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Abstract. Let B(H) be the set of all bounded linear operators from H to H , where H is
a complex Hilbert space. In this paper, we study the properties of T when the λ -Aluthge
transform of Tn is T . Also we prove that the bijective map Φ : B(H) →B(K) commutes with
a λ -Aluthge transform under the n -fold jordan product if and only if there exists an unitary
operator U : H → K such that Φ(T ) = UTU∗ for every T in B(H) .

1. Introduction

Let H and K be complex Hilbert spaces and let B(H,K) denote the set of
all bounded linear operators from H to K . If H = K , we write B(H) in place of
B(H,K) . Let R(T ) , N (T ) , and T ∗ be the range, the null space, and the operator
adjoint of T , respectively. An operator T ∈ B(H,K) is an isometry if T ∗T = IH . In
addition, an operator T ∈ B(H,K) is called unitary if T is a surjective isometry. An
operator T ∈ B(H,K) is called a partial isometry if T ∗T is an orthogonal projection,
which means TT ∗T = T . We denote the module of T by |T | = (T ∗T )1/2 .

Let T ∈ B(H) . An operator T is called normal if T ∗T = TT ∗ . An operator
T is called quasinormal if T ∗TT = TT ∗T . If T has a normal extension, it is called
a subnormal operator. In addition, T is called p -hyponormal if (T ∗T )p � (TT ∗)p ,
where p > 0. If p = 1, T is said to be hyponormal. If p = 1

2 , the operator T is
called semi-hyponormal. The following inclusion relations are well known: {normal}
⊂ {quasinormal} ⊂ {subnormal} ⊂ {hyponormal} ⊂ {semi-hyponormal}.

An operator T ∈ B(H) has a unique polar decomposition T = U |T | , where U
is the appropriate partial isometry satisfying ker U = ker |T | = ker T and ker U∗ =
ker T ∗ . Then the Aluthge transform of T ∈ B(H) is defined by

T̃ = |T |1/2U |T |1/2,
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which is introduced by Aluthge [1].
The Aluthge transform of T ∈ B(H) satisfying p -hyponormality becomes a (p+

1
2)-hyponormal operator preserving its spectrum when 0 � p < 1

2 . Otherwise, it trans-
forms a p -hyponormal operator into a hyponormal operator preserving its spectrum
when 1

2 � p < 1. In addition, the sequence of consecutive iterations of the Aluthge
trasform, which is denoted by {T̃ (n)} , is convergent to a normal operator under some
conditions. Note that the Aluthge transform does not preserve hyponormality in the
unbounded case.

In 2003, K. Okubo [6] introduced a more general notion called λ -Aluthge trans-
form. For operator T with the polar decomposition T = |U |T , where U is the appro-
priate partial isometry satisfying ker U = ker |T | = ker T and ker U∗ = ker T ∗ , the
λ -Aluthge transform of T is defined by

Δλ (T ) = |T |λU |T |1−λ

for any 0 < λ � 1. Note that Δ1(T ) = |T |U is known as the Duggal transform of T .
In 2000, I. Jung, E. Ko, and C. Pearcy [5] showed that quasinormal operators T are

exactly the fixed points of Δλ , which means Δλ (T ) = T . In 2016, F. Chabbabi and M.
Mbekhta [4] obtained that the property T = I is equivalent to the property Δλ (T 2) = T ,
where T and T ∗ are one-to-one. In this paper, we show that the properties T (n−1)2 = I
and (Tn−1)∗ = Tn−1 are equivalent to that the property Δλ (Tn) = T , where T and T ∗
are one-to-one. This result plays an important role in the proof of Theorem 3.4.

In 2016, F. Botelho, L. Molnar, and G. Nagy [2] described the linear bijective
mapping on von Neumann factors which commutes with the λ -Aluthge transform.
Later, F. Chabbabi [3] described the bijective map Φ : B(H) → B(K) satisfying the
following condition, which is not necessarily linear,

Δλ (Φ(A)Φ(B)) = Φ(Δλ (AB)) f or every A,B ∈ B(H)

for some λ ∈ [0,1] .

