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CANONICAL FORMS OF SELF-ADJOINT BOUNDARY CONDITIONS
FOR REGULAR DIFFERENTIAL OPERATORS OF ORDER THREE

TIAN NIU, XIAOLING HAO*, JIONG SUN AND KUN LI

(Communicated by J. Behrndt)

Abstract. In this paper, we find all canonical forms for third order self-adjoint boundary condi-
tions. These canonical forms play an important role in the study of the dependence of the eigen-
values on the problem and for their numerical calculation. In order to obtain those canonical
forms, we give a classification of self-adjoint boundary conditions. Those self-adjoint boundary
conditions can be categorized into three mutually exclusive classes: coupled, strictly separated
and mixed. Unlike the even order case, for the third order case, the strictly separated self-adjoint
boundary conditions can not be realized. For coupled and mixed cases, there are some different
types for the canonical forms: 2 for coupled and 4 for mixed boundary conditions.

1. Introduction

A regular self-adjoint Sturm-Liouville problem consists of the symmetric differ-
ential equation

—(py) +qy=Awy onJ=(a,b),—~<a<b< o, (1.1

with coefficients satisfying:

1
;,q,weL(],R), >0 (1.2)
and boundary conditions
AY(a)+BY(b) =0, Y= ( y,), (1.3)
py
where
A,Be M,(C), AEA* = BEB*, rank(A:B) =2, E = (? _01) . (1.4)
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The boundary conditions (1.3) and (1.4) can be categorized into two mutually
exclusive classes: separated and coupled, and these have the canonical forms:
(1) Separated self-adjoint boundary condition: these can be formulated as follows:

cos(a)y(a) — sin(a)(py’)(a) =0, e [07”)7

) (1.5)
cos(B)y(a) —sin(B)(py')(a) = 0,B € (0,m]
(ii) Coupled self-adjoint boundary condition: these are
Y (b) = ¢"KY (a), (1.6)
where —7 < y < 7w and K satisfies
_ (Kkik2 _
K_<k21 k22),k,JeR, detK = 1. (1.7)

(see[l, 2]). Given a boundary condition (1.3) with matrices A,B satisfying (1.4), it
is equivalent to exactly one of the separated or coupled boundary conditions defined
above (see [1]).

These canonical forms play an important role in the study of the dependence of the
eigenvalues on the problem and for their numerical calculation (see [3]). Similar to the
second order case, Hao, Sun and Zettl have obtained canonical forms for the fourth or-
der self-adjoint boundary conditions (see [4]). By using these forms, lots of researchers
have obtained the dependence of the eigenvalues on the fourth order boundary value
problems (see[5]- [7]). These papers give us a better understanding of the dependence
of eigenvalues on the problem. These canonical forms also have many other potential
applications. For more details, one can see book [1].

In this paper, the set of all n x n matrices over the field I is denoted by M, (F).
A* denotes the complex conjugate of the matrix A. The set of all real-valued Lebesgue
integrable functions on J is denoted by L(J,R). Given A, B € M, (F), the form (A : B)
denotes the n x 2n matrix whose last n columns are the columns of the matrix B and
whose first n columns are those of the matrix A.

In this paper, we consider third order boundary value problems, the equation is
given by

My = [—i(p(py")' — boy) — a1y']' +iboy' +aoy = Awy on J = (a,b), (1.8)
where
p L bop~Lbip~ Y aip2a0 € L(J,R), w> 0 a.e.on. (1.9)

Note that the coefficients of (1.8) have no smoothness assumptions. For this reason, we
give the following quasi-derivatives:

YO =y  W=py, Y =ipOMY +ay —ibgy. (1.10)

The existence of the quasi-derivatives at a and b can be guaranteed by the condition
(1.9), so this problem is regular (see [1, 2]).
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The boundary conditions

y(a) y(b)
Al YW@ | +B |y ) | =0, A,BeM;(C), (1.11)
y2(a) Y2 (b)

of Eq. (1.8) are self-adjoint if and only if

00 -1
rank(A:B)=3 and AE;A*=BE;B*,Es=|0i 0 |. (1.12)
10 0

The proof in [8] and [9] can readily be adapted to this generality.
When multiplied by a nonsingular matrix G € M3(C), the boundary conditions
(1.11) are clearly invariant. If AE3A* = BE3B*, then

(GA)E3(GA)* = (GB)E3(GB)".

