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Abstract. Let X be a Banach space, A∈B(X) and M be an invariant subspace of A . We present
an alternative proof that, if the spectrum of the restriction of A to M contains a point that is in
any given hole in the spectrum of A , then the entire hole is in the spectrum of the restriction.

Let X be a Banach space and A ∈ B(X) . If M is a closed invariant subspace of
A then, as is well known, the spectrum of the restriction A|M may differ a lot from the
spectrum of A . The following example is very characteristic.

EXAMPLE. Let X = l2(Z) and A be the bilateral shift. Then the spectrum of
A is the unit circle. If M is the subspace of sequences whose terms are zero for all
negative integers, then the spectrum of A|M is the unit disk. Hence the spectrum of the
restriction may fill possible holes in σ(A) . Recall that a hole in a compact set of the
complex plane is a bounded connected component of its complement.

As was proved by J. Scroggs in [11] a more precise result holds: if one point of
the hole lies in σ(A|M) , then the entire hole must lie in σ(A|M) .

This result together with the fact that the spectrum of the restriction does not inter-
sect the unbounded connected component of ρ(A) (see [11, Corollary 4.1]) were ob-
tained earlier by J. Bram in [1], for the particular case of a normal operator in a Hilbert
space. Note that this was a refinement of P. Halmos’ spectral inclusion relation that if A
is the minimal normal extension of the subnormal operator B , then σ(A) ⊆ σ(B) (see
[7, Problem 200]).

Our aim in this short paper is to present an alternative proof of this interesting and
surprising result.

THEOREM. Let M be a closed invariant subspace of the bounded linear operator
A and D be a connected component of ρ(A) . If D∩σ(A|M) �= /0 , then

D ⊆ σ(A|M) .

Proof. Let D be a connected component of the resolvent ρ(A) and a ∈ D ∩
σ(A|M) . Assume that there exists b ∈ D with b ∈ ρ(A|M) and let C be any (con-
tinuous) rectifiable path that lies in D and connects a and b .
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First we show that there exists c > 0 such that

‖Ax−λx‖� c‖x‖ , for all λ ∈C and x ∈ M . (1)

Assume the contrary; i.e. that there exists a sequence (λn) in C and a sequence (xn) in
M , with ‖xn‖= 1, such that ‖Axn−λnxn‖→ 0, as n→∞ . Then since (λn) is bounded
it has a subsequence, which for simplicity we denote again by (λn) , that converges to
some λ0 ∈C (note that C is the range of a continuous function and hence it is closed).
But then

‖Axn−λ0xn‖ � ‖Axn−λnxn‖+ |λn−λ0|
and hence ‖Axn−λ0xn‖→ 0, as n → ∞ , which is a contradiction since λ0 ∈ ρ(A) .

As one may easily see inequality (1) implies that the resolvent function

Rλ = (A|M −λ IM)−1 ,

of the restriction A|M , is bounded on C∩ρ(A|M) and in particular

‖Rλ‖ � 1
c

, for all λ ∈C∩ρ(A|M) .

Hence, by the elementary properties of the resolvent function we have λ ∈ ρ(A|M) , for
all

|b−λ |< c � 1
‖Rb‖ .

Since c is independent of λ the above argument shows that if two λ ’s that belong
to C are within c of each other and one is in the resolvent set of the restriction then
the other is also in the resolvent set of the restriction. Therefore, if we divide the arc C
into subarcs of length less than c , then the subarc containing b has the other endpoint
in the resolvent set of the restriction, and so on. The last subarc contains a and so a is
also in the resolvent set of the restriction which is a contradiction. Hence

D ⊆ σ(A|M) .

REMARK.

(i) In his proof J. Scroggs [11, Theorem 4] uses the analyticity of the resolvent
function in the connected components of ρ(A) and obtains the result by using
the uniqueness theorem for analytic functions (see also the book of H. Dowson
[5, Theorem 1.29]). On the other hand the proof that is presented in the book of J.
Conway [2, Theorem II.2.11 (c)] and is attributed to S. Parrott, uses the fact that
the boundary of the spectrum is contained in the approximate point spectrum.
It seems to us that our approach is simpler and in a sense more direct: it only
depends on the fact that “good” and “bad” points in the same hole (and in the
unbounded component) are continuously linked and thus they cannot coexist.
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(ii) P. Halmos notes in [7, Problem 201, p. 308] that S. Parrott’s proof depends on
the obvious spectral inclusion

σapp(A|M) ⊆ σapp(A)

only and the conclusion holds for any pair of operators A and B whenever their
approximate spectra are so related. Our proof may be easily adapted to this more
general situation.

(iii) J. Bram in his proof [1, Theorem 4] for normal operators in a Hilbert space, also
uses the analyticity of the resolvent function together with the spectral theorem.
An alternative proof for this case, but without using complex analysis, is given
by I. Ito in [8, Theorem 8].

(iv) Analogous results have been obtained by H. Dowson in [6, Theorem 1] for op-
erators induced on quotient spaces and by M. Putinar in [9, Corollary 2.6] for
hyponormal operators.

(v) Our proof, without significant changes, may be adapted to prove the correspond-
ing result for densely defined closed linear operators. A proof of this result, using
the fact that the boundary of the spectrum is contained in the approximate point
spectrum, was given by J. Stochel and F. Szafraniec in [12, Theorem 2].

An immediate corollary of the theorem is that filling the holes in σ(A) , as in the
example, is the only possibility for σ(A|M) .

COROLLARY. If M is a closed invariant subspace of A and U is the unbounded
connected component of ρ(A) , then

σ(A|M)∩U = /0 .

REMARK.

(i) This corollary may be found in J. Scroggs’ paper [11, Corollary 4.1]. The proof
that is presented in the book of H. Radjavi and P. Rosenthal [10, Theorem 0.8] is
attributed in [10, p. 10] and in [4, Lemma 2] to S. Parrott. As we have already
mentioned an earlier proof, for normal operators, was given by J. Bram in [1,
Theorem 3].

(ii) In view of the conclusion of the corollary a natural question that arises is which
holes in the spectrum can be filled? A solution to this much harder problem, for
the case of normal operators in a Hilbert space, was given by J. Conway and P.
Olin in [3, Theorem 9.2].

Acknowledgement. We would like to thank Prof. P. Rosenthal for his useful re-
marks and suggestions that have improved both the content and the presentation of this
paper.
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