3.3) generalizes [3, Theorem 1.1].

COROLLARY 3.5. Let Tn(C ) (n � 1) be an upper triangular matrix algebra and
M be a 2 -torsion free unital Tn(C )-bimodule. Suppose that Δ : Tn(C ) → M is a
Jordan derivation. Then there exist a derivation D : Tn(C )→M and an antiderivation
α : Tn(C ) → M such that Δ = D + α , α(Dn(C )) = {0} . Moreover, D and α are
uniquely determined.

In Theorem 3.2, it is possible that the antiderivation α be zero. But this theorem doesn’t
say when α = 0. In the next theorem, we add some mild conditions to the block upper
trangular matrix algebra T = T (n1,n2, · · · ,nk) so that α = 0.

THEOREM 3.6. Let T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) be a block upper trangular
matrix algebra with n � 2 . Let ni � 2 for each 1 � i � k and M be a 2 -torsion free
unital T -bimodule. If the C -linear map Δ : T → M satisfies (P) , then there exists
a derivation D : T → M such that Δ(X) = D(X)+ Δ(I)X , and XΔ(I) = Δ(I)X for
each X ∈ T .

Proof. The proof is by induction on k the number of summands of T . When
k = 1 then T = Mn(C ) and the result is established by the Lemma 3.1.

Assume inductively that k � 1 and the result holds for any block upper triangular
algebra T (n1,n2, · · · ,nk) with k summands, where each ni � 2 for 1 � i � k . Let
T = T (n1,n2, · · · ,nk+1) be a block upper triangular algebra with k + 1 summands
and each ni � 2 for 1 � i � k+1. We set P = F1 and Q = I−P = F2 + · · ·+Fk+1 as
in the proof of Theorem 3.2. Let Δ : T → M be a C -linear map which satisfies (P) .
Define Λ : T → M by Λ(X) = Δ(X)− IB(X) , where B = PΔ(P)Q−QΔ(P)P . It is
clear that Λ is a C -linear map which satisfies (P) . Moreover, PΛ(P)Q = QΛ(P)P = 0
and Λ(I) = Δ(I) . We will show that the result is correct in this case.
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All the results obtained for Λ in the Steps 1–3 and equations 3.10 of the Theo-
rem 3.2 hold here too. We prove that QΛ(PXQ)P = 0 for all X ∈ T . By (3.10), we
have

QΛ(PXPYPZQ)P = QΛ(PZQ)PXPYP

= QΛ(PXPZQ)PYP

= QΛ(PYPXPZQ)P

for all X ,Y,Z ∈ T . Hence QΛ([PXP,PYP]ZQ)P = 0. So

QΛ(PZQ)[PXP,PYP] = 0

for all X ,Y,Z ∈ T . Thus

QΛ(PZQ)PW1P[PXP,PYP]PW2P

=QΛ(PW1PZQ)[PXP,PYP]PW2P = 0

for all X ,Y,Z,W1,W2 ∈T . Let I be the ideal generated by all commutators in PT P ;
i.e., the ideal generated by [PT P,PT P] in PT P . Then

QΛ(PZQ)I = 0

for all Z ∈ T . Since PT P ∼= Mn1(C ) , n1 � 2, it follows that I = PT P . So

QΛ(PZQ)P = 0

for all Z ∈ T .
On the other hand, by a proof similar to the proof given in the Step 5 of Theo-

rem 3.2, we obtain

PΛ(PXPYP)P = PXPΛ(PYP)P+PΛ(PXP)PYP−PXPYPΛ(P)P,

and
PΛ(P)PXP = PXPΛ(P)P.

for all X ,Y ∈ T .
QMQ is a 2-torsion free unital QT Q-bimodule. Define G : QT Q→QMQ by

G(QXQ) = QΛ(QXQ)Q . As in proof of the Step 6 of Theorem 3.2, we see that G is
a well-defined C -linear map satisfying (P) . According to the isomorphism QT Q ∼=
T (n2,n3, · · · ,nk+1) ⊆ Mn−n1(C ) and the fact that ni � 2 for all 2 � i � k + 1, by
induction hypothesis, it follows that there exists a derivation g : QT Q → QMQ such
that G(QXQ) = g(QXQ)+QXQG(Q) and QXQG(Q) = G(Q)QXQ . By the definition
of G , G(Q) = QΛ(Q)Q . Hence we have

QΛ(QXQ)Q = g(QXQ)+QXQΛ(Q)Q,

and
QΛ(Q)QXQ = QXQΛ(Q)Q.
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Moreover, by the fact that g is a derivation we have

QΛ(QXQYQ)Q = QXQΛ(QYQ)Q+QΛ(QXQ)QYQ−QΛ(Q)QXQYQ

for all X ,Y ∈ T .
Define the mapping δ : T →M by δ (X) = Λ(X)+Λ(I)X for all X ∈ T . From

the above results one can check directly that δ is a derivation and Λ(I)X = XΛ(I)
for all X ∈ T . (similar to the proof of Theorem 3.2). Now define D : T → M
by D(X) = δ (X) + IB(X) . Clearly, D is a derivation, Δ(X) = D(X) + Δ(I)X , and
Δ(I)X = XΔ(I) for all X ∈ T .
At the end of [9], it is asked under what conditions every Jordan derivation from the
block upper triangular matrix algebra T = T (n1,n2, · · · ,nk)⊆Mn(C ) into a 2-torsion
free unital T -bimodule is a derivation? The following corollary of Theorem 3.6 an-
swers this question for the case when ni � 2 for all 1 � i � k .

COROLLARY 3.7. Let T = T (n1,n2, · · · ,nk)⊆Mn(C ) be a block upper trangu-
lar matrix algebra with n � 2 . Let ni � 2 for each 1 � i � k and M be a 2 -torsion
free unital T -bimodule. Then every Jordan derivation Δ : T → M is a derivation.

Acknowledgement. The authors would like to express their sincere thanks to the
referee(s) of this paper.

RE F ER EN C ES

[1] J. ALAMINOS, M. BRE s̆ AR, J. EXTREMERA AND A. R. VILLENA, Characterizing Jordan maps on
C∗ -algebras through zero products, Proceedings of the Edinburgh Mathematical Society, 53 (2010),
543–555.

[2] G. AN AND J. LI, Characterizations of linear mappings through zero products or zero Jordan prod-
ucts, Electron. J. Linear Algebra, 31 (2016), 408–424.
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