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TOPOLOGICAL ORBIT DIMENSION OF
MF C*-~ALGEBRAS AND NFD ALGEBRAS

QIHUI L1, DON HADWIN, WEIHUA LI AND JUNHAO SHEN

(Communicated by N.-C. Wong)

Abstract. This paper is a continuation of our work on D. Voiculescu’s topological free entropy
dimension Syp (x1,...,X,) for a family {xi,...,x,} of elements in a unital C*-algebra. We first

give a relation between the topological orbit dimension ﬁ,(zl),

sion ﬁéz) by using MF-traces. We also introduce a new invariant ﬁ,(g; which is a modification

of the topological orbit dimension ﬁ;g,), when ﬁ;g,), is defined. As an application of ﬁ;g,),, we
)

prove that ﬁgp («7) =0 if the separable C*-algebra <7 has property c¢*-I" and has no non-zero
finite-dimensional representations. We also introduce the property MF-c*-T". We then show that

ﬁ,(g; («7) =0 if the finitely generated C*-algebra o7 has property MF-c*-T" and has no non-zero

finite-dimensional representations.

and the modified free orbit dimen-

1. Introduction

This paper is a continuation of the work in [5], [8], [10] on D. Voiculescu’s topo-
logical free entropy dimension Sp (x1,---,x,) for the family {x,---,x,} of elements
in a unital C*-algebra.

Here we first give a relation between the topological orbit dimension ﬁﬁﬁ}, and
the modified free orbit dimension ﬁéz) by using MF-traces (Theorem 4). This result
allows us to give a new proof of our main result in [10], which gave an estimation
of the upper bound of topological free entropy dimension for MF-nuclear algebras.
Then we introduce a new invariant ﬁg]), which is a modification of the topological

orbit dimension ﬁﬁﬁ}, when ﬁﬁﬁ}, is defined. The idea for defining ﬁ,(sz), arises from the
concept £3 in [6]. We then extend the domain of ﬁ,(sz), to all MF algebras and prove

that R,(il), is a C*-algebra invariant. We also modify the notion £3 in [6] by using the
modified free orbit dimension Rgz) and denote it by ﬁg3). We give a relation between
R,(il), and ﬁf) for countably generated MF algebras by using the relation between the
topological orbit dimension ﬁg},
properties of ﬁg]), are given as follows:

and the modified free orbit dimension ﬁéz). Several
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L&D (M) = &S (A5) if € (M) = C ().

op op
2. If o is finitely generated, then ﬁ,(sz), (o) =0if ﬁﬁﬁ}, (o) =0.

3. If A1 N4 is finitely generated and has no non-zero finite-dimensional repre-
sentations (i.e. NFD), then

3) [ 3 3
Riop (C (M UA2)) < 8E) (M) + 85, ().
4. Suppose .4 is an MF C*-algebra and 2 C o/ C .4 are C*-subalgebras where

2 is NFD and has finitely many generators. If there is a unitary u € .4 such
that uQu* C o/ , then

RO (CH (A Ufu})) < R ().

As an application, we prove that R,(il), (o) = 0 if the separable C*-algebra <7 has
property c*-I" and has no finite-dimensional representations. We also introduce the
property MF-c*-T". We then conclude that, for a finitely generated C*-algebra <7, if
</ has property MF-c*-T" and has no non-zero finite-dimensional representations, then
83 () =0.

The organization of the paper is as follows. In Section 2, we recall the definition
of topological free entropy dimension &, (x1,---,x,) and topological orbit dimension

&%)

. . 2 2 . .
3, we first give a relation between R,((,I), and ﬁé ) , then we give a new proof of our main

(x1,-++,x,) of n-tuple (x1,---,x,) of elements in a unital C*-algebra. In Section

result in [10]. In Section 4, we introduce topological orbit dimension ﬁt(sl), for general

MF C#*-algebras. Several properties of R,(jl),

on applications of ﬁg}, to central sequence algebras. We prove that ﬁ,(sz), () =0 if
the separable C*-algebra 7 has property c*-I" and has no finite-dimensional repre-
sentations. We also introduce the property MF-c*-T". We then conclude that, for a
finitely generated C*-algebra <7, if </ has property MF-c*-T" and has no non-zero

are discussed there. Section 5 focuses

finite-dimensional representations, then ﬁf(il), (o) =0.

2. Definitions and preliminaries

In this section, we are going to recall Voiculescu’s definition of the topological
free entropy dimension [12] and topological orbit dimension in a unital C*-algebra [8].

