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Abstract. This paper deals with the problem for unbounded block operator matrix

M =
(

A B
C D

)

with natural domain to generate C0 semigroups, based on the space decomposition. By describ-
ing the spectral inclusion relations between the numerical range of M and its inner entries, using
the quadratic complements of M , some necessary and sufficient conditions for M to generate
C0 semigroups are given.

1. Introduction

The research of operator matrices is motivated by systems of linear evolution
equations. It is well known that such systems are well-posed if and only if the cor-
responding operator matrix is the infinitesimal generator of a C0 semigroup on un-
derlying spaces

[1, 2]
. One usually concerns with conditions for the operator matrix

M =
(

A B
C D

)
to generate C0 semigroups, and obtain some conclusions

[3, 4]
. However,

most of the results are discussed in the diagonal domain D(M) = D(A)⊕D(D) , by
using the standard perturbation theorems. The change on the domain of the infinites-
imal generator M has a great influence on its semigroup generation property. How
can an unbounded operator matrix M with natural domain generates a semigroup?
The problem is need to be discussed in other methods. In this paper, we consider
the semigroup generation properties of the operator matrix M with natural domain
D(M) = (D(A)∩D(C))⊕ (D(B)∩D(D)) in the different way.

As we know, the main obstacle for unbounded operators to generate semigroups
is the unboundedness of their numerical range and the non-emptiness of their resid-
ual spectrum. Hence, we characterize the right boundedness of M with the quadratic
numerical range of M , and consider the residual spectrum based on the space decom-
position and quadratic complements.
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2. Preliminaries

Let T be a linear operator between Hilbert spaces, and let Y be a linear subspace
of a Hilbert space. Then, the closure and orthogonal complement of Y are denoted
by Y and Y ⊥ , respectively. Write PY for the orthogonal projection onto Y along
Y ⊥ (when Y is closed) and T |Y for the restriction of T to Y . Also, we use D(T ) ,
N (T ) and R(T ) to denote the domain, nullspace and range of T , respectively. n(T )
is the dimension of N (T ) . Recall that T is said to be dissipative

[5]
, if the numerical

range of T , i.e., W (T ) = {(Tv,v) : v ∈ D(T ),‖v‖ = 1} is contained in the closed left
half plane.

Throughout this paper, X1,X2 are always Hilbert spaces. In the product space
X1 ⊕X2 , we consider the unbounded closed block operator matrix

M =
(

A B
C D

)
, (2.1)

where A : D(A) ⊂ X1 → X1 , B : D(B) ⊂ X2 → X1 , C : D(C) ⊂ X1 → X2 and
D : D(D) ⊂ X2 → X2 are densely defined closable operators. Write D1 = D(A)∩
D(C),D2 = D(B)∩D(D) . We suppose that the natural domain of M defined in (2.1),
i.e.,

D(M) = D1 ⊕D2 (2.2)

is also dense in X1 ⊕X2 . The followings are some constants

α0 = inf{Reλ : λ = (−A f , f ),‖ f‖ = 1, f ∈ D1},
β0 = inf{Reλ : λ = (−Dg,g),‖g‖ = 1,g ∈ D2},
δ0 = min{α0,β0},
γ0 = sup

{
Reλ : λ =

(C f ,g)+ (Bg, f )
‖ f‖2 +‖g‖2 ,( f g)t ∈ D(M)

}
,

(2.3)

where Reλ is the real part of the complex number λ .

DEFINITION 2.1.
[6]

Let M be the block operator matrix defined in (2.1)(2.2). For
f ∈ D1,g ∈ D2 with ‖ f‖ = ‖g‖ = 1, define the 2×2 matrix

Mf ,g =
(

(A f , f ) (Bg, f )
(C f ,g) (Dg,g)

)
.

Then the set
W 2(M) =

⋃
f∈D1,g∈D2,
‖ f‖=‖g‖=1

σp(Mf ,g)

is called the quadratic numerical range of M .

DEFINITION 2.2.
[7]

Let M be the block operator matrix defined in (2.1)(2.2).
Suppose that either C or B is boundedly invertible. Then the quadratic operator poly-
nomials T1 and T2 defined by

T1(λ ) = C− (D−λ )B−1(A−λ ) if B is boundedly invertible,
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T2(λ ) = B− (A−λ )C−1(D−λ ) if C is boundedly invertible,

for λ ∈ C are called quadratic complements of M .

LEMMA 2.1.
[8]

Let M be the block operator matrix defined in (2.1)(2.2). Then:

(i) W 2(M) ⊂W (M),

(ii) dimX2 � 2 =⇒ W (Ã) ⊂W 2(M),

(iii) dimX1 � 2 =⇒ W (D̃) ⊂W 2(M),

where Ã = A|D1 ,D̃ = D|D2 .