DEFINITION 1.1. The Jordan product of A1,A2 is defined by

A1 ◦A2 =
1
2
(A1A2 +A2A1)

for A1,A2 ∈ B(H) .

DEFINITION 1.2. For an integer n > 1, the n-fold Jordan product of A1,A2, · · · ,An

is defined by
A1 ◦A2 ◦ · · · ◦An = (A1 ◦A2 ◦ · · · ◦An−1)◦An

for A1,A2, · · · ,An ∈ B(H) .

This definition can be applied recursively to the (n−1)-fold. Therefore the n -fold
Jordan product of A1,A2, · · · ,An can be written as

A1 ◦A2 ◦ · · · ◦An = (((A1 ◦A2)◦A3) · · · ◦An−1)◦An.
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This includes the usual Jordan product A1 ◦ A2 = A1A2+A2A1
2 , and the 3-fold Jordan

product A1 ◦A2 ◦A3 = (A1 ◦A2) ◦A3 = A1A2A3+A2A1A3+A3A1A2+A3A2A1
4 . Furthermore, if

A1 = A2 = · · · = An then we have A1 ◦A2 ◦ · · · ◦An = An .
In 2017, F. Chabbabi and M. Mbekhta [4] gave a description of the bijective maps

which consider the Jordan product commuting maps with the λ -Aluthge transform. In
this paper, we show that the bijective map Φ : B(H) → B(K) commutes with a λ -
Aluthge transform under the n -fold jordan product if and only if there exists a unitary
operator U : H → K such that Φ(T ) = UTU∗ for every T in B(H) .

2. Properties of the λ -Aluthge transform

In this section, we show that the properties T (n−1)2 = I and (Tn−1)∗ = Tn−1 are
equivalent to that the property Δλ (Tn) = T , that is the λ -Aluthge transform of the n th
power of T is T , where T and T ∗ are one-to-one. We begin with the following lemma.

LEMMA 2.1. Let T ∈ B(H) and let T n = U |Tn| be the polar decomposition of
Tn for n ∈ N . Suppose that T and T ∗ are one-to-one. If Δλ (Tn) = T for n ∈ N , then
the following statements hold:

(i) (Tn)n−1 = (T ∗)n−1 .

(ii) Tn−1 is quasinormal.

Proof. (i) Let Tn =U |Tn| be the polar decomposition of Tn . Suppose that Δλ (Tn)
= T . It means that |Tn|λU |Tn|1−λ = T . From |Tn|λU |Tn| = |Tn|λU |Tn|1−λ |Tn|λ =
T |Tn|λ and |Tn|λU |Tn| = |Tn|λ Tn , we obtain

T |Tn|λ = |Tn|λ Tn. (1)

Furthermore, we deduce that

Tn−1|Tn|λ = Tn−2T |Tn|λ = Tn−2|Tn|λ Tn = Tn−3|Tn|λ T 2n = · · ·= |Tn|λ T (n−1)n. (2)

Using Δλ (Tn) = T , we obtain that

Tn−1|Tn|λU |Tn|1−λ = Tn−1Δλ (Tn) = Tn = U |Tn| = U |Tn|λ |Tn|1−λ . (3)

Since Tn is injective, it follows that

Tn−1|Tn|λU = U |Tn|λ . (4)

Using (2) and (4), we obtain

|Tn|λ Tn(n−1)U = Tn−1|Tn|λU = U |Tn|λ .

Since |Tn|λ Tn(n−1) = U |Tn|λU∗ � 0, it follows that

|Tn|λ Tn(n−1) = (|Tn|λ Tn(n−1))∗ = T ∗n(n−1)|Tn|λ
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= (|Tn|U∗)n−1|Tn|λ = (|Tn|U∗)n−2|Tn|U∗|Tn|λ
= (|Tn|U∗)n−2|Tn|λ (|Tn|)1−λU∗|Tn|λ
= (|Tn|U∗)n−2|Tn|λ Δλ (Tn)∗ = (|Tn|U∗)n−2|Tn|λ T ∗

= (|Tn|U∗)n−3|Tn|λ Δλ (Tn)∗T ∗

= (|Tn|U∗)n−3|Tn|λ (T ∗)2 = · · · = |Tn|λ (T ∗)n−1.

