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CANONICAL FORMS OF SELF–ADJOINT BOUNDARY CONDITIONS

FOR REGULAR DIFFERENTIAL OPERATORS OF ORDER THREE

TIAN NIU, XIAOLING HAO ∗ , JIONG SUN AND KUN LI

(Communicated by J. Behrndt)

Abstract. In this paper, we find all canonical forms for third order self-adjoint boundary condi-
tions. These canonical forms play an important role in the study of the dependence of the eigen-
values on the problem and for their numerical calculation. In order to obtain those canonical
forms, we give a classification of self-adjoint boundary conditions. Those self-adjoint boundary
conditions can be categorized into three mutually exclusive classes: coupled, strictly separated
and mixed. Unlike the even order case, for the third order case, the strictly separated self-adjoint
boundary conditions can not be realized. For coupled and mixed cases, there are some different
types for the canonical forms: 2 for coupled and 4 for mixed boundary conditions.

1. Introduction

A regular self-adjoint Sturm-Liouville problem consists of the symmetric differ-
ential equation

− (py′)′ +qy = λwy on J = (a,b),−∞ < a < b < ∞, (1.1)

with coefficients satisfying:

1
p
,q,w ∈ L(J,R), ω > 0 (1.2)

and boundary conditions

AY (a)+BY(b) = 0, Y =
(

y
py′

)
, (1.3)

where

A,B ∈ M2(C), AEA∗ = BEB∗, rank(A : B) = 2, E =
(

0 −1
1 0

)
. (1.4)
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The boundary conditions (1.3) and (1.4) can be categorized into two mutually
exclusive classes: separated and coupled, and these have the canonical forms:
(i) Separated self-adjoint boundary condition: these can be formulated as follows:

cos(α)y(a)− sin(α)(py′)(a) = 0,α ∈ [0,π),
cos(β )y(a)− sin(β )(py′)(a) = 0,β ∈ (0,π ].

(1.5)

(ii) Coupled self-adjoint boundary condition: these are

Y (b) = eiγKY (a), (1.6)

where −π < γ � π and K satisfies

K =
(

k11 k12

k21 k22

)
, ki j ∈ R, detK = 1. (1.7)

(see[1, 2]). Given a boundary condition (1.3) with matrices A,B satisfying (1.4), it
is equivalent to exactly one of the separated or coupled boundary conditions defined
above (see [1]).

These canonical forms play an important role in the study of the dependence of the
eigenvalues on the problem and for their numerical calculation (see [3]). Similar to the
second order case, Hao, Sun and Zettl have obtained canonical forms for the fourth or-
der self-adjoint boundary conditions (see [4]). By using these forms, lots of researchers
have obtained the dependence of the eigenvalues on the fourth order boundary value
problems (see[5]- [7]). These papers give us a better understanding of the dependence
of eigenvalues on the problem. These canonical forms also have many other potential
applications. For more details, one can see book [1].

In this paper, the set of all n× n matrices over the field F is denoted by Mn(F) .
A∗ denotes the complex conjugate of the matrix A . The set of all real-valued Lebesgue
integrable functions on J is denoted by L(J,R) . Given A,B ∈ Mn(F) , the form (A : B)
denotes the n×2n matrix whose last n columns are the columns of the matrix B and
whose first n columns are those of the matrix A .

In this paper, we consider third order boundary value problems, the equation is
given by

My = [−i(p(py′)′ −b0y)−a1y
′]′ + ib0y

′ +a0y = λwy on J = (a,b), (1.8)

where
p−1,b0p−1,b1p−1,a1p−2,a0 ∈ L(J,R), w > 0 a.e.on J. (1.9)

Note that the coefficients of (1.8) have no smoothness assumptions. For this reason, we
give the following quasi-derivatives:

y[0] = y, y[1] = py′, y[2] = ip(y[1])′ +a1y
′ − ib0y. (1.10)