2.1. A covering of a set in a metric space

Suppose (X,d) is a metric space and K is a subset of X. A family of balls in X
is called a covering of K if the union of these balls covers K and the centers of these
balls lie in K.
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2.2. Covering numbers in complex matrix algebra (.#;(C))"

Let .#;(C) be the k x k full matrix algebra with entries in C, and 7; be the
normalized trace on .#;(C), i.e., 7, = %Tn where Tr is the usual trace on . (C).
Let 7% (k) denote the group of all unitary matrices in .#;(C). Let .#;(C)" denote
the direct sum of n copies of .#;(C). Let .#;“(C) be the subalgebra of .#(C)
consisting of all self-adjoint matrices of .#(C). Let (.#;“(C))" be the direct sum
(or orthogonal sum) of n copies of .#“(C). Let ||-|| be an operator norm on .# (C)"
defined by

(A1, An)]| :maX{HAIH 7"'7||AnH}

forall (Ay,---,A,) in 4 (C)". Let ||-||, denote the norm induced by 7 on . (C)",
ie.,

[ A =\ 5(ATAD) + o+ T(AzA)

forall (Ay,--+,A,) in 4 (C)".

For every @ > 0, we define the ®-||-||-ball Ball(By,--- ,Bn; @, ||-||) centered at
(By,-++,By) in A (C)" to be the subset of .# (C)" consisting of all (Ay,---,A,) in
;. (C)" such that

”(Al?""A")_(Bl7""B")|| <.

DEFINITION 1. Suppose that X is a subset of . (C)". We define v..(X, ) to
be the minimal number of ®-||-|| -balls that constitute a covering of £ in .#; (C)".

For every > 0, we define the @-||-||,-ball Ball(By,--- ,B,;m,|-||,) centered at
(By, -+ ,By) in #;(C)" to be the subset of .7 (C)" consisting of all (Ay,---,A,) in
;. (C)" such that

||(A17"'7An)_ (Bl7"'7Bn)H2 < 0.

DEFINITION 2. Suppose that X is a subset of .} (C)". We define v»(Z, ) to
be the minimal number of ®- ||-||, -balls that constitute a covering of X in .# (C)"

2.3. Unitary orbits of balls in .#;(C)"

For every @ > 0, we define the w-orbit-||-||-ball % (B1,---,B,;®) centered at
(B1,--+,By) in #;(C)" to be the subset of .#;(C)" consisting of all (A},---,A,) in
M (C)" such that there exists some unitary matrix W in % (k) satisfying

(A1, Ap) — (WB{W*,--- WB,W")|| < o.
DEFINITION 3. Suppose that X is a subset of .#;(C)". We define 0.(Z, ®) to be
the minimal number of @-orbit-||-||-balls that constitute a covering of X in . (C)".

For every @ > 0, we define the w-orbit-|-||,-ball 7% (By,--- Bs;,]-||,) cen-
tered at (By,---,By) in .#}(C)" to be the subset of .4} (C)" consisting of all (A;,--,Ap)
in ./} (C)" such that there exists some unitary matrix W in %/ (k) satisfying

H(A1a7Al’l) - (W31W*’7WBHW*)||2 <.
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DEFINITION 4. Suppose that X is a subset of .#;(C)". We define 0, (X, ) to be
the minimal number of @-orbit-||-||,-balls that constitute a covering of X in .4 (C)".

2.4. Noncommutative polynomials

In this article, we always assume that <7 is a unital C*-algebra. Let x1,- -+, x,, V1, -,
ym be self-adjoint elements in 7. Let C(Xj,---,X,,Y;,---,Y,) be the set of all non-
commutative polynomials in the indeterminates Xp,---,X,,Y1, -+, 1. Let Cg = Q+iQ
denote the complex-rational numbers, i.e., the numbers whose real and imaginary parts
are rational. The set Cg (Xy,---, X4, Y1, -, Y;) of noncommutative polynomials with
complex-rational coefficients is countable. For notational convenience, throughout this
paper we write

Co(X1, -+, Xu, Y1, Ym) ={P-: r € N} and Cq(Xy,---,X,) ={Q,: r e N}

and
(CQ<X17X2 ) > = U;=1CQ<X17”'7XWI>'

REMARK 1. We always assume that Py =1 and Q| = 1.

2.5. Voiculescu’s norm-microstates space

For all integers r,k > 1, real numbers R, € > 0 and noncommutative polynomials
Py,---,P., we define

FgOp)(xl,"',xn,}’l;'"a}’m§k’87P1a"'aPr)
to be the subset of (j/ks'“((C))"er consisting of all these
(A17 T aAnth e ’Bm) € (%]:Jl(C))n‘i‘m

satisfying
max {[|Ay[[,--- [|Anll Bl [[Bmll} < R

and
}HPJ'(Ala'"7An7Bl7"'aBm)H - HPj(xh'"axnayla"'7ym)H| <87VI g.lg r.