Since Tn is injective, we thus obtain Tn(n−1) = (T ∗)n−1 .
(ii) Let Tn = U |Tn| be a polar decomposition of Tn . Using Tn(n−1) = (T ∗)n−1 from
(i), we also derive that

((Tn−1)∗Tn−1)Tn−1 = (Tn(n−1)Tn−1)Tn−1 = Tn−1(Tn(n−1)Tn−1) = Tn−1((Tn−1)∗Tn−1).

Hence, we conclude that the operator Tn−1 is quasinormal.

THEOREM 2.2. Let T ∈ B(H) and let T and T ∗ be one-to-one. If Δλ (Tn) = T
for n ∈ N , then the following statements hold:

(i) Tn−1 is self-adjoint.

(ii) Δλ (Tn−1) = Tn−1 .

(iii) T (n−1)2 = I .

Proof. (i) Let Tn = U |Tn| be the polar decomposition of Tn for n ∈ N . By
Lemma 2.1, we deduce that

Δλ ((Tn−1)∗) = Δλ (Tn(n−1)) = Δλ ((Tn−1)n) = Tn−1. (5)

Using Lemma 2.3 in [4], we obtain

Tn−1 = (Tn−1)∗

since Tn−1 is quasinormal from Lemma 2.1. Hence we conclude that Tn−1 is self-
adjoint.
(ii) Since Tn−1 is self-adjoint, we have Δλ ((Tn−1)) = Δλ ((Tn−1)∗) .
By (5), for all n ∈ N

Δλ ((Tn−1)) = Δλ ((Tn−1)∗) = Tn−1.

(iii) Since Tn−1 is self-adjoint, we thus obtain

Tn−1 = (Tn−1)∗ = Tn(n−1)

from Lemma 2.1.
This yields for all n ∈ N

Tn−1
(
Tn2−2n+1− I

)
= 0.
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Since Tn−1 is injective, we deduce

Tn2−2n+1− I = 0.

Hence we conclude that
T (n−1)2 = I.

COROLLARY 2.3. Let T ∈ B(H) and let T and T ∗ be one-to-one. If Δλ (Tn) =
T for n ∈N , then T is an algebraic operator of order (n−1)2 and the spectrum σ(T )
of T consists of (n−1)2 th roots of unity.

Proof. Using T (n−1)2 = I from Theorem 2.2, we obtain p(T ) = 0 for some poly-
nomial p(z) = z(n−1)2 − 1. Hence T is an algebraic operator of order (n− 1)2 and
σ(T ) consists of roots of p(z) = 0.
As some applications of Lemma 2.1 and Theorem 2.2, we get the following theorem.

THEOREM 2.4. Let T ∈ B(H) and let T and T ∗ be one-to-one. Then the fol-
lowing statements are equivalent:

(i) Δλ (Tn) = T .

(ii) T ∈
{

T ∈ B(H) : T (n−1)2 = I and (Tn−1)∗ = Tn−1
}

.

Proof. Let Tn =U |Tn| be the polar decomposition of Tn for n∈N . Suppose that
Δλ (Tn) = T . Then T (n−1)2 = I and (Tn−1)∗ = Tn−1 hold from Theorem 2.2. Assume
that (ii) holds. Using I = Tn2−2n+1 = Tn(n−1)T−(n−1) and (Tn−1)∗ = Tn−1 , we obtain

Tn(n−1) = Tn−1 = (Tn−1)∗.