The existence of the quasi-derivatives at a and b can be guaranteed by the condition
(1.9), so this problem is regular (see [1, 2]).
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The boundary conditions

A

⎛⎝ y(a)
y[1](a)
y[2](a)

⎞⎠+B

⎛⎝ y(b)
y[1](b)
y[2](b)

⎞⎠= 0, A,B ∈ M3(C), (1.11)

of Eq. (1.8) are self-adjoint if and only if

rank(A : B) = 3 and AE3A
∗ = BE3B

∗, E3 =

⎛⎝0 0 −1
0 i 0
1 0 0

⎞⎠ . (1.12)

The proof in [8] and [9] can readily be adapted to this generality.
When multiplied by a nonsingular matrix G ∈ M3(C) , the boundary conditions

(1.11) are clearly invariant. If AE3A∗ = BE3B∗ , then

(GA)E3(GA)∗ = (GB)E3(GB)∗.

Hence, by using linear transformations of the rows of (A : B) , the boundary form is
invariant.

REMARK 1. Since AE3A∗ = BE3B∗ , if A is nonsingular, then B is nonsingular.
Hence, for a self-adjoint boundary conditions, rank(A) and rank(B) satisfy one of the
following four cases:

(i) rank(A)=rank(B)=3;
(ii) rank(A)=rank(B)=2;
(iii) rank(A)=1,rank(B)=2;
(iv) rank(A)=2,rank(B)=1.

Similar to the even order case, we give a definition of strictly separated, coupled
and mixed boundary conditions. (see [10])

DEFINITION 1. Assume the matrices A,B ∈ M3(C) satisfy (1.12). Then the self-
adjoint boundary condition (1.11) is
(1) coupled if rank(A) = rank(B) = 3,
(2) mixed if rank(A) = rank(B) = 2,
(3) strictly separated if rank(A)= 2 and rank(B)= 1 or rank(A)= 1 and rank(B)= 2.

In this paper, we obtain canonical forms for the third order self-adjoint boundary
conditions (1.11), (1.12). Unlike the even order case, for the third order case, the strictly
separated self-adjoint boundary conditions cannot be realized. For coupled and mixed
cases, there are some different types for the canonical forms: 2 for coupled and 4 for
mixed boundary conditions.

The paper is composed as follows: In Section 2, we prove the strictly separated
self-adjoint boundary conditions cannot be realized. In Sections 3 and 4, we prove the
coupled and mixed self-adjoint boundary conditions can be realized and obtain their
canonical forms.
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2. Strictly separated self-adjoint boundary conditions

In this section, we prove that the strictly separated self-adjoint boundary condi-
tions cannot be realized. By Definition 1, if the strictly separated self-adjoint boundary
conditions can be realized, then rank(A) , rank(B) satisfy not only the requirements of
rank(A) and rank(B) but also the self-adjointness conditions (1.12). In what follows,
we prove that the strictly separated types cannot be realized.

LEMMA 1. Assume the matrices A,B ∈ M3(C) satisfy (1.12). Then rank(A) =
1,rank(B) = 2 cannot be realized.

Proof. Assume A and B satisfy rank(A : B) = 3,rank(A) = 1,rank(B) = 2. By
using the elementary row transformation, (A : B) is equivalent to(

a11 a12 a13 0 0 0
0 0 0 b21 b22 b23
0 0 0 b31 b32 b33

)
. (2.1)

(i) If b21 �= 0, then (2.1) has the following form by a transformation of rows

(2.1) →
⎛⎝ a11 a12 a13 0 0 0

0 0 0 1 b̃22 b̃23

0 0 0 0 b̃32 b̃33

⎞⎠ rewrite→
(

a11 a12 a13 0 0 0
0 0 0 1 b22 b23
0 0 0 0 b32 b33

)
.

