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ON THE NUMERICAL RANGE AND OPERATOR NORM OF V 2

L. KHADKHUU AND D. TSEDENBAYAR ∗

(Communicated by D. R. Farenick)

Abstract. Let V denote the classical Volterra operator on L2(0,1) . We investigate the numerical
range and operator norm of V 2 . In particular, we obtain the numerical range, numerical radius
and norm of ReV 2 and ImV 2 .

1. Introduction

Let H be a complex Hilbert space equipped with the inner product (·, ·) , which
induces the norm ‖·‖ . Denote by B(H) the Banach algebra of bounded linear operators
acting on H with the operator norm defined by

‖A‖ = sup{‖Ax‖ : x ∈ H , ||x‖| = 1}, A ∈ B(H).

For a bounded linear operator A on a complex Hilbert space H , the numerical range
W (A) is the image of the unit sphere of H under the quadratic form x → (Ax,x) asso-
ciated with the operator. More precisely,

W (A) = {(Ax,x) : x ∈ H,‖x‖ = 1}.

It is well known that numerical range of an operator is convex (The Toeplitz-
Hausdorf theorem) and the spectrum is contained in the closure of its numerical range.
Note that A is a self-adjoint if and only if W (A) ⊂ R.

The numerical radius of an operator A is defined by

ω(A) = sup{|λ | : λ ∈W (A)}

and the following inequalities

‖A‖
2

� ω(A) � ‖A‖
hold. (see [1])

Mathematics subject classification (2010): 47A10, 47A12, 47A30.
Keywords and phrases: Volterra operator, numerical range, numerical radius, operator norm.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-14-18

251

http://dx.doi.org/10.7153/oam-2020-14-18


252 L. KHADKHUU AND D. TSEDENBAYAR

Denote by V the classical Volterra operator

(V f )(x) =
x∫

0

f (t)dt, f ∈ L2(0,1).

The adjoint of the Volterra operator is

(V ∗ f )(x) =
1∫

x

f (t)dt.

We recall the well-known formula

(Vn f )(x) =
∫ x

0

(x− t)n−1

(n−1)!
f (t)dt

and

(V ∗n f )(x) =
∫ 1

x

(t− x)n−1

(n−1)!
f (t)dt

for n ∈ N .
The Volterra operator is compact, quasinilpotent and accretive. (see [1], [2])
Recall that W (V ) is bounded by the curve

t �→ 1− cost
t2

± t− sint
t2

, 0 � t � 2π

and ||V || = 2
π . (see [2], [4])

The aim of this paper is to study the numerical range and operator norm of V 2

on L2(0,1) . In particular, we will obtain the numerical range, numerical radius and
operator norm of ReV 2 and ImV 2 .

We will need the following theorem.

THEOREM 1.1. [1, page 268], [3, page 37] If A is a bounded operator on H and
θ ∈ [−π ,π ], put λθ = maxσ(Bθ ) , where Bθ = 1

2 (e−iθ A+ eiθA∗) = B∗
θ . Then

W (A) =
⋂

θ∈[−π ,π ]

Hθ ,

where the half-space Hθ is defined by

Hθ = {z ∈ C : Re(e−iθ z) � λθ}, z = x+ iy.
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2. The results

PROPOSITION 2.1. According to Theorem 1.1 and under the assumption λθ ∈
C1[−π ,π ] , we have {

x = λθ cosθ −λ ′
θ sinθ

y = λθ sinθ + λ ′
θ cosθ ,

(2.1)

which is an envelope curve.

Proof. Fix θ and consider the supporting line Lθ of W (A) given by

xcosθ + ysinθ = λθ .