From the given conditions, we derive that

|Tn(n−1)|λ =
(
(T ∗)n(n−1)Tn(n−1)

)λ/2

=
(
(T ∗)(n−1)(T ∗)(n−1)2T (n−1)2T (n−1)

)λ/2
=

(
(T ∗)(n−1)IT (n−1)

)λ/2

=
(
(T ∗)(n−1)T (n−1)

)λ/2
= |Tn−1|λ

for any 0 < λ � 1.
Similarly, we have |Tn(n−1)|1−λ = |Tn−1|1−λ for any 0 < λ � 1. Hence, we conclude
that

Δλ ((T (n−1))n) = |Tn(n−1)|λU |Tn(n−1)|1−λ = |Tn−1|λU |Tn−1|1−λ = Δλ (T (n−1)). (6)

Let Tn−1 = V |Tn−1| be the polar decomposition of Tn−1 . By assumption we obtain

V |Tn−1| = Tn−1 = T (n−1)2Tn−1 = Tn(n−1) = U |Tn(n−1)| = U |Tn−1|.
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Since T is one to one and (V −U)|Tn−1| = 0, we have V = U.
From this and (6), we have

Δλ ((Tn−1)n) = Δλ (Tn−1) = |Tn−1|λU |Tn−1|1−λ

= |Tn−1|λV |Tn−1|1−λ = V |Tn−1| = Tn−1

since the operator Tn−1 is self-adjoint. Hence we conclude that Δλ (Tn) = T for all n .

3. Bijective maps commuting with λ -Aluthge transforms

Let H and K be two complex Hilbert spaces with dim(H) � 2. Let Φ : B(H) →
B(K) be a bijective map such that:

Δλ (Φ(A1)◦Φ(A2)◦ · · ·◦Φ(An)) = Φ(Δλ (A1 ◦A2 ◦ · · · ◦An)) (7)

for some n ∈ N , where A1, · · · ,An ∈ B(H) .
We now consider some properties of a bijective map Φ which commutes with a λ -
Aluthge transform under the n -fold jordan product.

LEMMA 3.1. Let T be a bounded operator defined on H . Let Φ : B(H)→B(K)
be a bijective map satisfying (7) for some n ∈ N . Then the following properties hold:

(i) Φ(0) = 0 and Φ(I) ∈
{

T ∈ B(K) : T (n−1)2 = I and (Tn−1)∗ = Tn−1
}

.

(ii) The map Φ preserves the following:

A ∈
{

T ∈ B(H) : T (n−1)2 = I and (Tn−1)∗ = Tn−1
}

⇐⇒ Φ(A) ∈
{

T ∈ B(K) : T (n−1)2 = I and (Tn−1)∗ = Tn−1
}

.

(iii) For all A∈ {T ∈B(H) : T (n−1)2 = I and (Tn−1)∗ = Tn−1} , we have Φ(An−1) =
(Φ(A))n−1 .

(iv) Φ(I) = I .

Proof. (i) Since the bijective map Φ is onto, there exists A ∈ B(H) such that
Φ(A) = 0. From (7), we have Δλ (Φ(0)◦Φ(A)◦ · · · ◦Φ(A)) = Φ(Δλ (0◦A◦ · · · ◦A)) =
Φ(Δλ (0)) = Φ(0) and Δλ (Φ(0)◦Φ(A)◦· · ·◦Φ(A)) = Δλ (Φ(0)◦0◦· · ·◦0) = Δλ (0) =
0. It follows that Φ(0) = 0. From (7), we thus obtain

Δλ ((Φ(I))n) = Δλ (Φ(I)◦Φ(I)◦ · · · ◦Φ(I)) = Φ(Δλ (I ◦ I ◦ · · · ◦ I)) = Φ(I).

By Theorem 2.4, we conclude that

Φ(I) ∈ {T ∈ B(K) : T (n−1)2 = I and (Tn−1)∗ = Tn−1}.
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(ii) Suppose that A∈
{