By a computation on the reduced form s of A and B i.e.,

A =

⎛⎝a11 a12 a13

0 0 0
0 0 0

⎞⎠ , B =

⎛⎝0 0 0
1 b22 b23

0 b32 b33

⎞⎠ ,

we have

AE3A
∗ =

(
ia12 a12 +a13 a11 −a11 a13 0 0

0 0 0
0 0 0

)
; (2.2)

BE3B
∗ =

⎛⎝ 0 0 0
0 ib22b22 +b23 − b23 ib22 b32 − b33

0 ib32 b22 +b33 ib32b32

⎞⎠ . (2.3)

Assume the self-adjointness conditions (1.12) can be satisfied, then(
ia12a12 +a13 a11−a11 a13 0 0

0 0 0
0 0 0

)
=

⎛⎝ 0 0 0
0 ib22b22 +b23 − b23 ib22 b32− b33

0 ib32 b22 +b33 ib32 b32

⎞⎠ ,

i.e., b32 = b33 = 0. It contradicts rank(B) = 2.
(ii) If b21 = 0, then (2.1) has the following form(

a11 a12 a13 0 0 0
0 0 0 0 b22 b23
0 0 0 b31 b32 b33

)
. (2.4)
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By a computation with

B =

⎛⎝ 0 0 0
0 b22 b23

b31 b32 b33

⎞⎠ ,

we have

BE3B
∗ =

⎛⎝ 0 0 0
0 ib22 b22 ib22 b32 +b23 b31

0 ib32b22 −b31 b23 ib32b32 −b31 b33 +b33 b31

⎞⎠ . (2.5)

If the self-adjointness conditions (1.12) can be satisfied, then(
ia12 a12 +a13 a11−a11 a13 0 0

0 0 0
0 0 0

)
=

⎛⎝ 0 0 0
0 ib22 b22 ib22 b32 +b23 b31

0 ib32 b22 −b31 b23 ib32 b32 −b31 b33 +b33 b31

⎞⎠ .

It means b22 = b23 = 0 or b22 = b31 = b32 = 0. They all contradict rank(B) = 2.

LEMMA 2. Assume the matrices A,B ∈ M3(C) satisfy (1.12). Then rank(A) =
2,rank(B) = 1 cannot be realized.

Proof. This proof is completely similar to Lemma 1.
Combining Lemmas 1 and 2 we obtain:

THEOREM 1. For the third order regular differential operator, the strictly sepa-
rated self-adjoint boundary condition cannot be realized.

3. Coupled self-adjoint boundary conditions

In this section, we prove that the coupled self-adjoint boundary conditions can be
realized, furthermore, every coupled self-adjoint boundary condition is equivalent to
one of the two canonical forms given below.

By Definition 1, if the coupled self-adjoint boundary conditions can be realized,
then (A : B) can be transformed to(

a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

)
, (3.1)

and the form (A : B) given by (3.1) satisfies the self-adjointness condition (1.12). Be-
low, we verify whether (A : B) satisfies the self-adjointness condition (1.12). In order
to make our calculations more simple, we give a kind of classification of (A : B) by
discussing the first column of A .

LEMMA 3. Let A,B ∈ M3(C) satisfy rank(A) = rank(B) = 3 , then (A : B) is
equivalent to one of the following three cases:
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Case (i):

(A : B) =

(
1 a12 a13 b11 0 0
0 a22 a23 b21 1 0
0 a32 a33 b31 0 1

)
; (3.2)

Case (ii):

(A : B) =

(
0 a12 a13 1 0 0
1 a22 a23 0 b22 0
0 a32 a33 0 b32 1

)
; (3.3)

Case (iii):

(A : B) =

(
0 a12 a13 1 0 0
0 a22 a23 0 1 0
1 a32 a33 0 0 b33

)
. (3.4)

Proof. (i). If a11 �= 0, then (3.1) has the following form by a transformation of
rows:

(3.1) →
(

1 ã12 ã13 b11 0 0
0 ã22 ã23 b21 1 0
0 ã32 ã33 b31 0 1

)
rewrite→

(
1 a12 a13 b11 0 0
0 a22 a23 b21 1 0
0 a32 a33 b31 0 1

)
.