LEMMA 2.2.
[5]

Let T be a closed linear operator in Hilbert space X . Then for
any λ �∈W (T ) , N (T −λ ) = {0} and R(T −λ ) is closed.

LEMMA 2.3.
[9]

Let T be a densely defined closed linear operator in a Hilbert
space X . Then:

(i) σ(T ) = σapp(T )∪σr,1(T ),

(ii) σapp(T ) ⊂W (T ),

where

σr,1(T ) = {λ ∈ C : T −λ is injective,R(T −λ ) �= X and R(T −λ ) is closed},
σapp(T ) = {λ ∈ C : (T −λ )vn → 0,{vn}+∞

n=1 ⊂ D(T ),‖vn‖ = 1,n = 1,2, · · ·}.

PROPOSITION 2.1. Let X1,X2 be infinite dimensional Hilbert spaces, and let M
be the block operator matrix defined in (2.1)(2.2). Then the boundedness to the right
with bound β (∈ R)

[10]
of M , i.e., Re(Mv,v) � β (v,v),v ∈ D(M) implies those of Ã

and D̃ , where Ã = A|D1 ,D̃ = D|D2 .

Proof. According to Lemma 2.1, it is easy to obtain that W (Ã) ⊂ W (M) and
W (D̃) ⊂W (M) , since X1,X2 are infinite dimensional Hilbert spaces.

3. Main results

In what follows, we assume that the spaces X1,X2 defined in (2.1)(2.2) are infi-
nite dimensional Hilbert spaces.

THEOREM 3.1. Let M be the operator matrix defined in (2.1)(2.2), and let γ0 �
δ0 with γ0,δ0 defined as in (2.3). Write Ã = A|D1 , B̃ = B|D2 , C̃ = C|D1 , D̃ = D|D2 .
Suppose that D̃ is a closed and 0 < n(C̃) < ∞ . Then M generates a C0 semigroup
(T (t))t�0 with ‖T (t)‖ � eβ t for some β � 0 on X1 ⊕X2 if and only if the following
statements hold:
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(a) Ã and D̃ are bounded to the right with bound β ,

(b) R
(
(A1−λ T2(λ ))

)
= X1 and R(C11) = R(D̃−λ )⊥ for λ > β , where (A1−

λ T2(λ )) is a line operator, A1 = A|N (C̃),T2(λ ) = A22 −λ − B̃(D̃−λ )−1C22 ,
A22 = A|N (C1) , C1 = PR(D̃−λ )⊥C|N (C̃)⊥∩D1

, C11 = PR(D̃−λ )⊥C|(N (C̃)⊥
N (C1))∩D1

and C22 = PR(D̃−λ )C|N (C1) .

Proof. The assertion (a) implies W (−Ã) ⊂ {z ∈ C : Rez � −β} and W (−D̃) ⊂
{z ∈ C : Rez � −β} , so α0,β0 are well defined. For each v = ( f g)t ∈ D(M) with

f �= 0 and g �= 0, let τ =
‖ f‖2

‖ f‖2 +‖g‖2 . It follows from γ0 � δ0 that

Re(C f ,g)+Re(Bg, f )
‖ f‖2 +‖g‖2 � γ0 � δ0 � τα0 +(1− τ)β0

� τ(α0 + β )+ (1− τ)(β0+ β )

� τ · Re(−A f , f )+ β ( f , f )
‖ f‖2 +(1− τ) · Re(−Dg,g)+ β (g,g)

‖g‖2

=
Re(−A f , f )+ β ( f , f )

‖ f‖2 +‖g‖2 +
Re(−Dg,g)+ β (g,g)

‖ f‖2 +‖g‖2 . (3.1)

Hence

Re(C f ,g)+Re(Bg, f )+Re(A f , f )+Re(Dg,g) � β ( f , f )+ β (g,g),

and

Re(Mv,v) = Re

((
A B
C D

)(
f
g

)
,

(
f
g

))

= Re(C f ,g)+Re(Bg, f )+Re(A f , f )+Re(Dg,g)
� β (v,v).

If f = 0 or g = 0, it is easy to prove Re(Mv,v) � β (v,v). Thus, M is bounded to the
right with bound β .

To complete the proof, it suffices to show that M−λ (λ > β ) is surjective.
Since 0 < n(C̃) < ∞ , N (C̃) is a closed subspace of X1 . From N (C̃)⊂D(C̃) =

D1 , we know
D(C̃) = N (C̃)⊕ (N (C̃)⊥ ∩D1).