Hence, by using linear transformations of the rows of (A : B), the boundary form is
invariant.

REMARK 1. Since AE3A*™ = BE3B*, if A is nonsingular, then B is nonsingular.
Hence, for a self-adjoint boundary conditions, rank(A) and rank(B) satisfy one of the
following four cases:

(i) rank(A)=rank(B)=3;

(i1) rank(A)=rank(B)=2;

(iii) rank(A)=1,rank(B)=2;

(iv) rank(A)=2,rank(B)=1.

Similar to the even order case, we give a definition of strictly separated, coupled
and mixed boundary conditions. (see [10])

DEFINITION 1. Assume the matrices A,B € M3(C) satisfy (1.12). Then the self-
adjoint boundary condition (1.11) is
(1) coupled if rank(A) = rank(B) =3,
(2) mixed if rank(A) = rank(B) =2,
(3) strictly separated if rank(A) =2 and rank(B) =1 or rank(A) =1 and rank(B) =2.

In this paper, we obtain canonical forms for the third order self-adjoint boundary
conditions (1.11), (1.12). Unlike the even order case, for the third order case, the strictly
separated self-adjoint boundary conditions cannot be realized. For coupled and mixed
cases, there are some different types for the canonical forms: 2 for coupled and 4 for
mixed boundary conditions.

The paper is composed as follows: In Section 2, we prove the strictly separated
self-adjoint boundary conditions cannot be realized. In Sections 3 and 4, we prove the
coupled and mixed self-adjoint boundary conditions can be realized and obtain their
canonical forms.
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2. Strictly separated self-adjoint boundary conditions

In this section, we prove that the strictly separated self-adjoint boundary condi-
tions cannot be realized. By Definition 1, if the strictly separated self-adjoint boundary
conditions can be realized, then rank(A), rank(B) satisfy not only the requirements of
rank(A) and rank(B) but also the self-adjointness conditions (1.12). In what follows,
we prove that the strictly separated types cannot be realized.

LEMMA 1. Assume the matrices A,B € M3(C) satisfy (1.12). Then rank(A) =
1,rank(B) =2 cannot be realized.

Proof. Assume A and B satisfy rank(A : B) = 3,rank(A) = 1,rank(B) = 2. By
using the elementary row transformation, (A : B) is equivalent to

ajpappaz 0 0 0
0 0 0 by by b3 |. 2.1)
0 0 O b3 by b33

() If byy # 0, then (2.1) has the following form by a transformation of rows

anpanaz0 00 . fagazaz0 0 0
(2.1)—> 0 0 0 1by by — 0 0 0 1by by |.
0 0 0 0bs b 0 0 0 0by by

By a computation on the reduced form s of A and B i.e.,

ary] dyp a3z 00 0
A= 0 0 0 |,B=|1bnby |,
0 0 O 0 b3y b3z
we have
iapaptapay —apnapz 00
AEA* = ( 0 0 o) : 2.2)
0 00
0 0 0
BEsB =10 iby by + b3 — 1;23 ib221532 — 1;33 . (2.3)
0 ib3abxn +b33 ib3a b3

Assume the self-adjointness conditions (1.12) can be satisfied, then

iappap +apa;—apjpapz 00 0 _ 0 _ o
0 00 | = | 0ibybry+ba3—bojibpbx—b33 |,
0 00 0 ibybo+bx3 ib3:b3)

i.e., b3y = b33 = 0. It contradicts rank(B) =2.
(ii) If by; =0, then (2.1) has the following form

aip dip a3 0 0 0
0 0 0 0 byby |. (2.4)

0 0 0 b3y b3 b33
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By a computation with

0O 0 O
B=1 0 bxnby |,
b3y b3z b33
we have
0 0 0
BE;B*= 1[0 iby by ibyy b3y +by3 b3y . (2.5)

0 ibyabay —b31 bos ibsabsy — b3y baz +bszba

If the self-adjointness conditions (1.12) can be satisfied, then

iapay +apay —apap 00 0 0 0
0 00 ) =10 ibynbn by b3y +-ba3b3y
0 00 0 ib3p by —b31 bo3 ib3p b3y — b3 b3z +b33bay

It means by = bys = 0 or byy = b3 = b3y = 0. They all contradict rank(B) = 2.