This is the case (i).
(ii) If a11 = 0,a21 �= 0, then (3.1) has the following form by a transformation of rows:

(3.1) →
(

0 a12 a13 1 0 0
1 ã22 ã23 0 b22 0
0 ã32 ã33 0 b32 1

)
rewrite→

(
0 a12 a13 1 0 0
1 a22 a23 0 b22 0
0 a32 a33 0 b32 1

)
.

This is the case (ii).
(iii). If a11 = a21 = 0, then (3.1) has the following form

(3.1) →
(

0 a12 a13 1 0 0
0 a22 a23 0 1 0
1 ã32 ã33 0 0 b33

)
rewrite→

(
0 a12 a13 1 0 0
0 a22 a23 0 1 0
1 a32 a33 0 0 b33

)
.

This is the case (iii).
Obviously, given A,B ∈ M3(C) satisfy rank(A) = rank(B) = 3, (A : B) can be

obtained from one of the three cases given above by using the elementary row trans-
formation. We calculate canonical forms for the coupled boundary conditions by using
this classification.

THEOREM 2. For the third order regular differential operator, every coupled self-
adjoint boundary condition is equivalent to one of the following two canonical forms:

(i)

A = z

(
1 −iz1 r1
0 1 2 z 1
0 −iz3 z2

)
; B = z

(
z 2 iz1 0

2 z 3 1 0
r2 iz3 1

)
, (3.5)

where
z,z1,z2,z3 ∈ C and r1,r2 ∈ R;
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(ii)

A = z

(
0 0 z1
0 1 2 z 2
1 −iz2 r1

)
; B = z

(
1 0 0
0 1 0
0 iz2 − z 1

)
, (3.6)

where
z,z1,z2 ∈ C and r1 ∈ R.

Proof. (i): If (A : B) is in the case (i) of Lemma 3, we have the following equations
by a calculation

AEA∗ =

(
ia12a12 +a13 − a13 ia12a22− a23 ia12a32 − a33

ia22 a12 +a23 ia22 a22 ia22 a32
ia32 a12 +a33 ia32 a22 ia32 a32

)
; (3.7)

BEB∗ =

⎛⎝ 0 0 −b11
0 i −b21

b11 b21 b31−b31

⎞⎠ . (3.8)

Assume the self-adjointness conditions (1.12) can be satisfied, then(
ia12a12 +a13 − a13 ia12 a22− a23 ia12a32− a33

ia22 a12 +a23 ia22a22 ia22 a32
ia32 a12 +a33 ia32a22 ia32 a32

)
=

⎛⎝ 0 0 −b11
0 i −b21

b11 b21 b31 −b31

⎞⎠ . (3.9)

it means a22 = eiϕ , where ϕ ∈ [0,2π ] . In order to make our calculations more trans-
parent, let a12 = −2iã12, a32 = −2iã32eiϕ and a33 = ã33eiϕ , where ã12, ã32, ã33 ∈ C.

By (3.9), we have a23 = 2ã12eiϕ ,b11 = (ã33 − 4iã12ã32)e−iϕ ,b21 = 2ã32,a13 = r1 −
2i|ã12|2,b31 = r2 −2i|ã32|2, where r1,r2 ∈ R. Putting these parameters into (3.2) , by
a transformation of rows, we have⎛⎜⎝ 1 −2iã12 r1−2i|ã12|2 (ã33 −4iã12ã32)e−iϕ 0 0