On the other hand, from assertion (i) follows that λ �∈W (Ã)∪W (D̃) , and R(D̃−λ ) is a
closed subspace of X2 by Lemma 2.2. Then, as an operator from N (C̃)⊕ (N (C̃)⊥∩
D1)⊕D2 ⊂ N (C̃)⊕N (C̃)⊥⊕X2 to X1 ⊕R(D̃−λ )⊥⊕R(D̃−λ ) , M−λ admits
the following block representation

M−λ =

⎛
⎝A1−λ A2−λ B̃

0 C1 0
0 C2 D̃−λ

⎞
⎠ . (3.2)
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Here A2 = A|N (C̃)⊥∩D1
and C2 = PR(D̃−λ )C|N (C̃)⊥∩D1

. From assertion (i) follows

λ �∈ W (Ã)∪W (D̃) , and hence A1 − λ : N (C̃) → X1 is injective and D̃− λ : D2 →
R(D̃−λ ) is boundedly invertible by Lemma 2.2. It follows from 0 < n(C̃) < ∞ that
0 < n(C1) < ∞ , hence

D(C1) = N (C̃)⊥∩D1 =
(
(N (C̃)⊥
N (C1))∩D1

)⊕N (C1).

As an operator from N (C̃)⊕ (
(N (C̃)⊥
N (C1))∩D1

)⊕N (C1)⊕D2 ⊂ N (C̃)⊕
(N (C̃)⊥
N (C1))⊕N (C1)⊕X2 to X1⊕R(D̃−λ )⊥⊕R(D̃−λ ) , M−λ has the
following representation

M−λ =

⎛
⎝A1−λ A21−λ A22−λ B̃

0 C11 0 0
0 C21 C22 D̃−λ

⎞
⎠ .

Clearly, C11 : (N (C̃)⊥
N (C1))∩D1 →R(D̃−λ )⊥ is injective, and hence C11

is left invertible, i.e., there exist C−1
11 such that C−1

11 C11 = I holds. Hence, M−λ (λ > 0)
has the following transformation

E1(M−λ ) = N,

where

E1 =

⎛
⎝I B̃(D̃−λ )−1C21C

−1
11 − (A21−λ )C−1

11 −B̃(D̃−λ )−1

0 I 0
0 −C21C

−1
11 I

⎞
⎠ ,

N =

⎛
⎝A1 −λ 0 A22−λ − B̃(D̃−λ )−1C22 0

0 C11 0 0
0 0 C22 D̃−λ

⎞
⎠ .

According to the relative boundedness of unboundedoperators([7, P92]), operator B̃(D̃−
λ )−1 , C21C

−1
11 and (A21 −λ )C−1

11 are bounded operator, hence E1 is bijective. Thus,
M−λ is surjective if and only if so is N . Since D̃−λ is boundedly invertible, N has
a further transformation that

NE2 = L,

where

E2 =

⎛
⎜⎜⎝

I 0 0 0
0 I 0 0
0 0 I 0
0 0 −(D̃−λ )−1C22 I

⎞
⎟⎟⎠ ,

L =

⎛
⎝A1−λ 0 A22−λ − B̃(D̃−λ )−1C22 0

0 C11 0 0
0 0 0 D̃−λ

⎞
⎠ .
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Thus, N is surjective if and only if so is L . It is clear that the condition (b) implies L is
surjective, so M−λ is surjective. Therefore, M generates a C0 semigroup (T (t))t�0

with ‖T (t)‖ � eβ t on X1 ⊕X2 .
Conversely, if M is the infinitesimal generator of a C0 semigroup (T (t))t�0 with

‖T (t)‖ � eβ t for some β � 0 on X1⊕X2 , then M is bounded to the right with bound
β and λ ∈ ρ(M) for λ > β . By Proposition 2.1, Ã and D̃ are both bounded to the
right with bound β , i.e., the assertion (a) holds. According to the proof in sufficiency,
M − λ , as an operator from N (C̃)⊕ (

(N (C̃)⊥ 
N (C1))∩D1
)⊕N (C1)⊕D2 ⊂

N (C̃)⊕ (N (C̃)⊥ 
N (C1))⊕N (C1)⊕X2 to X1 ⊕R(D̃− λ )⊥ ⊕R(D̃− λ ) , is
surjective. Hence, the assertion (b) holds immediately.