Now fix x,y such that x+ iy ∈ Lθ ∩W (A) . So we have

xcosθ + ysinθ = λθ (2.2)

and also, since x+ iy ∈W (A),

xcosξ + ysinξ � λξ , ξ ∈ [−π ,π ]. (2.3)

Now, for any h > 0, xcos(θ + h)+ ysin(θ + h) � λθ+h by (2.3). Together with
the equality (2.2) and that h > 0, we get

x
cos(θ +h)− cosθ

h
+ y

sin(θ +h)− sinθ
h

� λθ+h−λθ
h

. (2.4)

Taking limit as h → 0, we obtain

− xsinθ + ycosθ � λ
′
θ . (2.5)

If we now repeat the argument with h < 0, we obtain

− xsinθ + ycosθ � λ
′
θ . (2.6)

Combining (2.5) and (2.6) we have

− xsinθ + ycosθ = λ
′
θ . (2.7)

Now (2.7) and (2.2) give a linear system on x,y that allows us to obtain (2.1) . �

PROPOSITION 2.2. If z ∈W (Vn) , then implies that z ∈W (Vn) for all n ∈ N .

Proof. Suppose that ∀z ∈ W (Vn) , ∃ f such that || f || = 1 and z = (Vn f , f ) for
n ∈ N . Then

z =
∫ 1

0
(Vn f (x)) f (x)dx =

∫ 1

0
(Vn f (x)) f (x)dx = (Vn f , f ), || f || = 1. �

We consider the numerical range of V 2 .
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THEOREM 2.1. The boundary of W (V 2) is union of the curves γ1 and γ2 , where

γ1 :

⎧⎨
⎩

x = x(μ) = 1
μ2 − 16−ϕ2(μ)

2μ3ϕ ′ (μ)

y = y(μ) = ± 4+ϕ(μ)
2μ3ϕ ′ (μ)

√
16−ϕ2(μ)

(2.8)

ϕ(μ) = (μ −2)eμ − (μ +2)e−μ, μ ∈ (0,μ0], eμ0 =
μ0 +2
μ0−2

and

γ2 :

⎧⎨
⎩

x = x(μ) = − 1
μ2 + 4−ψ2(μ)

μ3ψ ′ (μ)

y = y(μ) = ± 2+ψ(μ)
μ3ψ ′ (μ)

√
4−ψ2(μ)

(2.9)

ψ(μ) = −2cosμ − μ sinμ , μ ∈ (0,π ], x(0) =
1
30

, y(0) =
√

3
12

.

Proof. Put A = V 2 into Theorem 1.1. Let 0 � θ � π . The spectral problem is

e−iθ
∫ x

0
(x− t) f (t)dt + eiθ

∫ 1

x
(t − x) f (t)dt = 2λ f (x). (2.10)

We proceed from this integral equation to a differential equation by applying the oper-
ator D = d

dx twice. Thus,

e−iθ
∫ x

0
f (t)dt − eiθ

∫ 1

x
f (t)dt = 2λ f

′
(x) (2.11)

and

f
′′
(x)− cosθ

λ
f (x) = 0.

(if λ = 0, then f = 0)
Substituting x = 0 and x = 1 into (2.10), we obtain

eiθ
∫ 1

0
t f (t)dt = 2λ f (0),

e−iθ
∫ 1

0
(1− t) f (t)dt = 2λ f (1).

Eliminating above the boundary conditions, we get

∫ 1

0
f (t)dt = 2λ (e−iθ f (0)+ eiθ f (1)).

Similarly, substituting x = 0 and x = 1 into (2.11), we obtain

−eiθ
∫ 1

0
f (x)dx = 2λ f

′
(0)
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and

e−iθ
∫ 1

0
f (x)dx = 2λ f

′
(1)

which implies
e−2iθ f (0)+ f (1) = −e−2iθ f

′
(0) = f

′
(1).