0 eiϕ 2ã12eiϕ 2ã32 1 0
0 −2iã32eiϕ ã33eiϕ r2 −2i|ã32|2 0 1

⎞⎟⎠→

⎛⎜⎝ 1 −iã12 r1 (ã33 −2iã12 ã32)e−iϕ iã12e−iϕ 0

0 eiϕ 2ã12eiϕ 2ã32 1 0

0 −iã32eiϕ (ã33 +2iã12ã32)eiϕ r2 iã32 1

⎞⎟⎠→

⎛⎜⎝ ei ϕ
2 −iã12ei ϕ

2 r1ei ϕ
2 (ã33 −2iã12ã32)e−i ϕ

2 iã12e−i ϕ
2 0

0 ei ϕ
2 2ã12ei ϕ

2 2ã32e−i ϕ
2 e−i ϕ

2 0

0 −iã32ei ϕ
2 (ã33 +2iã12 ã32)ei ϕ

2 r2e−i ϕ
2 iã32e−i ϕ

2 e−i ϕ
2

⎞⎟⎠ .

Let z = ei ϕ
2 ,z1 = ã12,z2 = ã33 +2iã12ã32,z3 = ã32 , the canonical form of this case is

A = z

(
1 −iz1 r1
0 1 2 z 1
0 −iz3 z2

)
; B = z

(
z 2 iz1 0

2 z 3 1 0
r2 iz3 1

)
,
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where
z,z1,z2,z3 ∈ C and r1,r2 ∈ R.

(ii): If (A : B) is in the case (ii) of Lemma 3, then we have the following equation by a
calculation

AEA∗ =

(
ia12 a12 ia12 a22 +a13 ia12a32

ia22 a12− ia13 ia22 a22 +a23 − a23 ia22 a32 − a33
ia32 a12 ia32 a22 +a33 ia32a32

)
; (3.10)

BEB∗ =

⎛⎝ 0 0 −1
0 ib22 b22 ib22b23

1 ib32 b22 ib32b32

⎞⎠ . (3.11)

Assume the self-adjointness conditions (1.12) can be satisfied, then(
ia12 a12 ia12a22 +a13 ia12a32

ia22 a12− ia13 ia22 a22 +a23 − a23 ia22 a32 − a33
ia32 a12 ia32a22 +a33 ia32a32

)
=

⎛⎝ 0 0 −1
0 ib22 b22 ib22b23

1 ib32 b22 ib32b32

⎞⎠ .

i.e., a12 = a13 = 0. It contradicts rank(A) = 3.
(iii): If (A : B) is in the case (iii) of Lemma 3, then we have the following equations by
a calculation

AEA∗ =

(
ia12 a12 ia12a22 ia12a32 +a13
ia22 a12 ia22a22 ia22a32 +a23

ia32a12 − a13 ia32 a22 − a23 ia32 a32 +a33 − a33

)
; (3.12)

BEB∗ =

⎛⎝ 0 0 −b33
0 i 0

b33 0 0

⎞⎠ . (3.13)

Similar to the case (i), the canonical form of this case is

A = z

⎛⎝0 0 z1

0 1 2z2

1 −iz2 r1

⎞⎠ ; B = z

⎛⎝1 0 0
0 1 0
0 iz2 −z1

⎞⎠ ,

where
z,z1,z2 ∈ C and r1 ∈ R.

Using Theorem 2 the canonical form for the real coupled self-adjoint boundary condi-
tions can be obtained simply in the following corollary.

COROLLARY 1. For the third order regular differential operator, every real cou-
pled self-adjoint boundary condition is equivalent to the following canonical form

Y (b) = KY (a), K =

( γ1 0 γ2
0 1 0
γ3 0 γ4

)
, (3.14)

where γ1,γ2,γ3,γ4 ∈ R , det(K) = 1 .
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Proof. Given a coupled self-adjoint boundary condition, it is equivalent to one of
the two canonical forms given by Theorem 2. Without loss of generality, assume that
the coupled self-adjoint is equivalent to (3.5). Since the coupled self-adjoint boundary
condition is real, it is easy to know z,z2 ∈ R, z1 = z3 = 0. In this case, (3.5) has the
following transformation⎛⎝ z 0 zr1 zz2 0 0