THEOREM 3.2. Let M be the operator matrix defined in (2.1)(2.2), and let γ0 �
δ0 with γ0,δ0 defined as in (2.3). Write Ã = A|D1 , B̃ = B|D2 , C̃ = C|D1 , D̃ = D|D2 .
Suppose that Ã is a closed and 0 < n(B̃) < ∞ , then M generates a C0 semigroup
(T (t))t�0 with ‖T (t)‖ � eβ t for some β � 0 on X1 ⊕X2 if and only if the following
statements hold:

(i) Ã and D̃ are bounded to the right with bound β ,

(ii) R
(
(D1−λ T1(λ ))

)
= X2 and R(B11) = R(Ã−λ )⊥ for λ > β , where (D1−

λ T1(λ )) is a line operator, D1 = D|N (B̃) , T1(λ ) = D22−λ − C̃(Ã−λ )−1B22 ,
D22 = D|N (B1) , B1 = PR(Ã−λ )⊥B|N (B̃)⊥∩D2

and B22 = PR(Ã−λ )B|N (B1) .

Proof. The proof is similar to that of Theorem 3.1. We only need to note that the
operator M−λ (λ > β ) , discussed from X1⊕N (B̃)⊕(N (B̃)⊥
N (B1))⊕N (B1)
to R(Ã−λ )⊥⊕R(Ã−λ )⊕X2 has the representation

M−λ =

⎛
⎝ 0 0 B11 0

Ã−λ 0 B21 B22

C̃ D1−λ D21−λ D22−λ

⎞
⎠ .

Under more finer subdivision of the domain space, we may have the following
results.

THEOREM 3.3. Let M be the operator matrix defined in (2.1)(2.2), and let γ0 �
δ0 with γ0,δ0 defined as in (2.3). Write Ã = A|D1 , B̃ = B|D2 , C̃ = C|D1 , D̃ = D|D2 .
Suppose that Ã and D̃ are closed, 0 < n(B̃) < ∞ and 0 < n(C̃) < ∞ . Then M generates
a C0 semigroup (T (t))t�0 with ‖T (t)‖ � eβ t for some β � 0 on X1⊕X2 if and only
if the following statements hold:

(i) Ã and D̃ are bounded to the right with bound β ,

(ii) R
(
(A22−λ B22)

)
= R(A2−λ ) , R

(
(C22 D22−λ )

)
= R(D2−λ ) , R(B11) =

R(Ã−λ )⊥ , R(C11) = R(D̃−λ )⊥ for λ > β , where A2 = A|N (C̃)⊥∩D1
, D2 =

D|N (B̃)⊥∩D2
, C1 = PR(D̃−λ )⊥C|N (C̃)⊥∩D1

, A22 = A|N (C1),D22 = D|N (B1) , B1 =
PR(Ã−λ )⊥B|N (B̃)⊥∩D2

, B22 = PR(Ã−λ )B|N (B1) and C22 = PR(D̃−λ )C|N (C1) .
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Proof. The proof is similar to that of Theorem 3.1. We only need to note that the
operator M −λ (λ > β ) , discussed from N (C̃)⊕ (

N (C̃)⊥ 
N (C1)
)⊕N (C1)⊕

N (B̃)⊕ (
N (B̃)⊥ 
N (B1)

)⊕N (B1) to R(Ã− λ )⊕R(D̃− λ )⊕R(D̃− λ )⊥ ⊕
R(Ã−λ )⊥ has the representation

M−λ =

⎛
⎜⎜⎝

A1−λ A21−λ A22−λ 0 B21 B22

0 C21 C22 D1−λ D21−λ D22−λ
0 C11 0 0 0 0
0 0 0 0 B11 0

⎞
⎟⎟⎠ .

THEOREM 3.4. Let M be the operator matrix defined in (2.1) with the dense do-
main

D(M) = D(C)⊕ (D(B)∩D(D)) := D(C)⊕D2,

and let γ0 � δ0 with γ0,δ0 defined as in (2.3). Write Ã = A|D(C),D̃ = D|D2 . If C is
boundedly invertible and C−1D is bounded on D(D) , then M generates a C0 semi-
group (T (t))t�0 with ‖T (t)‖ � eβ t(t � 0) for some β � 0 on X1 ⊕X2 if and only if
the following statements hold:

(i) Ã and D̃ are bounded to the right with bound β ,

(ii) σr,1(T2)∩{z ∈ C : Rez > β} = ∅, where T2(λ ) = B− (A−λ )C−1(D−λ ) for
λ ∈ C.

Proof. Combining (i) and assumption γ0 � δ0 , we see that M is bounded to the
right with bound β . Since C is boundedly invertible, M−λ (λ ∈ C) has the following
factorization

M−λ =
(

I (A−λ )C−1

0 I

)(
0 T2(λ )
C 0

)(
I C−1(D−λ )
0 I

)
.