The spectral problem (2.8) is equivalent to the following differential equation with
the following boundary conditions

f
′′
(x)− cosθ

λ
f (x) = 0, (λ = 0,θ ∈ [−π ,π ]) (2.12)

−e−2iθ f
′
(0) = f

′
(1), (2.13)

e−2iθ f (0)+ f (1) = −e−2iθ f
′
(0). (2.14)

The case cosθ
λ = μ2 (μ > 0) . The solution of (2.12) is

f (x) = eμx + αe−μx. (α = const)

From (2.13) and (2.14), we obtain

α =
1+ eμe2iθ

1+ e−μe2iθ

and

α =
e−2iθ + eμ + μe−2iθ

μe−2iθ − e−2iθ − e−μ ,

respectively. Then

4cos2θ = (μ −2)eμ − (μ +2)e−μ . (2.15)

The case cosθ
λ = −μ2. (μ > 0) The solution of (2.12) is

f (x) = cosμx+ α sinμx (α = const)

From (2.13) and (2.14), we obtain

α =
e2iθ sinμ

1+ e2iθ cosμ

and

α = − e−2iθ + cosμ
μe−2iθ + sinμ

,

respectively. Then

2cos2θ = −2cosμ − μ sinμ . (2.16)
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Thus,

λθ = max

{
cosθ

μ2 ,−cosθ
μ2

}
=

{
cosθ
μ2 , 0 < θ � π

2

− cosθ
μ2 , π

2 < θ � π .
(2.17)

Suppose that 0 < θ � π
2 . Denote

ϕ(μ) = (μ −2)eμ − (μ +2)e−μ,μ � 0.

It is easy to see that ϕ is an increasing function, that is

min
μ�0

ϕ(μ) = ϕ(0) = −4.

Denote by μ0 the solution of the equation

ϕ(μ) = 4.

Thus,

ϕ(μ0) = 4 ⇔ μ0

2
= coth

( μ0

2

)
⇔ eμ0 =

μ0 +2
μ0 −2

. (μ0 ≈ 2.399)

Therefore, μ ∈ (0,μ0] . By (2.15) implies that if θ → 0 and θ → π
2 , then μ → μ0

and μ → 0, respectively.
From (2.15), we obtain

−8(sin2θ )θ
′
μ = ϕ

′
(μ) ⇒ θ

′
μ = − ϕ ′

(μ)
8sin2θ

.

Recall that λ = cosθ
μ2 . Then

λ
′
μ = −μ2(sinθ )θ ′

μ +2μ cosθ
μ4 = − sinθ

μ2 θ
′
μ − 2cosθ

μ3

implies that

λ
′
θ =

λ ′
μ

θ ′
μ

= − sinθ
μ2 − 2cosθ

μ3θ ′
μ

= − sinθ
μ2 +

16cosθ sin2θ
μ3ϕ ′(μ)

.

By (2.1) and (2.15), we get

γ1 :

⎧⎨
⎩

x = λ cosθ −λ ′
θ sinθ = 1

μ2 − 16−ϕ2(μ)
2μ3ϕ ′ (μ)

y = λ sinθ + λ ′
θ cosθ = 4+ϕ(μ)

2μ3ϕ ′ (μ)

√
16−ϕ2(μ).

Suppose π
2 < θ � π . Denote

ψ(μ) = −2cosμ − μ sinμ . (μ ∈ (0,π ])

Similarly, to the previous case ψ is increasing function and −2 = ψ(0) � ψ(μ) �
ψ(π) = 2. If θ → π

2 and θ → π then μ → 0 and μ → π , respectively.
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From (2.16), we obtain

θ
′
μ = − ψ ′

(μ)
4sin2θ

,

λ
′
μ =

(
−cosθ

μ2

)′

μ
=

sinθ
μ2 θ

′
μ +

2cosθ
μ3

and

λ
′
θ =

λ ′
μ

θ ′
μ

=
sinθ
μ2 − 8cosθ sin2θ

μ3ψ ′(μ)
.

By (2.1) and (2.16), we get

γ2 :

⎧⎨
⎩

x = xcosθ −λ ′
θ sinθ = − 1

μ2 + 4−ψ2(μ)
μ3ψ ′ (μ)

y = xsinθ + λ ′
θ cosθ = ± 2+ψ(μ)

μ3ψ ′ (μ)

√
4−ψ2(μ).