T ∈ B(H) : T (n−1)2 = I and (Tn−1)∗=Tn−1
}

. By Theorem2.4,

Δλ (An) = A . From (7), we thus obtain Δλ (Φ(A)n) = Δλ (Φ(A) ◦Φ(A) ◦ · · · ◦Φ(A)) =
Φ(Δλ (A ◦A ◦ · · · ◦A)) = Φ(Δλ (An)) = Φ(A) . It means that Δλ (Φ(A)n) = Φ(A) . By
Theorem 2.4, Φ(A) satisfies Φ(A)(n−1)2 = I and (Φ(A)n−1)∗ = Φ(A)n−1 . Conversely,
we can prove in the same way.
(iii) By assumption, An−1 is self-adjoint. Hence (Φ(A))n−1 is also self-adjoint from
(ii). From (7), we obtain that Δλ (Φ(A)◦ · · ·Φ(A)) = Δλ (Φ(A)n−1) = Φ(A)n−1 . Since
An−1 is self-adjoint, we thus obtain Φ(Δλ (A ◦A ◦ · · ·A)) = Φ(Δλ (An−1)) = Φ(An−1).
Hence we conclude that Φ(A)n−1 = Φ(An−1) .
(iv) From (i) and (iii), we obtain that Φ(I)n−1 = Φ(In−1) = Φ(I) . Since the bijec-
tive map Φ is injective and Φ(0) = 0 from (i), we deduce that Φ(I)n−2 = I . Since
Φ(I)(n−1)2 = I from (ii), we deduce that I = Φ(I)(n−1)2 = (Φ(I)n−2)nΦ(I). Because of
Φ(I)n−2 = I , we obtain Φ(I) = I .

COROLLARY 3.2. Let Φ : B(H)→B(K) be a bijective map satisfying (7). Then
Δλ (Φ(A)) = Φ(Δλ (A)) holds for any A∈B(H) . Furthermore, we have Δλ (Φ(A)k) =
Φ(Δλ (Ak)) for all k ∈ N .

Proof. Since Φ(I) = I from Lemma 3.1, we have

Δλ (Φ(A)) = Δλ (Φ(A)◦Φ(I)◦ · · ·◦Φ(I)) = Φ(Δλ (A◦ I ◦ · · · ◦ I)) = Φ(Δλ (A))

for any A ∈ B(H) . Similarly we also obtain

Δλ (Φ(A)k) = Δλ (Φ(A)k ◦Φ(I) · · · ◦Φ(I)) = Φ(Δλ (Ak ◦ I · · · ◦ I)) = Φ(Δλ (Ak))

for all k ∈ N .
The next lemma characterizes the properties of the bijective map for the rank one or-
thogonal projections.

LEMMA 3.3. Let P = x⊗ x and P′ = x′ ⊗ x′ be two rank one orthogonal projec-
tions such that 〈x,x′〉 = 0 . Let Φ : B(H) → B(K) be a bijective map satisfying (7).
Then there exists a bijective function h : C → C such that:

(i)
Φ(αP+ βP′) = h(α)Φ(P)+h(β )Φ(P′)

for every α,β ∈ C . In addition, the function h is multiplicative.

(ii) For every A∈B(H) , we deduce that 〈Φ(A)y,y〉 = h(〈Ax,x〉) for all unit vectors
x,y such that Φ(x⊗ x) = y⊗ y. In addition, the function h is additive.

Proof. (i) Since P = x⊗ x and P′ = x′ ⊗ x′ are rank one orthogonal projections
such that 〈x,x′〉 = 0, we have (αP+βP′)◦ (P+P′)◦ · · · ◦ (P+P′) = αP+βP′ . Since
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P is self-adjoint, we have Pn−1 = Pn(n−1). Therefore we have P(n−1)2 = I . By Lemma
3.1 (iii), we obtain Φ(Pn−1) = Φ(P)n−1 . Therefore we deduce that

