
Operators
and

Matrices

Volume 14, Number 1 (2020), 265–269 doi:10.7153/oam-2020-14-20

A NOTE ON A CONJECTURED SINGULAR VALUE

INEQUALITY RELATED TO A LINEAR MAP

JUNJIAN YANG ∗ , LINZHANG LU AND ZHEN CHEN

(Communicated by F. Kittaneh)

Abstract. If

(
A D
D∗ C

)
is positive semidefinite with each block n×n, Lin conjectured that

s j(Φ(D)) � s j(Φ(A)�Φ(C)), j = 1, . . . ,n,

where Φ is the linear map: D �→ D+(trD)In and s j(D) denotes the j -th largest singular value
of the matrix D . In this note, we confirm this conjecture when n = 2 .

1. Introduction

Throughout this paper, we let Mn and M
+
n denote the set of n × n complex

matrices and the set of n× n positive semidefinite matrices, respectively. For any
A ∈ Mn, the conjugate transpose of A is denoted by A∗ . The singular values of A , de-
noted by s1(A),s2(A), . . . ,sn(A), are the eigenvalues of the positive semidefinite matrix
|A|= (A∗A)1/2, arranged in non-increasing order and repeated according to multiplicity
as s1(A) � s2(A) � · · · � sn(A). For a Hermitian matrix A , we write A � 0 to mean A
is positive semidefinite. If A ∈ M

+
n , then it has a unique positive semidefinite square

root, which is denoted by A
1
2 . In denotes the n×n identity matrix.

The geometric mean of two positive definite matrices A,B ∈ Mn is defined by
A�B = A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 . More details on the matrix geometric mean can be found

in [1, Chapter 4].
Consider

A =

⎛
⎜⎝

A1,1 · · · A1,m
... . . .

...
Am,1 · · · Am,m

⎞
⎟⎠ , (1)
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with each block in Mn . For convenience, we use A = [Ai, j]mi, j=1 ∈ Mm(Mn) for (1). A
linear map Φ on Mn is said to be m-positive if

[Ai, j]mi, j=1 � 0 ⇒ [Φ(Ai, j)]mi, j=1 � 0. (2)

It is said to be completely positive if (2) is true for any integer m � 1.
Now we define a linear map on Mn

Φ : X �→ X +(trX)In (3)

as in [2]. Many properties of this linear map Φ are given in [2]. For example, [2]
showed that Φ is completely positive.

In [4], Lin proved the following result which is unsolved in [2].

THEOREM 1.1. If

(
A B
B∗ C

)
, where A,B,C ∈ Mn, is positive semidefinite, then

2s j(Φ(B)) � s j(Φ(A+C)), j = 1, . . . ,n, (4)

where Φ is the linear map defined in (3).

Moreover, Lin also presented a conjecture in [4]:

CONJECTURE 1.2. If

(
A B
B∗ C

)
, where A,B,C ∈ Mn, is positive semidefinite,

then

s j(Φ(B)) � s j(Φ(A)�Φ(C)), j = 1, . . . ,n,

where Φ is the linear map defined in (3).

In this note, the conjecture is confirmed when n = 2.

2. Main result and proofs

Now we present our result and prove it.

THEOREM 2.1. If

(
A B
B∗ C

)
, where A,B,C ∈ M2, is positive semidefinite, then

s j(Φ(B)) � s j(Φ(A)�Φ(C)), j = 1,2,

where linear map Φ is defined in (3) and Φ(A), Φ(C) have the same eigenvalues.

Proof. Since the linear map Φ is completely positive, then(
Φ(A) Φ(B)
Φ(B∗) Φ(C)

)
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is positive semidefinite.
Without loss of generality, we suppose that Φ(A) and Φ(C) are 2× 2 positive

definite matrices with detΦ(A) = α2 > 0, detΦ(C) = β 2 > 0.
Thanks to [1, p. 111], we have

Φ(A)�Φ(C) =

√
αβ (α−1Φ(A)+ β−1Φ(C))√
det(α−1Φ(A)+ β−1Φ(C))

, (5)

which means that

s j(Φ(A)�Φ(C)) = s j

(√
αβ (α−1Φ(A)+ β−1Φ(C))√
det(α−1Φ(A)+ β−1Φ(C))

)
, j = 1,2.

Clearly, ⎛
⎜⎜⎝

1
α

Φ(A)
1√
αβ

Φ(B)

1√
αβ

Φ(B∗)
1
β

Φ(C)

⎞
⎟⎟⎠

is also a positive semidefinite matrix.
Hence by (4) and (5), we have

s j

(√
αβ (α−1Φ(A)+ β−1Φ(C))√
det(α−1Φ(A)+ β−1Φ(C))

)
�

√
αβ s j

(
2√
αβ

Φ(B)

)
√

det(α−1Φ(A)+ β−1Φ(C))

=
2s j (Φ(B))√

det(α−1Φ(A)+ β−1Φ(C))
.

(6)

Now we assume that Φ(A) has two positive eigenvalues λ1 , λ2 and the eigenvalues of
Φ(C) are positive numbers μ1 and μ2 . Then,

√
det(α−1Φ(A)+ β−1Φ(C)) �

(
2+

λ 2
1

α2 +
λ 2

2

α2

) 1
4
(

2+
μ2

1

β 2 +
μ2

2

β 2

) 1
4

=

√
λ1

α
+

λ2

α

√
μ1

β
+

μ2

β
�

λ1

α
+

λ2

α
+

μ1

β
+

μ2

β
2

,

(7)

where the first inequality follows from the conclusion [5, p.232]:

(det(α−1Φ(A)+ β−1Φ(C)))2 � det(I + α−2Φ(A)2)det(I + β−2Φ(C)2),
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and the second one follows by the mean value inequality.
By the inequalities (6) and (7), we have

s j(Φ(A)�Φ(C)) = s j

(√
αβ (α−1Φ(A)+ β−1Φ(C))√
det(α−1Φ(A)+ β−1Φ(C))

)

� 2s j(Φ(B))√
det(α−1Φ(A)+ β−1Φ(C))

� 4s2(Φ(B))
λ1

α
+

λ2

α
+

μ1

β
+

μ2

β

, j = 1,2.

Note that
λ1

α
+

λ2

α
+

μ1

β
+

μ2

β
� 4 4

√
λ1

α
· λ2

α
· μ1

β
· μ2

β
= 4

for all λ1,λ2,μ1,μ2 > 0 and the same eigenvalues of Φ(A) and Φ(C) we can take

min
λ1,λ2,μ1,μ2>0

(
λ1

α
+

λ2

α
+

μ1

β
+

μ2

β

)
= 4.

Thus,

s j(Φ(A)�Φ(C)) � 4s j(Φ(B))

min
λ1,λ2,μ1,μ2>0

(
λ1

α
+

λ2

α
+

μ1

β
+

μ2

β

)
= s j(Φ(B)), j = 1,2.

Now if Φ(A) and Φ(C) are 2×2 positive semidefinite matrices, the definition of
the geometric mean of Φ(A) and Φ(C) can be uniquely depicted by limit as follows:

Φ(A)�Φ(C) := lim
ε �→0

(Φ(A)+ εI2)�(Φ(C)+ εI2).

So the desired inequality can be proved similarly by replacing Φ(A)�Φ(C) with
lim
ε �→0

((Φ(A)+ εI2)�(Φ(C)+ εI2)) .

REMARK 2.2. Although we have not solved Lin’s conjecture, our result is a step
closer to the conjecture. When n � 3, we cannot prove the conjecture, because we
don’t know how to derive the expression of Φ(A)�Φ(C) as in (5). This is left for our
future research.
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