It is easy to see that

x =
1

μ2 −
16−ϕ2(μ)
2μ3ϕ ′(μ)

=
1
30 + 19

840 μ2 +o(μ4)
1+ 1

10 μ2 +o(μ4)
⇒ lim

μ→0
x =

1
30

and

y =
4+ ϕ(μ)
2μ3ϕ ′(μ)

√
16−ϕ2(μ) =

μ4

6

(
1+ 1

15 μ2 +o(μ4
)

4
3 μ6

(
1+ 1

10 μ2 +o(μ4
) 2μ2
√

3

√
1+

μ2

15
+o(μ4)

⇒ lim
μ→0

y =
√

3
12

for γ1 .
In the case of γ2 ,

x = − 1
μ2 +

4−ψ2(μ)
μ3ψ ′(μ)

=
1
30 +o(μ2)

1− μ2

10 +o(μ4)
⇒ lim

μ→0
x =

1
30

and

y =
2+ ψ(μ)
μ3ψ ′(μ)

√
4−ψ2(μ) =

μ4

12

(
1− μ2

15 +o(μ4)
)

μ6

3

(
1− μ2

10 +o(μ4)
) μ2
√

3

√
1− μ2

15
+o(μ4)

⇒ lim
μ→0

y =
√

3
12

for γ2 .
If μ = μ0 then x = 1

μ2
0
,y = 0 for γ1 . Similarly, if μ = π then x = − 1

π2 ,y = 0 for

γ2 . This completes the proof. �
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COROLLARY 2.1. We have

a) W (ReV 2) =
[
− 1

π2 ,
1

μ2
0

]
, ω(ReV 2) =

1

μ2
0

, ||ReV 2|| = 1

μ2
0

.

b) W (ImV 2) =

[
−
√

3
12

,

√
3

12

]
, ω(ImV 2) =

√
3

12
, ||ImV 2|| =

√
3

12
.

We consider numerical range of V 2 on the following picture.

THEOREM 2.2.

||V 2|| = 1
τ2 ,

(
1
τ2 ≈ 0.2844

)
where τ is the smallest positive root of the equation

1+ cosν coshν = 0. (2.18)

Proof. It is easy to see that

(V ∗2V 2 f )(x) =
∫ 1

x
(t− x)dt

∫ t

0
(t − s) f (s)ds

=
∫ x

0
f (s)ds

∫ 1

x
(t− x)(t− s)dt +

∫ 1

x
f (s)ds

∫ 1

s
(t − x)(t− s)dt.

We will determine the norm of V 2 by calculating the largest eigenvalue of V ∗2V 2 ,
that is we looking for the largest λ > 0 such that V ∗2V 2 f = λ f for some non-zero
f ∈ L2(0,1) . We can rewrite the spectral problem

∫ x

0
f (s)ds

∫ 1

x
(t− x)(t− s)dt +

∫ 1

x
f (s)ds

∫ 1

s
(t − x)(t− s)dt = λ f (x). (2.19)
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We proceed from this integral equation to a differential equation by applying the
operator D = d

dx four times,

−1
2

∫ 1

0
(1− s)2 f (s)ds+

1
2

∫ x

0
(x− s)2 f (s)ds = λ f

′
(x), (2.20)∫ x

0
(x− s) f (s)ds = λ f

′′
(x), (2.21)∫ x

0
f (s)ds = λ f

′′′
(x) (2.22)

and
f (x) = λ f iv(x). (2.23)

Substituting x = 1 into (2.19), (2.20) and x = 0 into (2.21), (2.22), we obtain the
following boundary conditions (2.24)

f (1) = f
′
(1) = f

′′
(0) = f

′′′
(0) = 0. (2.24)

The solution of (2.23) is

f (x) = eνx +ae−νx +bcosνx+ csinνx

where ν = 1
4√λ

, a,b,c− const. Accounting the boundary conditions (2.24), we obtain

(2.18). The completes the proof. �
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