REMARK 2. In the original definition of norm-microstates space in [12], the pa-
rameter R was not introduced. Note the following observation: Let

R> maX{||x1|| ) ||)C2|| v"'7||an ) ”ylH 7"'7Hym||}'
When R is large enough and ¢ is small enough,
FE;OP)(XI»' Xy Y1, 7ym;k7£7Pl7"' 7PI’) = rgiop)(xlf" s Xns Y1, 7ym;k787P17' o 7Pr)

for all k > 1. This definition agrees with the one in [12] for large R, r and small €.
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Define the norm-microstates space of xp,---,x, in the presence of yy,---,y,,, de-
noted by

{
F%Op)(xh""xn :yla"'7ym;ka87P1a"'7Pr)7

as the projection of l"g‘)p)(xh Xy V1, Ymik, €, Py, -+, Py) onto the space (.;4(C))"
via the mapping
(Ala"' 7Al’l7Bl7' o aBm) - (Aly' o aAn)~
2.6. Voiculescu’s topological free entropy dimension
Define
Voo <rg0p)(xla'“7xn :y17'"7ym;k7£7P17"'7Pr)7a)>

to be the covering number of the set Fg()p)(xh e Xn Y1 Ymik €, P, B) by @-
||| -balls in the metric space (.#;“(C))" equipped with operator norm.

DEFINITION 5. Define

) ) 10g<Voo <l"g°p)(x1,---,xn;k7£,Q1,---7Qr),(x)>>
Brop (X1, Xn @) = ,S;il())g;ol,lrfeNlH;iSSp —k?logw '

The topological free entropy dimension of xi,---,x, is defined by

5t0p(x17' o »xn) = limsup 6t0p(x17 e axn;w)~
w—0t

Similarly, define

&Op(xla"'7xn 1)’1,"',)’m;w)

log (VOO (rgop)(xla”';xn :y17'"aym;k7£apl7"'apr)aw>>

=sup inf limsup

R>0€>0,7€N p_ —k2 logw
The topological free entropy dimension of xy,---,x, in the presence of y,---, v,
is defined by
Srop (X1, X0 1 Y1, e, Ym) = Hmsup Srop (X1, -, X0 1 V1,7, Y3 @),
0—0F
REMARK 3. Let R > max {||x||,--,|[x:|,[[y1lls--,|yml]}- By Remark 2, we

know the supremum over R > 0 is unnecessary, i.e.,

6t0p(x17"'7xn :yh"'aym)

IOg (v°<’ (rgop)(xh'"axn 3)’17"'»y;n;k,&Plf"»Pr)»w))
imsup_nf Jimsup “Pioza
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(2)

2.7. Topological orbit dimension £;,, and modified free entropy dimension ﬁéz)

In this subsection, first we are going to recall the C*-algebra invariant “topological

(2)

orbit dimension &;,,” and its basic properties.

DEFINITION 6. ([5]) Define

(2) . . 10g <02 (rgop)(xh e 7~xn;k78aQ17' : '7Qr>7w>>
Riop(x1,- -+, Xp; @) =sup inf limsup .

R>0€>07€N p_ k2

The topological orbit dimension of xy,---,x, is defined by

ﬁfﬁ;(xl,--nxn) = supﬁf(f,),(xh---,xn;w) = lim ﬁfﬁ,),(xh--nxn;w).
®>0 ®0—0"

Similarly, define
2
ﬁf(ag)a(xlf'Wxn :y17"'7ym;(9)
log (02 <1—‘g(}p)(~x17"'axn :yla'"7ym;ka87P1a"'7Pr)7w>>

=sup inf limsup

R>0€>0,,€N p_ 2
and
2 2
ﬁt(ol)y(xla"'7xn :yla"'7ym) = Supﬁf(az))(xlf'Wxn 3y17"'»ym;(0)
>0

. 2
= wi}%&-ﬁf((}[)?(xl,... s Xn i V1, aym;w).

After slightly modifying Lemma 3.1.3 in [5], we can quickly get the following
lemma.

LEMMA 1. Let x1,---,Xy,V1,---,Vp be self-adjoint elements in a unital C*-algebra
. If dy,---,d, are in the C*-subalgebra generated by xy,---,x, in <7, then for every
w>0
2
ﬁf(()l)? (xla"' »Xn 2 V1, '7v17;4w)

<8

. . (2 . .
top(xl7"'7xn .dl,"'dr,V1,"'7Vp,2(D) <§10p(XI7"',xn .Vl,"'7Vp,(D).