Φ(P) = Φ(P)n−1 = (Φ(P)n−1)n−1 = Φ(P)(n−1)2 = I

from Lemma 3.1 (ii). Then we conclude that Φ(P)2 = Φ(P) = Φ(P2) , and thus the
bijective map Φ preserves the set of orthogonal projections. We denote a partial order-
ing between orthogonal projections by P � Q i f PQ = QP = P . Since the bijective
map Φ preserves the set of orthogonal projections, we also obtain Δλ (Φ(Q)Φ(P)) =
Φ(Q) = Φ(Δλ (Q)) = Δλ (Φ(Q)). Since Φ(P) is an orthogonal projection, we have
Φ(Q)Φ(P) = Φ(P)Φ(Q) = Φ(Q) . It follows that Φ(Q) � Φ(P) . It means that the
bijective map Φ preserves the order relation on the set of orthogonal projections in the
both direction. Since P,Q are orthogonal, we have P � P +Q and Q � P +Q . We
also obtain Φ(P) � Φ(P+Q) and Φ(Q) � Φ(P+Q) . Since Φ(P) ⊥ Φ(Q) , it follows
that Φ(P)+ Φ(Q) � Φ(P + Q) . Since Φ(P + Q) = Φ(Φ−1(Φ(P))+ Φ−1(Φ(Q))) �
Φ(Φ−1(Φ(P)+ Φ(Q))) = Φ(P)+ Φ(Q) , we conclude that Φ(P+Q) = Φ(P)+ Φ(Q)
for all orthogonal projections P,Q such that P ⊥ Q . Since αP+ βQ is normal for all
orthogonal projections P,Q such that P ⊥ Q , the bijective map Φ(αP+ βQ) is quasi-
normal. By the result of I. Jung, E. Ko, and C. Pearcy [5] that quasinormal operators
are exactly the fixed points of Δλ , we have Φ(αP+ βQ) = Δλ (Φ(αP+ βQ)) .
By Corollary 3.2, we obtain that

Φ(αP+ βP′) = Δλ (Φ(αP+ βP′)) = Φ(Δλ (αP+ βP′))
=Φ(Δλ ((αP+ βP′)◦ (P+P′)◦ (P+P′)◦ · · · ◦ (P+P′)))
=Δλ (Φ(αP+ βP′)◦Φ(P+P′)◦ · · · ◦Φ(P+P′))
=Δλ (Φ(αP+ βP′)◦ (Φ(P)+ Φ(P′))◦ · · · ◦ (Φ(P)+ Φ(P′)))
=Δλ

(
Φ(αP+ βP′)◦Φ(P)◦ · · ·◦Φ(P)+ Φ(αP+ βP′)◦Φ(P′)◦ · · · ◦Φ(P′)

)
.

Since (αP+ βP′)◦P◦P◦ · · · ◦P = αP , we deduce that

Δλ
(
Φ(αP+ βP′)◦Φ(P)◦ · · ·◦Φ(P))

)
= Φ(Δλ ((αP+ βP′)◦P◦P◦ · · · ◦P)))
= Φ(Δλ (αP)) = Φ(Δλ (x⊗αx))

= Φ
( 〈x,αx〉
‖αx‖2 (αx⊗αx)

)
= Φ(α(x⊗ x))

= Φ(αP).

Similarly, we also obtain Δλ (Φ(αP+ βP′)◦Φ(P′)◦ · · · ◦Φ(P′))) = Φ(βP′).
Since Φ(I) = I from Lemma 3.1 and Φ(P)2 is quasinormal, we obtain that

Φ(P)2 = Δλ (Φ(P)2) = Δλ (Φ(P)◦Φ(P)◦Φ(I)◦Φ(I)◦ · · ·Φ(I)
= Φ(Δλ (P◦P◦ I ◦ I ◦ · · · ◦ I).

Since Φ(I) = I from Lemma 3.1, we let x,x′ ∈ H and y,y′ ∈ K be unit vectors such
that Φ(P) = Φ(x⊗ x) = y⊗ y and Φ(P′) = Φ(x′ ⊗ x′) = y′ ⊗ y′ . Since P = x⊗ x and
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P′ = x′ ⊗x′ are two rank one orthogonal projections such that 〈x,x′〉 = 0, then y and y′
are orthogonal too. Therefore Φ(P) is rank one orthogonal projection. Therefore we
have

Δλ (Φ(αP)◦Φ(P)) = Δλ (Φ(αP)◦Φ(P)◦ · · · ◦Φ(P)) = Φ(Δλ (αP◦P◦ · · · ◦P))

= Φ(Δλ (αP)) = Φ(Δλ (x⊗αx)) = Φ
( 〈x,αx〉
‖αx‖2 (αx⊗αx)

)

= Φ(α(x⊗ x)) = Φ(αP).