As D(C) ⊂ D(A) and C−1D is bounded on D(D) ,
(

I (A−λ )C−1

0 I

)
and(

I C−1(D−λ )
0 I

)
are both bounded and invertible, and hence

λ ∈ σr,1(M) ⇐⇒ λ ∈ σr,1(T2). (3.3)

By Lemma 2.3, we have

σapp(M) ⊂W (M) ⊂ {z ∈ C : Rez � β}
since M is bounded to the right with bound β . Hence, it follows from assertion (ii) that

σ(M) ⊂ {z ∈ C : Rez � β},
and hence

{z ∈ C : Rez > β} ⊂ ρ(M). (3.4)
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Thus, M generates a C0 semigroup (T (t))t�0 with ‖T (t)‖� eβ t(t � 0) for some β � 0
on X1 ⊕X2 .

Conversely, suppose that M is the infinitesimal generator of a C0 semigroup
(T (t))t�0 with ‖T (t)‖ � eβ t(t � 0) for some β � 0 on X1⊕X2 . Then, we may have
that (3.4) is valid, and that Ã and D̃ are both bounded to the right with bound β . Since
C is boundedly invertible and C−1D is bounded on D(D) , (3.3) holds. Therefore, the
assertion (ii) follows.

In the same way, we have the following symmetric result.

THEOREM 3.5. Let M be the operator matrix defined in (2.1) with dense domain

D(M) = (D(A)∩D(C))⊕D(B) := D1 ⊕D(B),

and let γ0 � δ0 with γ0,δ0 defined as in (2.3). Write Ã = A|D1 ,D̃ = D|D(B) . If B is
boundedly invertible and B−1A is bounded on D(A) , then M generates a C0 semi-
group (T (t))t�0 with ‖T (t)‖ � eβ t(t � 0) for some β � 0 on X1 ⊕X2 if and only if
the following statements hold:

(i) Ã and D̃ are bounded to the right with bound β ,

(ii) σr,1(T1)∩{z ∈ C : Rez > β} = ∅, where T1(λ ) = C− (D−λ )B−1(A−λ ) for
λ ∈ C.

Proof. The proof is similar to that of Theorem 3.4. Note that M−λ (λ ∈ C) has
the following factorization

M−λ =
(

I 0
(D−λ )B−1 I

)(
0 B

T1(λ ) 0

)(
I 0

B−1(A−λ ) I

)

as B is boundedly invertible. It follows from D(B) ⊂ D(D) and B−1A is bounded on

D(A) that

(
I 0

(D−λ )B−1 I

)
and

(
I 0

B−1(A−λ ) I

)
are both bounded and invertible,

and hence

λ ∈ σr,1(M) ⇐⇒ λ ∈ σr,1(T1).

4. Example

Consider the mixed problem of partial differential equation

⎧⎪⎪⎨
⎪⎪⎩

∂ 4u(x,y)
∂x4 +

∂ 2u(x,y)
∂y2 +2

∂u(x,y)
∂y

+u = 0, 0 < x < 1,0 < y < h,

u(0,y) = u(1,y) = 0,u′′x (0,y) = u′′x (1,y) = 0, 0 � y � h,
u(x,0) = ϕ(x),u′y(x,0) = ψ(x), 0 � x � 1.

(4.1)
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Let X = L2[0,1] , p =
∂ 2u
∂x2 , q =−∂u

∂y
−u , then problem (4.1) can be transformed into

abstract Cauchy problem in X ⊕X as follows

∂
∂y

(
p
q

)
=

⎛
⎜⎝ −1 − ∂ 2

∂x2

∂ 2

∂x2 −1

⎞
⎟⎠

(
p
q

)
.

The corresponding block operator matrix is

M =
(

A B
C D

)
=

⎛
⎜⎝ −I − ∂ 2

∂x2

∂ 2

∂x2 −I

⎞
⎟⎠ : D(M) = D(C)⊕D(B) → X ⊕X ,

and

D(B) = D(C) = {v(x) ∈ X : v(x)′,v(x)′′ ∈ X ,v(0) = v(1) = 0}.

It is easy to see that γ0 = 0 � δ0 and 0 ∈ ρ(B) . Clearly, A,D are dissipative and

T1(λ ) := C− (D−λ )B−1(A−λ ) =
∂ 2

∂x2 +(λ +1)2(
∂ 2

∂x2 )−1,λ ∈ C.

It follows from 0∈ ρ(B)∩ρ(C) that R(T1(λ )) = X , and hence σr(T1) = ∅ . Thus, M
satisfies the assertions of Theorem 3.5 and hence M generates a contraction semigroup
on X ⊕X .
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