THEOREM 1. ([5]) Suppose that < is a unital C*-algebra and {xy,---,x,},
{yl )t ,yp} are two families of self-adjoint generators of </ . Then

ﬁf(gg)a(xlv"' Xp) = ﬁt(gzy(ylf" 7yp)-

The topological orbit dimension ,QT((%I), is in fact a C*-algebra invariant. In view
2)

of this result, we use ﬁ,(zl), («7) to denote ﬁ,((,p (x1,-+-,x,) for an arbitrary generating
set {x1,---,x,} for o7. By slightly modifying the proof of Theorem 1, we can get the

following theorem.
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THEOREM 2. Suppose that </ is a unital C*-algebra and
XLy Xy Y1y Yy Wiy o Wi
are self-adjoint elements in o/ . If C* (x1,---,x,) = C*(y1,---,yp) , then
Rlop (X152 W1, w) = Ry (V1,53 Wi wi).

REMARK 4. From the definition, it is clear that:

2 2
L. ﬁt(o;(xlf"vxn :yla"'vyp) Zﬁf(az))(xla"Hxn :y17"'yp7yp+l);
2. 1If ﬁt((%;(xlf"vxn :xlv"'axn-i-j) =0 (.] = O)vthen

2
ﬁf(();(xla"'axn—l :)Cl,"',anrj) =0.

Now let’s recall the modified free orbit-dimension ﬁéz). Let .# be a von Neu-
mann algebra with a tracial state 7, and let xy,---,x, be self-adjoint elements in .Z .
For any positive numbers R and €, and any m,k € N, let Tg (x1,---,x,;m,k,€;T) be
the subset of (. (C))" consisting of all (Ay,---,A,) in (.3 (C))" such that

max HA/H < Rand |Tk (Ail "'Aiq) — T(xil ---x,-q)| <E,

1<j<n
forall 1 <ip,---,iy <nand 1 < g < m. Now we define, successively,
1 r Xk E5T), 0
ﬁf) (x1,-,X;0;7) =sup inf limsup og (02 (Te (1, ,2x n ), ©)
R>0E>0meN p_ k
2) e T (2) e
R (x1,- -+, X3 T) = limsup R (X1, -+, %, 03 T)

w—0t

where ﬁéz) (x1,--, X3 7) is called the modified free orbit-dimension of x,---,x, with

respect to the tracial state 7 [5].

REMARK 5. ([5]) Suppose xi,---,x, is a family of self-adjoint elements in a von
Neumann algebra with a tracial state 7. Let £ (x,---,x,;T) be the upper orbit di-

mension of xp,---,x, defined in Definition 1 of [7]. Then Rgz) (X1, x057) =0 if
R (xp, -, x057) =0.
2.8. MF-Traces and MF-nuclear algebras

We note that the definition of &, (x1,---,x,) makes sense if and only if, for every
€ >0 and every r,ko € N, there is a k > k, such that

F(tap) (x1,'"axn;kanglf"aQr) #6
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In [8], it has shown that this is equivalent to C*(xy,---,x,) being an MF C*-algebra
in the sense of Blackadar and Kirchberg [1]. A C*-algebra </ is an MF-algebra if
4/ can be embedded into Iy <o, (C) / Xi<pcoo-#m, (C) for some increasing se-
quence {my} of positive integers. In particular C* (xj,---,x,) is an MF-algebra if
there is a sequence {my} of positive integers and sequences {A;}, -+, {Ax} with
Ak, Ak € Moy, (C) such that

klgg HQ(AUC’ 7Ank)H = ||Q()C1,' o axn)”

for every *-polynomial Q (Xi,--+,X,).
Throughout the rest of this paper, we always assume that a C*-algebra is MF.

DEFINITION 7. ([10]) Suppose <7 =C*(x,---,x,) is an MF C*-algebra. A tra-
cial state 7 on &/ is an MF-trace if there is a sequence {my} of positive integers
and sequences {A}, -, {Au} with Ay, Ay € My, (C) such that, for every *-
polynomial Q:

1. limk—>°°||Q(Alk7"'7Ank)|| = HQ(X17"',Xn)H7 and

2. limk—>°° ka (Q(Alkv tee 7Ank)) =T (Q (x17 e 7xn)) .

We let 7.7 (&) denote the set of all tracial states on </ and Zyr (<7) denote
the set of all MF-traces on .« .

1

DEFINITION 8. ([10]) A C*-algebra &/ =C* (x1,--,x,) is MF-nuclearif 7; (<)
is hyperfinite for every 7 € Jyr (/) where m; is the GNS representation of <7 with
respect to T.