By applying the proposition 2.3. in [4], there exists h(α) ∈ C such that Φ(αP) =
h(α)Φ(P). In the same way, there exists h(β ) ∈ C such that Φ(βP′) = h(β )Φ(P′).
Finally, we obtain that

Φ(αP+ βP′) = h(α)Φ(P)+h(β )Φ(P′)

for every α,β ∈ C .
Since Φ(0) = h(0)Φ(P) and Φ(P) = h(1)Φ(P) , we have h(0) = 0 and h(1) = 1. By
using (iv) in Lemma 3.1, we obtain that

h(α)h(β )h(1) · · ·h(1)I = Δλ (Φ(αI)◦Φ(β I)◦Φ(I)◦ · · ·◦Φ(I))
=Φ(Δλ (αI ◦β I ◦ I ◦ · · · ◦ I)) = h(αβ )I.

Therefore we conclude that the function h is multiplicative.

(ii) Since Φ(I) = I from Lemma 3.1, we let x ∈H and y ∈ K be unit vectors such
that Φ(x⊗ x) = y⊗ y . Then we obtain that

Δλ (Φ(A)(y⊗ y)) = Δλ (Φ(A)◦ (y⊗ y))
=Δλ (Φ(A)◦ (y⊗ y)◦ (y⊗ y) · · ·◦ (y⊗ y))
=Δλ (Φ(A)◦ (Φ(x⊗ x))◦ (Φ(x⊗ x)) · · · ◦ (Φ(x⊗ x))
=Φ(Δλ (A◦ (x⊗ x)◦ · · ·◦ (x⊗ x)))
=Φ(Δλ (A◦ (x⊗ x)) = Φ(Δλ (A(x⊗ x)) = Φ(Δλ (Ax⊗ x))

where A ∈ B(H) . By using Proposition 2.1 in [4], we deduce that

〈Φ(A)y,y〉y⊗ y = Φ(〈Ax,x〉x⊗ x) = h(〈Ax,x〉)y⊗ y.

Finally, we have
〈Φ(A)y,y〉 = h(〈Ax,x〉)

for all unit vectors x,y such that Φ(x⊗ x) = y⊗ y for every A ∈ B(H) .
Let z = 1√

2
(x+ x′) . Then there exists an unit vector t ∈ K such that Φ(z⊗ z) = t ⊗ t .

Then we obtain that

h(〈αPz+ βP′z,z〉) = 〈Φ(αP+ βP′)t,t〉
= 〈(h(α)Φ(P)+h(β )Φ(P′))t,t〉
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= h(α)〈Φ(P)t,t〉+h(β )〈Φ(P′)t,t〉
= h(α)h(〈Pz,z〉)+h(β )h(〈P′z,z〉)

= h(α)h
(

1
2

)
+h(β )h

(
1
2

)

using 〈Pz,z〉= 〈〈z,x〉x,z〉 =
〈

1√
2
x,z

〉
= 1

2 and 〈P′z,z〉= 〈〈z,x′〉x′,z〉=
〈

1√
2
x′,z

〉
= 1

2 .

Since the function h is multiplicative by Lemma 3.3 (i), we obtain that h(〈αPz +
βP′z,z〉) = h(α||Pz||2 + β ||P′z||2) = h

(
1
2

)
h(α + β ) .

Finally, we deduce that

h

(
1
2

)
h(α + β ) = h

(
1
2

)
(h(α)+h(β )).

Because of h
(

1
2

) �= 0, we conclude that the function h is additive.
Recall that if T is a bounded linear operator acting on a complex Hilbert space H , then
the numerical range of T is defined by

W (T ) = {(Tx,x) : x ∈ H, ||x|| = 1}.
The next theorems give a description of the bijective maps between Banach spaces
which commute with a λ -Aluthge transform under the n -fold jordan product.

THEOREM 3.4. Let H and K be two complex Hilbert spaces with dim(H) �
2 . Let Φ : B(H) → B(K) be a bijective map. Then the following statements are
equivalent:

(α ) For every A1, · · · ,An ∈ B(H) , the bijective map Φ satisfies

Δλ (Φ(A1)◦Φ(A2)◦ · · · ◦Φ(An)) = Φ(Δλ (A1 ◦A2 ◦ · · · ◦An)).

for some n ∈ N .