0 1 0 0 1 0
0 0 zz2 zr2 0 z

⎞⎠→
⎛⎝ z−1

2 0 z−1
2 r1 1 0 0

0 1 0 0 1 0
0 0 z2 r2 0 1

⎞⎠→

⎛⎝ z−1
2 0 z−1

2 r1 1 0 0
0 1 0 0 1 0

−r2z
−1
2 0 z2 − z−1

2 r1r2 0 0 1

⎞⎠ rewrite→
⎛⎝ γ1 0 γ2 1 0 0

0 1 0 0 1 0
γ3 0 γ4 0 0 1

⎞⎠ ,

(3.15)

where γ1γ4− γ2γ3 = 1.
In addition, if r1 = 0, then (3.15) is the real coupled canonical form corresponding

to (3.6).

4. Mixed self-adjoint boundary conditions

In this section, we prove that the mixed self-adjoint boundary conditions can be
realized, furthermore, every mixed self-adjoint boundary condition is equivalent to one
of the four canonical forms given below.

By Definition 1, if the mixed self-adjoint boundary conditions can be realized,
then (A : B) can be transformed to(

a11 a12 a13 0 0 0
a21 a22 a23 b21 b22 b23
0 0 0 b31 b32 b33

)
, (4.1)

and the form (A : B) given by (4.1) satisfies the self-adjointness condition (1.12). Sim-
ilar to the coupled case, we give the following classification to verify whether (A : B)
satisfies the self-adjointness condition (1.12).

LEMMA 4. Assume A,B ∈ M3(C) satisfy rank(A : B) = 3 , rank(A) = rank(B) =
2 . Then (4.1) is equivalent to one of the following four cases:
Case (i):

(A : B) =

(
1 a12 a13 0 0 0
0 a22 a23 b21 b22 0
0 0 0 b31 b32 1

)
; (4.2)

Case (ii):

(A : B) =

(
1 a12 a13 0 0 0
0 a22 a23 b21 b22 b23
0 0 0 b31 b32 0

)
; (4.3)

Case (iii):

(A : B) =

(
0 a12 a13 0 0 0

a21 a22 a23 b21 b22 0
0 0 0 b31 b32 1

)
; (4.4)
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Case (iv):

(A : B) =

(
0 a12 a13 0 0 0

a21 a22 a23 b21 b22 b23
0 0 0 b31 b32 0

)
. (4.5)

Proof. 1. Assume a11 �= 0, by a transformation of rows, (4.1) is equivalent to(
1 a12 a13 0 0 0
0 a22 a23 b21 b22 b23
0 0 0 b31 b32 b33

)
. (4.6)

Then, we give a classification of (4.6) by discussion the last column of B .
(i) If b33 �= 0, (4.6) has the following form by a transformation of rows

(4.6) →
⎛⎝ 1 ã12 ã13 0 0 0

0 ã22 ã23 b̃21 b̃22 0
0 0 0 b̃31 b̃32 1

⎞⎠ rewrite→
⎛⎝ 1 a12 a13 0 0 0

0 a22 a23 b21 b22 0
0 0 0 b31 b32 1

⎞⎠ .

This is the case (i).
(ii) If b33 = 0, then (4.6) has the following form(

1 a12 a13 0 0 0
0 a22 a23 b21 b22 b23
0 0 0 b31 b32 0

)
.

This is the case (ii).
2. Assume a11 = 0, then (4.1) has the following form(

0 a12 a13 0 0 0
a21 a22 a23 b21 b22 b23
0 0 0 b31 b32 b33

)
. (4.7)

Similarly, we obtain case (iii) and case (iv) depending on whether b33 �= 0 or b33 = 0
respectively.