DEFINITION 9. ([10]) A tracial state T on a unital C*-algebra .27 is called finite-
dimensional state if there is a finite dimensional C*-algebra % with a tracial state p
and a unital *-homomorphism 7 : &/ — 2% such that T=pom.

PROPOSITION 1. ([10]) Suppose o =C* (x1,--+,x,) is an MF-algebra. Then:

1. Iyr (&) is a nonempty weak*-compact convex set.
2. Every finite-dimensional state on < is in Iy ().
3. If & is a unital x-homomorphismon </ and 1w (<) is an MF-algebra, then

{oom:p € Iur(n ()} C Iur ().
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3. Relation between ﬁ,(z; and ﬁéz)

DEFINITION 10. ([5]) Let <7 be a unital C*-algebra and .7.% (<) be the set of
all tracial states of .7'. Suppose that xj,---,x, is a family of self-adjoint elements in
o/ . Define

ﬁﬁg) (x1,+++,X%,) = sup Rgz) (X1ye ey X3 T)
€T S (o)

THEOREM 3. ([5]) Suppose that <7 is a unital C*-algebra and xi,---,x, is a
Sfamily of self-adjoint generating elements in <7 . Then

ﬁf((%;(xlf o axn) g %52) ()Cl,' o 7xn) .

We can generalize the preceding theorem as follows.

THEOREM 4. Let o/ be a unital C*-algebra and {x,---,x,} be a family of self-
adjoint generating elements in </ . Then

ﬁf(f,)a(m,---,an sup ﬁéz)(xl,m,xn;r)
1€ Iyr ()

where Fyr () is the set of all MF-tracial states on < .

The proof of the above theorem is similar to the proof of Theorem 4.3.1 in [5]. We
also need to note that 7 in the original proof of Theorem 4.3.1 in [5] is an MF-tracial
state by the equality

‘T(Q(ala"'aan))‘ = lim ’Tn(qx) (Q(a1,~~~,an))’

§—ro0

Trigy OWn(gs
k,

for every noncommutative polynomial Q and 7y, ) = ). Hence we omit the

proof of Theorem 4 here. *

Now we are ready to simplify the proof of the following theorem.

THEOREM 5. ([10]) Suppose </ is an MF-nuclear C*-algebra with a family of
self-adjoint generators xi,---,x,. Then

5t0p(x17"'axn) <1

Proof. 1t is known that the GNS representation of an MF-nuclear C*-algebra with
respect to an MF-tracial state yields an injective von Neumann algebra. From [7] and
Remark 5

ﬁéz) (x1,-+,X%s;7) =0 forany 7 € Ty ().

So, from Theorem 4, we know that ﬁ,(azz), (x1,-++,x,) = 0. Hence, by Theorem 3.1.2 in
[51,
5t0p (xh'" axn) <1
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4. Definition and properties of R,(il),

Suppose &7 is a unital C*-algebra. We agree -0 = 0. For any subset ¥ C .o/,

we define

and

ﬁf((::’l)?(xla"' »Xn g)
:inf{oo-ﬁgg,(xh---,xn SV, Ye) s {vi, e+, y} s a finite subset of%}7
(3) _ : G) .
R1()17(g> = Ssup inf ﬁ1()17(E . F)

EC FC¥
E isﬁfiteF is finite

REMARK 6. When ¥ is finite, it is not difficult to see that

R (1, 0 G) = 0o R (51, 0 D)

83 (9) = - R0)(9).

The proof of the following theorem is similar to the Theorem 3.3 in [6], so we

omit it.

~

. /)

THEOREM 6. If o is an MF-algebra, then the following are equivalent:

top(%) =0;

if x1,-++,X, € S, thenthere exist yi,---,V; Gdsuchthatﬁ,%),(xh---xn:yl,---7yt)

. for any generating set G of <, ﬁ,(sz), (¥)=0;

there exists a generating set 4 of </ such that ﬁ,(sz), (¥)=0;

if 9 is a generating set of </, and A is a finite subset of 9, then, for any
finite subset A with Ay C A C ¥, there exists a finite subset B of ¢ so that
ﬁf(i,l (A:B)=0;

there is an increasing directed family {7 : i € A} of C*-subalgebras of </ such
that:

(a) each < is countably generated;
3) _0-

(b) R1()19(52{1') - 0’

(c) & =Uien;;

if A is a countable subset of . , then there exists a countably generated subal-
gebra B of M such that A C % and ﬁ,(sl),(%) =0.
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REMARK 7. If & is finitely generated, then ﬁmp( )=0if R,((%I), (o) =0.

COROLLARY 1. Suppose </ is a C*-algebra, 9 is a generating set of </ . Then
3 3
Riop () = 85 (9).