LEMMA 2. Assume the matrices A,B € M3(C) satisfy (1.12). Then rank(A) =
2,rank(B) =1 cannot be realized.

Proof. This proof is completely similar to Lemma 1.
Combining Lemmas | and 2 we obtain:

THEOREM 1. For the third order regular differential operator, the strictly sepa-
rated self-adjoint boundary condition cannot be realized.

3. Coupled self-adjoint boundary conditions

In this section, we prove that the coupled self-adjoint boundary conditions can be
realized, furthermore, every coupled self-adjoint boundary condition is equivalent to
one of the two canonical forms given below.

By Definition 1, if the coupled self-adjoint boundary conditions can be realized,
then (A : B) can be transformed to

ajpapp a3 100
ax ap a3 010 |, 3.1

azy azxp az3 001

and the form (A : B) given by (3.1) satisfies the self-adjointness condition (1.12). Be-
low, we verify whether (A : B) satisfies the self-adjointness condition (1.12). In order
to make our calculations more simple, we give a kind of classification of (A : B) by
discussing the first column of A.

LEMMA 3. Let A,B € M3(C) satisfy rank(A) = rank(B) = 3, then (A : B) is
equivalent to one of the following three cases:
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Case (i):
Lap a3 01100
(A ZB) = 0 any dazs b21 10 5 (32)
0 a3z azz b31 01
Case (ii):
Oapazl 00
(A ZB) = 1 any dazs 0 b22 0 5 (33)
0 a3y a3z 003 1
Case (iii):

Oappa3 10 0
(AIB): (0(122 a3 010 ) (34)

1 ay azz3 00 b33

Proof. (i). If aj; # 0, then (3.1) has the following form by a transformation of

TOwSs:
lapap b 00 o (101201361100
(3.1) — | Oay ap3 b1 10 e o ay) a3 by 10 |.
0az ayz b3 01 0as az3 b3 01

This is the case (i).
(1) If a;; = 0,a;1 # 0, then (3.1) has the following form by a transformation of rows:

Oappazl 00 ) Oapazl 00
(31) = | lan as 0byn0 | "™ 1an a 0600 |.
0az az 0 b3 1 0azx a3 0 b3y 1

This is the case (ii).
(iii). If a;; = ax; =0, then (3.1) has the following form

Oapasz 10 0 ) Oapaz 100
(3.1) — | Oapas 01 0 rewnite Oapasz 01 0 .
1 ay az3 00 bss 1 azp az3 00 b33

This is the case (iii).

Obviously, given A,B € M3(C) satisfy rank(A) = rank(B) =3, (A : B) can be
obtained from one of the three cases given above by using the elementary row trans-
formation. We calculate canonical forms for the coupled boundary conditions by using
this classification.

THEOREM 2. For the third order regular differential operator, every coupled self-
adjoint boundary condition is equivalent to one of the following two canonical forms:

(i)
1 —izg zp i1 0
Azz<0 1 221>;B:Z_<2Z3 1 0), 3.5)
0—izz 2 r izz 1l

72,21,22,23 € C and ri,rm € R;

where
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(ii)
0 0 z 10 O
A=z[0o 1 25 |:B=z[01 0o ], (3.6)
1 —izp n 0izp —23
where

2,21,220 € C and r €R.

Proof. (i): If (A : B) is in the case (i) of Lemma 3, we have the following equations
by a calculation

iappap+agz —ays lapd — ars iapas — ass

AEA* = iay ayp +as iay ax iaxp az ; (3.7
iazpan +az;z iazp an iaz azxn
0 0 —by
BEB"=| 0 i —by . (3.8)
bi1 ba1 b3 —b3