THEOREM 3. For the third order regular differential operator, every mixed self-
adjoint boundary condition is equivalent to one of the following four canonical forms:

(i)

A = z

(
1 −iz1 r1
0 1 2 z 1
0 −iz2 −iz2(2 z 1)

)
; B = z

(
iz1(2 z 2) iz1 0

2 z 2 1 0
r2 iz2 1

)
, (4.8)

where
z,z1,z2 ∈ C and r1,r2 ∈ R;

(ii)

A = z

(
1 −iz1 r1
0 1 2 z 1
0 0 0

)
; B = z

(
0 iz1 0
0 1 0
1 0 0

)
, (4.9)
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where
z,z1 ∈ C and r1 ∈ R;

(iii)

A = z

(
0 0 1
0 1 0
0 −iz1 0

)
; B = z

(
0 0 0

2 z 1 1 0
r1 iz1 1

)
, (4.10)

where
z,z1 ∈ C and r1 ∈ R;

(iv)

A = z

(
1 0 0
0 1 0
0 0 0

)
; B = z

(
0 0 0
0 1 0
0 0 1

)
, (4.11)

where
z ∈ C.

Proof. (i) If (A : B) is in the case (i) of Lemma 4, we have the following equations
by a direct calculation

AE3A
∗ =

(
ia12 a12 − a13 +a13 ia12 a22 − a23 0

ia22a12 +a23 ia22 a22 0
0 0 0

)
; (4.12)

BE3B
∗ =

⎛⎝ 0 0 0
0 ib22 b22 ib22 b32 −b21

0 ib32b22 + b21 ib32b32 −b31 + b31

⎞⎠ . (4.13)

Assume the self-adjointness conditions (1.12) can be satisfied, then(
ia12 a12 − a13 +a13 ia12 a22 − a23 0

ia22a12 +a23 ia22 a22 0
0 0 0

)
=

⎛⎝ 0 0 0
0 ib22 b22 ib22 b32 −b21

0 ib32 b22 + b21 ib32b32 −b31 + b31

⎞⎠ .

(4.14)
In order to make our calculations more transparent, let a12 = −2iã12 , b32 =

2ib̃32 , ã12, b̃32 ∈ C . By (4.14), we have a23 = 2rã12eiϕ1 ,b21 = 2rb̃32eiϕ2 ,a13 = r1 −
2i|ã12|2,b31 = r2 +2i|b̃32|2, where r1,r2 ∈ R. Putting these parameters into (4.2) , by
a transformation of rows, we have⎛⎜⎝ 1 −2iã12 r1 −2i|ã12|2 0 0 0

0 reiϕ1 2rã12eiϕ1 2rb̃32eiϕ2 reiϕ2 0
0 0 0 r2 +2i|b̃32|2 2ib̃32 1

⎞⎟⎠→

⎛⎜⎜⎝ 1 −iã12 r1 2iã12b̃32ei(ϕ2−ϕ1) iã12ei(ϕ2−ϕ1) 0

0 reiϕ1 2rã12eiϕ1 2rb̃32eiϕ2 reiϕ2 0

0 −ib̃32ei(ϕ1−ϕ2) −2ib̃32ã12ei(ϕ1−ϕ2) r2 ib̃32 1

⎞⎟⎟⎠→

⎛⎜⎜⎝ ei ϕ1−ϕ2
2 −iã12ei ϕ1−ϕ2

2 r1ei ϕ1−ϕ2
2 2iã12b̃32ei ϕ2−ϕ1

2 iã12ei ϕ2−ϕ1
2 0

0 ei ϕ1−ϕ2
2 2ã12e

i ϕ1−ϕ2
2 2b̃32e

i ϕ2−ϕ1
2 ei ϕ2−ϕ1

2 0

0 −ib̃32ei
ϕ1−ϕ2

2 −2ib̃32ã12ei
ϕ1−ϕ2

2 r2ei
ϕ2−ϕ1

2 ib̃32ei
ϕ2−ϕ1

2 ei
ϕ2−ϕ1

2

⎞⎟⎟⎠ .
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Let z = e
ϕ1−ϕ2

2 , ã12 = z1, b̃32 = z2 , the canonical form of this case is

A = z

(
1 −iz1 r1
0 1 2 z 1
0 −iz2 −iz2(2 z 1)

)
; B = z

(
iz1(2 z 2) iz1 0

2 z 2 1 0
r2 iz2 1

)
,

where
z,z1,z2 ∈ C and r1,r2 ∈ R.