COROLLARY 2. Suppose {a},c, is an increasingly directed family of C*-alge-
bras. Then

Riop (UeA) < liminf &3} (7).

Proof If liminf; ﬁmp (7)) = o, the inequality holds clearly. Suppose that
limlnfl,ﬁ, (427}) =0. Let X1, ,X, € U/, Then we can find an [ € A such that
X1 ,Xn € <7 and ﬁ, ( 7) = 0. Therefore, we can find yy,---,y, € o with

3
ﬁt(o;(xlf" »Xn P V1, 7yp) =0.

It follows that ﬁ, ( 7)) =0 by Theorem 6 (6).
We modify the K3 in [6] by using the modified free orbit dimension ﬁéz).

DEFINITION 11. Let .# be a von Neumann algebra with a tracial state 7, and let
X1, -, X, be self-adjoint elements in ./ . Define

A (1,300 )3 1)
:inf{wﬁéz)((xl,---,xn SV V)i T) i {vi, e, 0e ) s a finite subset ofg}

and
@)= sp inf RV(E:F):).
EC9 FC9
Eis hmteF is finite

REMARK 8. Note that if 83 (%;7) =0, then ﬁg3) (¢;7) =0 by Remark 5.
Now we are ready to get the relationship between ﬁ,(sz), (¢) and .ﬁf) (9;1).

THEOREM 7. Let o/ be an MF-algebra and 9 be a countably generating set of
o/ . Then
fop(@) < sup &Y (@11).
1€ TS ()

Proof. If ﬁmp( ) = 0, the inequality holds clearly. Otherwise, ﬁﬂ,p( ) =oo. It

follows from the definition of ﬁt(og, that, there is a finite subset £ C ¢ such that for

every finite subset F C ¥, ﬁmp (E : F) = oo. It implies that 0 < R,(,p (E : F) for every



362 Q.L1,D. HADWIN, W. L1 AND J. SHEN

finite subset F C ¢ . Hence for any finite subset ' of ¢ we can find a sequence {Fj};"
of finite subsets of & with
F=KChC--

and U;F; = % . Therefore
C*(EUFy) CC*(EUR) C ---
and
U;C* (EUF,-)H'H =

Since for each i, ﬁﬁﬁ}, (E : F;) >0, we can find a tracial state 7; on C* (EUF)
such that

RE  Fin) > Ro)(EF) —&>0 @.1)

for some small & > 0 by Theorem 4. We may regard C* (E UF,) as a subalgebra of
C*(EUF,) for i > 1, then

ﬁéz)(E Ryt > ﬁf)(E 1 F;;1;) > 0 for every i. 4.2)

Let
2:UC(EUR) | mC (EUR) /=C* (EUF)
be the embedding defined by
r(A)= (0,---,0, A,A,---)foreveryA € C"(EUF)
——

the first / positions
and T be the tracial state on
MienC* (EUF;) /ZienC" (EUF)
define by 7([{A;}],) = lim;—q 7i(A;) where a is a free ultrafilter over N and
{Ai}], € MenC* (EUF) /ZienC* (EUF).

Define 7= Tor, then 7 is a tracial state on .<7. Note for any finite subset G of ¢, we
can always find a suitable index i such that

GCFCFuC .

Therefore 7 is irrelevant to the selection of finite subset F = Fy, so is 7. Let {&}
be a decreasing sequence of positive numbers with lim;_...& =0 and {m,}," , be an
increasing sequence of integers with lim;_,..m; = oo. Then, for large R > 0, we can
find a subsequence {i;},-, of integers such that when & is small enough and m is big
enough,

Tr(E: Fosk,e,m; ;) CTR(E : Fosk,&,my;T) for every k.
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It implies that, for any @ > 0,
log(0y (Tr (E : Fo;k,e,m; 7, ), @))

nfimsun :
<limsup log (02 (T& (E : 1;32’ k&, miT), 0)) for every i,
k—s o0
it follows that
liltllilpglnfhgl_i‘jplog (02 (TR(E: I]Z(;;k, £,m;T,),m))
<1imsuplimsup10g(02 (T (E: 1;32, k&m:7), ) )
(=00 f—soo

Therefore we can find an index ¢, such that

log (02 (FR (E : Fo;k,S,m;Tit()) ,CO))

inflimsup e
1 T E:F;k787 ;T'I , @
<limsupinflimsup og (02 (Te( 02 ") 0)
f—oo EM p_e k