(β ) There exists a unitary operator U : H → K such that

Φ(T ) = UTU∗ for every T ∈ B(H).

COROLLARY 3.5. Let H and K be two complex Hilbert spaces with dim(H) �
2 . Let Φ : B(H) → B(K) be a bijective map. Then the following statements are
equivalent:

(α ) For every A1, · · · ,An ∈ B(H) , the bijective map Φ satisfies

Δλ (Φ(A1)Φ(A2) · · ·Φ(An)) = Φ(Δλ (A1A2 · · ·An)).

(β ) There exists a unitary operator U : H → K such that

Φ(T ) = UTU∗ for every T ∈ B(H).
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Now we are in a position to present the proof of Theorem 3.4. Our proof follows the
similar steps to verify for Theorem 1.1 in [4].

Proof of Theorem 3.4. Let Φ : B(H) → B(K) be a bijective map satisfying the
condition (α) in Theorem 3.4. Since Φ(I) = I from Lemma 3.1, we let x ∈ H and
y ∈ K be unit vectors such that Φ(x⊗ x) = y⊗ y . Since 〈Φ(A + B)y,y〉 = h(〈(A +
B)x,x〉) = h(〈Ax,x〉)+h(〈Bx,x〉) = 〈Φ(A)y,y〉+ 〈Φ(B)y,y〉 = 〈(Φ(A)+Φ(B))y,y〉 and
〈Φ(αA)y,y〉 = h(〈αAx,x〉) = h(α)h(〈Ax,x〉) = h(α)〈Φ(A)y,y〉 from Lemma 3.3, we
deduce that

Φ(A+B) = Φ(A)+ Φ(B) and Φ(αA) = h(α)Φ(A)

for every A,B ∈ B(H) , where α ∈ C.
Let E be a bounded subset in C such that E ⊂W (A) for A ∈ B(H) . By using (ii) in
Lemma 3.3, we obtain that

h(E ) ⊂ h(W (A)) = W (Φ(A)).

Since W (Φ(A)) is bounded, we claim that the function h is bounded on the bounded
set. Since the function h is multiplicative and additive by Lemma 3.3, we conclude
that the function h is continuous. It follows that the function h is the identity or the
complex conjugation map. Therefore the bijective map Φ is linear or antilinear.
By Corollary 3.2, the bijective map Φ commutes with the λ -Aluthge transform. Using
the Theorem 1 in [2], there exists a linear and bijective operator V : H → K such that
Φ takes one of the following either

Φ(A) =VAV ∗ for all A ∈ B(H), (8)

or

Φ(A) = VA∗V ∗ for all A ∈ B(H). (9)

Suppose that the bijective map Φ takes the form (9). Since V is unitary, we deduce
that V ∗Φ(A)V = V ∗VA∗V ∗V = A∗ . Then we obtain the following equation

Δλ (A∗) = Δλ (V ∗Φ(A)V ) = V ∗Δλ (Φ(A))V = V ∗Φ(Δλ (A))V = (Δλ (A))∗ (10)

for all bounded linear operators A ∈ B(H) .
If we consider A = x⊗ x

′
such that x,x

′
are unit independent vectors in H , we obtain

that

Δλ (A) = Δλ (x⊗ x) =
〈x,x′ 〉
‖x′ ‖2

(x
′ ⊗ x

′
) = 〈x,x′ 〉(x′ ⊗ x

′
)

Δλ (A∗) = Δλ (x
′ ⊗ x) =

〈x′ ,x〉
‖x‖2 (x⊗ x) = 〈x′ ,x〉(x⊗ x).

Then we conclude that
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(Δλ (A))∗ = 〈x′ ,x〉(x′ ⊗ x
′
) �= Δλ (A∗).

It is a contradiction to (10).
Therefore there exists a unitary operator V : H → K such that

Φ(A) =VAV ∗ for all A ∈ B(H).
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