(ii) If (A : B) is in the case (ii) of Lemma 4, we have the following equation by a
calculation

BE3B
∗ =

⎛⎝ 0 0 0
0 ib22b22 +b23 b21−b21 b23 ib22 b32 +b23 b31

0 ib32 b22 −b31 b23 ib32b32

⎞⎠ . (4.15)

Similar to the case (i), the canonical form of this case is

A = z

(
1 −iz1 r1
0 1 2 z 1
0 0 0

)
; B = z

(
0 iz1 0
0 1 0
1 0 0

)
,

where
z,z1 ∈ C and r1 ∈ R.

(iii) If (A : B) is in the case (iii) of Lemma 4, we have the following equation by a
calculation

AE3A
∗ =

(
ia12a12 ia12a22 +a13 a21 0

ia22a12−a21 a13 ia22a22 +a23 a21 −a21 a23 0
0 0 0

)
. (4.16)

Similar to the case (i), the canonical form of this case is

A = z

(
0 0 1
0 1 0
0 −iz1 0

)
; B = z

(
0 0 0

2 z 1 1 0
r1 iz1 1

)
,

where
z,z1 ∈ C and r1 ∈ R.

(iv) If (A : B) is in the case (iv) of Lemma 4, then by (4.15) and (4.16), it is easy
to know that a12 = b32 = 0. Since ib22b32 + b23b31 = 0,b32 = 0,rank(B) = 2, then
b31 �= 0,b23 = 0. The case of a23 = 0 can be proved in the same way. In summary, we
can get a12 = a23 = b32 = b23 = 0. Similar to the case (i), the canonical form of this
case is

A = z

(
1 0 0
0 1 0
0 0 0

)
; B = z

(
0 0 0
0 1 0
0 0 1

)
;

where z ∈ C.
According to Theorem 3, we can obtain canonical form for the real mixed self-

adjoint boundary conditions simply.
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COROLLARY 2. For the third order regular differential operator, every real mixed
self-adjoint boundary condition is equivalent to the following canonical form

AY (a)+BY(b) = 0, (4.17)

(A : B) =

(
cosα 0 sinα 0 0 0

0 1 0 0 1 0
0 0 0 cosβ 0 sinβ

)
, (4.18)

where − π
2 < α,β � π

2 .

Proof. Given a mixed self-adjoint boundary condition, it is equivalent to one of
the four canonical forms given by Theorem 3. Without loss of generality, assume that
the mixed self-adjoint is equivalent to (4.8). Since the mixed self-adjoint boundary
condition is real, it is easy to know z ∈ R, z1 = z2 = 0. In this case, (4.8) has the
following transformation⎛⎝ z 0 zr1 0 0 0

0 z 0 0 z 0
0 0 0 zr2 0 z

⎞⎠→
⎛⎝ 1 0 r1 0 0 0

0 1 0 0 1 0
0 0 0 r2 0 1

⎞⎠→
⎛⎜⎝

1
1+r2

1
0 r1

1+r2
1

0 0 0

0 1 0 0 1 0
0 0 0 r2

1+r2
2

0 1
1+r2

2

⎞⎟⎠ rewrite→
⎛⎝ cosα 0 sinα 0 0 0

0 1 0 0 1 0
0 0 0 sinβ 0 cosβ

⎞⎠ .

(4.19)

where − π
2 < α,β < π

2 .
In addition, if − π

2 < α < π
2 , β = π

2 . Then (4.18) is the real mixed canonical form
corresponding to (4.9).

If − π
2 < β < π

2 ,α = π
2 . Then (4.18) is the real mixed canonical form correspond-

ing to (4.10).
If β = α = 0. Then (4.18) is the real mixed canonical form corresponding to

(4.11).
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