1 TrR(E: Fy;k,&,m;7T), @
<limsuplim sup 0g (02 (T 132 03 T) >)
[—o0 k—o0

So by (4.1) and (4.2),

) log (02 (FR (E Fosk,e,m; %) w))
0< E:F);7, )= sup supinflimsup
& ( ) ZO) 0<w<1R>0&M f—co k2
! Tr (E: Fosk,e,m;T;,) , @
< sup suplimsupinflimsup og (02 (Tr ( 02 m,),0))
0<®<IR>0 t—oo &M f .o k
1 Tk (E: Fo;k,&,m;T), 0
< sup suplimsuplimsup 0g (02 (I'x 02 1M3T),0))
0<@W<IR>0 =00 koo k
1 Tr(E:Fy;k,&,m;T),0
= sup sup inf limsup 0g (02 (Tk ( 02 1M T),0))
0<@<1R>0E M koo k
2
= 8P((E : R):1).

Note that Fy = F is an arbitrary subset of ¢ . Then

Rgg)(g;r): sup  inf ﬁg”((E :F);7)= sup  inf {oo-ﬁéz)((E : F);T)} = oo,

ECy  FCY ECy _FC¥

E is finite F 1s finite E is finite F 1s finite
It follows that 4 3
R1()p (g> < sup R} (%;1).
€79 ()
In the rest of this section, we are going to give the analogs of Theorem 3.14 and

Theorem 3.17 in [6]. The following lemma can be found in [6]:
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LEMMA 2. ([6]) Suppose A is a normal element in a von Neumann algebra A
with tracial state T such that A has no eigenvalues. Then there is a positive element Y
with the uniform distribution on [0, 1] such that W* (A) = W* (Y).

REMARK 9. ([10]) It is well known that every self-adjoint element in a finite von
Neumann algebra .# has an eigenvalue if and only if .# has a finite-dimensional
invariant subspace.

To prove our next lemma, we need to recall the concepts of a Haar unitary matrix
in .# (C) and a Haar unitary element in an infinite-dimensional von Neumann algebra

M.

DEFINITION 12. A unitary matrix A in .#; (C) is called a Haar unitary matrix
if the eigenvalues of A are the k-th roots of unity. Equivalently, if 7 (A’) =0 for
1 <i<kand 7 (AF) = 1.

DEFINITION 13. Suppose .# is an infinite-dimensional von Neumann algebra
with a tracial state 7. Then a unitary u in .# is called a Haar unitary if 7(«”) =0
when m # 0. In addition, . is called diffuse if .# contains a Haar unitary.

DEFINITION 14. A C*-algebra /' is called NFD if it has no non-zero finite-
dimensional representations.

Now we are ready to show the following lemma.

LEMMA 3. Suppose </ is a unital MF C*-algebra generated by x1,---,x,. Then
the following statements are equivalent:

1. o is an NFD algebra;

2. Forany 8 >0, there are &y, Ny and kg such that for any k > ko, € < &, N > Ny,
and any
(A17"'7An) S F([()p) (xla"'7~xn;k78aQ1a"'7QN)

there is a noncommutative polynomial é (X1, ,Xn) such that

HUk—é(Al,“nAn)

<0
2
for a Haar unitary Uy € 4 (C).

Proof. First, suppose (1) holds and there are & and sequences {&} with & — 0,
{N;} with N; — oo | {k;} with k; — oo as well as

<A§l)?aA£ll)> € r‘(top) ()Cl,' o axn;kiagianf ) ’QN,) for each i

such that
v —o (4P AT}, > &
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for any noncommutative polynomial Q (Xi,---,X,) and any Haar unitary Uy, € .#;, (C).

Note that any subsequence of { (A Ei)7 - ,Ay)) } has the same property, so we may as-

sume that

tim|Q (4", A )| = @ ety x|

and

lim, (Q <A(1i),---7A,(f)>> —limT(Q(x1, %)

for any noncommutative polynomial Q where 7 on &/ is the MF-tracial state de-

fined by {Tki} . Let o be a free ultrafilter over N, (.47, p) be the tracial ultraproduct

o .

(A4, (C),1,) and y; = [{A;’)H €. for 1 < j<n. Note (A ,p)isall factor,
o

then for any noncommutative polynomial Q (Xy,---,X,)

[Q01,-+- )l <lim||Q (4], .41 ) || = QG-+ )]l

Hence n: &/ — .4/ defined by 7 (x;) = y; is a unital *-homomorphism and then p o
7w = 1. Since </ has no non-zero finite-dimensional representations, we know that
n (/)" has no finite-dimensional invariant subspace. It implies that 7 (<7)" is diffused
by Lemma 2, Remark 9 and Definition 13. Therefore we can find a Haar unitary U =
[{Uk}], € ®(«/)" where we may assume Uy, is a Haar unitary in ., (C) without
loss of generality. It implies that for any &y > O there is a noncommutative polynomial
0(Xy,---,X,) satisfying