Assume the self-adjointness conditions (1.12) can be satisfied, then

iap a1y +a13 — a3 iap @ — a3z iappazy — asy 0 0 —bn
iax @ +a; iayan iay az = 0 i by . (39
iazyayy +azs iazann iazaz b1y bay b3 —b3;

it means ay = ¢'?, where ¢ € [0,27]. In order to make our calculations more trans-
parent, let a1, = —2iay,, azx = —2iaze'® and a3z = aye’?, where ajo,az,az; € C.
By (3.9), we have ax3 = 2ap2e'?, by = (a3;3 — 4iayzazy)e %, by = 2az3,a13 = | —
2ilara|?,b31 = ry — 2ilaz,|*, where ry,r; € R. Putting these parameters into (3.2), by
a transformation of rows, we have

I —2iai; r —2ilan|* (a33 —4iandaz)e ™ 00

0 2appe'® 2a3, 10—
0 —2iaze'®  azze'® r=2ilan> 01
I —iap r (a33 —2idrzazy)e™'? iappe™¢ 0
0 e 2appe'® 2a3, 1 0]—
0 —iaxe'® (a33 +2ianan)e'® r iap 1
i 2 L~ 2 i L = L~ = 2 .~ 0
e'T —iajpe'? rie'z (a33 —2iappazy)e™'7 iappe™2 0
;9 = ;@ = ;9 ;9
0 'z 2appe'2 2aze” 'z e 2 0
o~ i~ o= o 2 —i% o~ L —if
0 —iaze'? (a33+2iapaz)e'? e 'z iaype 'z e '2
Let z=¢'2,z1 = a12,22 = a3z + 2iajpasy,z3 = asy, the canonical form of this case is

l—izl ry 22 iZ] O
A=z[0 1 2z; |;B=2z|2z3 10|,
0 —izz3 2 r izz 1l
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where
2,21,22,23 €C and ri,rn € R.

(ii): If (A : B) is in the case (ii) of Lemma 3, then we have the following equation by a
calculation

iapay iajpax +a iajpas
* . — . — . — — . — — .
AEA™ = | ianap —ia; iapaxn +ax — axy iandazn —azs | ; (3.10)
iazdyn iazaxn +asz iazas
0 0 —1
BEB* = | 0ibyby ibynby | . (3.11)

1 iby by ibya b3

Assume the self-adjointness conditions (1.12) can be satisfied, then

iappay lappaxp +a iappas 0 0 -1
lapayy —iay3 iaypax +ax — ap iapaz — as 0 ibyy b2 ibypbo3
iazap iazan +az;z iazazn 1 ibsp boy ib3p b3

i.e., ajp = aj3 = 0. It contradicts rank(A) =3.
(iii): If (A : B) is in the case (iii) of Lemma 3, then we have the following equations by
a calculation

iapay iappan iapayn+aps
AEA* = iar aiy iay)ar iaxyazy +ax ; (3.12)

iazdyp — ay3 iazd — azs a3 asy +aszz — ass

0 0—bs3
BEB*=| 0 i 0 . (3.13)
b330 0

Similar to the case (i), the canonical form of this case is

0 0 z 10 O
A=z[0 1 25, |:B=z[01 0 |,
1 —izp 1 0izn —2z1

where
2,21,22 €C and r €R.

Using Theorem 2 the canonical form for the real coupled self-adjoint boundary condi-
tions can be obtained simply in the following corollary.

COROLLARY 1. For the third order regular differential operator, every real cou-
pled self-adjoint boundary condition is equivalent to the following canonical form

nonp
Y(b)=KY(a), K= (o 10 ) (3.14)
30 Mn

where 1,7, 7, % €R, det(K) = 1.
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Proof. Given a coupled self-adjoint boundary condition, it is equivalent to one of
the two canonical forms given by Theorem 2. Without loss of generality, assume that
the coupled self-adjoint is equivalent to (3.5). Since the coupled self-adjoint boundary
condition is real, it is easy to know z,z0 € R, z; =z3 = 0. In this case, (3.5) has the
following transformation

z02zr1zz200 z;10z51r1100
010 010|—=[ 01 0 010]—
002zz22m 02 00 z Ol
L' 0 Z'nm 100 /7 0p100
0 1 0 010 |™ 1 o10010 |,

1307001

(3.15)

—rzzgl 0 zg—zglrlrz 001

where y175 — pys = 1.
In addition, if 7| = 0, then (3.15) is the real coupled canonical form corresponding
to (3.6).

4. Mixed self-adjoint boundary conditions

In this section, we prove that the mixed self-adjoint boundary conditions can be
realized, furthermore, every mixed self-adjoint boundary condition is equivalent to one
of the four canonical forms given below.

By Definition 1, if the mixed self-adjoint boundary conditions can be realized,
then (A : B) can be transformed to

ajpappaz 0 0 0
ax| ay a3 by by by |, “4.1)
0 0 0 b3y b3 b33

and the form (A : B) given by (4.1) satisfies the self-adjointness condition (1.12). Sim-
ilar to the coupled case, we give the following classification to verify whether (A : B)
satisfies the self-adjointness condition (1.12).

LEMMA 4. Assume A,B € M5(C) satisfy rank(A : B) =3, rank(A) = rank(B) =
2. Then (4.1) is equivalent to one of the following four cases:

Case (i):
lapaz 0 00
(A : B) = | 0ax ax by b 0 |; (42)
00 0 b31b31
Case (ii):
lapaz 0 0 0
(A:B) = 0axn ax by bxn by |; (4.3)
00 0 b3byp O
Case (iii):

0 apaz 0 00
(A:B) = a2 ax a3 by b 0 | ; (4.4)
0 0 0 b3y b3l
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Case (iv):
0 apasz 0 0 O
(A:B) = | a1 axn a3 b1 by by |. 4.5)
0 0 0 by by 0

Proof. 1. Assume a;; # 0, by a transformation of rows, (4.1) is equivalent to
lapaz 0 0 O
0 ax ax by by bz | . (4.6)
0 0 0 b3y b3z b33

Then, we give a classification of (4.6) by discussion the last column of B.
(1) If b33 # 0, (4.6) has the following form by a transformation of rows

1&712&713}) ~O 0 . lapasz 0 00
(4.6) — | 0axn 5723 !Zm ,1322 0 re\ﬂ)rre 0 ax ax3 ba1 b 0 | .
00 0b31b321 00 0b31b321

This is the case (i).
(i) If b33 = 0, then (4.6) has the following form

lapasz 0 0 O
0 ax ax3 byy by bys | .
00 0 by by O

This is the case (ii).
2. Assume aj; = 0, then (4.1) has the following form

0 ayp a13 0O 0 0
@y ax axz byy by by | . 4.7
0 0 O b3 by b33

Similarly, we obtain case (iii) and case (iv) depending on whether b33 # 0 or b33 =0
respectively.

THEOREM 3. For the third order regular differential operator, every mixed self-
adjoint boundary condition is equivalent to one of the following four canonical forms:

(i)
1 —iZl rl izl(222) iZ] O
A=z|0 1 271 :B=12z 277 10, 4.8)
0 —izp —iz2(221) mn izp 1
where
z2,21,22 € C and ri,rp € R;
(ii)

l—izl rl 0iZ]O
A=z[0 1 27, |;B=z|010], (4.9)
0 0 O 100
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where
2,21 € C and r; € R,
(iii)
0 0 1 0 00
A=z[0 1 0);B=z(27,10], (4.10)
0—iz; 0 r izy 1
where
2,21 € C and r; € R,
(iv)
100 000
A=z|ot1o|;B=z(010], (4.11)
000 001
where
zeC.

Proof. (i) If (A : B) is in the case (i) of Lemma 4, we have the following equations
by a direct calculation

iappayy — a3 +agz iappaxn —axp 0
AE3A* = iayyaip +ax iax ar 0; 4.12)
0 0 0
0 0 0
BEsB* = | 0 ibpby ibyy b3y — by . (4.13)
0 ib3aboo + by ib3abzp — b3 + b3y
Assume the self-adjointness conditions (1.12) can be satisfied, then
iappaiy — a3 +aps iappaxp —az; 0 0 0 0
iapay + a3 lapay 0 ) =0 ibnbxn by b3y — by
0 0 0 0 ib3a by + by ib3ab3y — D31 + b3y
(4.14)
In order to make our calculations more transparent, let aj, = —2iajn, by =

2ibyy, aiz,by € C. By (4.14), we have ax; = 2rajne'® by = 2rbye'® a3 = r —
2ilana|?, b3y = o+ 2i|b3y|?, where ri,r; € R. Putting these parameters into (4.2), by
a transformation of rows, we have

1 —2iay, r —2ilaps|? 0 0 0

0 re®  2rane®  2rbype® el 0 | —

0 0 0 ry +2i|b3a|? 2ib3y 1

1 —iap, " 2iajabye (P29 japyel(P2=91)

0 re'® 2ragei: 2rb3e re'®: 0o

0 —ib32€i((p‘7q)2> —2ib3zaﬁfzei((p‘7q)2> 1) ibsyy 1

;P1—P e PP 1919 Y Tl s WY ) L)}
eI —iape' 2 rie’ 2 2iapybyre' 7 iape' 2 0
) ) ~ . »—0 ;9201
0 ez 2ape' "2 2b3pe' 2 el 0
Rl el 0} R ) . ) S99 R Rl | P9

0 —ibype' 7 —2ibypape 2 re' 2 ibype 7 €2
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e -0 ~ . . .
Letz=e 5 a1y = z1,b3y = 7, the canonical form of this case is
1 —izy iz1(222) iz1 0

A=z[0 1 27 :B=7| 2z 10],
0 —izp —iz2(271) mn izp 1

z2,21,22 € C and ri,rp € R.

where

(ii) If (A : B) is in the case (ii) of Lemma 4, we have the following equation by a
calculation

0 0 0
BE3B* =10 ibzzl;zz +7b23 1;21 —7b21 1;23 ibzz];zz + b3 1;31 . (4.15)
0 ibxa by —b31b23 ib3bz

Similar to the case (i), the canonical form of this case is

l—izl rl 0iZ]O
A=z(0 1 2z, |;B=z(010|,
00 O 100

2,21 € C and r €R.

where

(iii) If (A : B) is in the case (iii) of Lemma 4, we have the following equation by a
calculation

iappa iappann +ayzan 0
* . — — . — —_ —_
AE3A" = | laydin —ax @13 iaxnan +ax3dy —ax a0 | . (4.16)
0 0 0

Similar to the case (i), the canonical form of this case is

0 0 1 0 00
A=z|10 1 O0|;B=z|2z; 10,
0—iz; O r izy 1

72,21 € C and r; € R.
(iv) If (A : B) is in the case (iv) of Lemma 4, then by (4.15) and (4.16), it is easy
to know that ajp = b3, = 0. Since ibybsy + byzbs; = 0,b3p = 0,rank(B) = 2, then
b31 # 0,by3 = 0. The case of az3 =0 can be proved in the same way. In summary, we
can get ajp = azz = b3y = brz = 0. Similar to the case (i), the canonical form of this

case is
100 000
A=z|010|;B=2z|010 ];
000 001
where z € C.

According to Theorem 3, we can obtain canonical form for the real mixed self-
adjoint boundary conditions simply.

where
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COROLLARY 2. For the third order regular differential operator, every real mixed
self-adjoint boundary condition is equivalent to the following canonical form

AY(a) +BY(b) =0, 4.17)
cosaOsine 0O 0O O

(A:B)= 0 1.0 0 1 0
0 0 O cospBOsinf

, (4.18)
where —5 < a,B < 7Z.

Proof. Given a mixed self-adjoint boundary condition, it is equivalent to one of
the four canonical forms given by Theorem 3. Without loss of generality, assume that
the mixed self-adjoint is equivalent to (4.8). Since the mixed self-adjoint boundary
condition is real, it is easy to know z € R, z; = 20 = 0. In this case, (4.8) has the
following transformation

z0zrp 0 00 10/, 000
0z0 0z0|—=(010010]—
00 0 zn 0z 00001

I (4.19)
7 O O
0 0

1 0
00 0 =

00 ) cosoe O sinc 0 0 O
Lo |[™ o010 010
0 - 0 0 0 sinB0cosB

where —% < a,f < 73.

In addition, if —F < a < %, B = 7. Then (4.18) is the real mixed canonical form
corresponding to (4.9).

If -7 <B <Z%,00= 7. Then (4.18) is the real mixed canonical form correspond-
ing to (4.10).

If B =0a=0. Then (4.18) is the real mixed canonical form corresponding to
4.11).
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