&,

HU—Q(yl,---,y;J ) :Horf‘Hka —o(al. A Hz <2

So we can find an integer i such that
- a0 a0 <5

This contradicts the assumption, hence statement (1) implies statement (2).
On the other hand, suppose (2) holds and 7 has a non-zero finite-dimensional
representation. Then by Proposition 1 and Definition 7, there is a finite-dimensional

MF-tracial state T and sequence { (AY), e ,Ag,i)> } in which A,(f) € My, (C) such that
1

tim @ (A1,+-.A) | = Qa2

and ' _
limTk,- (Q <A(ll)’ . 7A£zl)>> — hm‘L'(Q (xh .. ,xn))
for any noncommutative polynomial Q. As in the argument above, we let (.#",p) be
o .
the tracial ultraproduct IT(.#, (C),7,) and y; = [{A(;)H €N for 1 <j<n
! o
Then (A7, p) isall; factor and there is a *-homomorphism 7: & — .4 with 7 (x;) =



366 Q. L1, D. HADWIN, W. L1 AND J. SHEN

y; and pom = 7. Since 7 is finite-dimensional and p is faithful, we have 7 (7)” is
finite-dimensional. Thus there is no Haar unitary U = {(Uy,)} in 4" which lies in

n(7)". It implies that
o -4, a)], > &

for any noncommutative polynomial Q (Xi,---,X,) and any Haar unitary Uy, € .#;, (C).
This contradicts the statement (2). Hence (2) implies (1).

LEMMA 4. Let </ be a unital MF C*-algebra generated by xy,---,x,. If & is
NED, then for any 6 > 0, there are &, Ny and ko such that for any k > ky,€ < &,
N > Ny, and any

(Ala"'7An) el—*(top) (xla'"7xn;k787Q17"'7QN)7

there is a self-adjoint noncommutative polynomial é (Xy,---,X,) satisfying
A 000
~ 0L 00
Wk*Q(Alf"aAn)Wk_ . <6
00 0
000 A&/,

Sfor a unitary Wy in A (C) where {A1,---, A} C [0, 1] with A; = % as 1 <i<k.

Proof. Assume to the contrary that there are & and sequences {&;},. With & —
0, {Ni};eny With Nj — o | {k;}; oy With k; — oo as well as

<A§l)7aA£ll)> € F(top) ('xh'"axn;kiagith'"aQNi)

such that
AL0 00
. . 04 0 0
wo (4 Al we— | > &
00 .0
000 X&)/|,
for any non-commutative polynomial Q (Xj,---,X,) and any unitary Wy in .#; (C).

Then by Lemma 3, without loss of generality, we may assume that for {&};.x, {Ni};en
and {k;};.r there is a sequence {Q;(Xy,---,X,)},cy of noncommutative polynomials
such that

1
HUkI_Ql(Ala7An)H2< ; (43)

for a Haar unitary Uy, € .4, (C) and any

(Al7"'aAn) € F(top) (xh'"axn;kiagith'"aQNi)'
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So by using the same argument in the proof of Lemma 3, we may assume that
tim 0 (47,+.40) | = @ Cxr, 3]

and

lime, (0 (4),+,4)) = (@, )

for any noncommutative polynomial Q(Xj,---,X,) where T is the MF-tracial state

on « defined by {7, }. Therefore we can get a unital *-homomorphism 7 : & —

A defined by m(x;) =y for 1 <1< n where (. ,p) is the tracial ultraproduct

o .

(A, (C),1,) and y, = [{Al(l)}] € A for 1 <1< nand porm = 1. Hence, by
o

(4.3),

lim lim

J—oeoi—o

U, -0 (a7,.a) | =o0. (4.4)
Let u= [{Uy}], € 4. Thenby (4.4),
fim = Q; (v1,++yn)|, = 0.

It implies that the Haar unitary u = [{Uj, }], is in 7 («/)". Therefore we can find a
positive element y € 7 (7)"” such that u = ¢>™. Assume y = [{Ay, }]o in which Ay,

is self-adjoint in .#, (C). Hence there is a self-adjoint element x € 7 (%7) such that

b
Iy =l < 3 45)
Without loss of generality, we may also assume x = 0 (y1,-++,yn) for some noncommu-

iy 2miAL,
27y we may assume that e~ = U .

i

tative polynomial O (X;,---,X,). Since u =e
We can therefore get a unitary W, such that

200 0
04 0 0
Wex Wi = 000
00 0 X

where {41+, A4 } € [0,1] with A; = j,:il as 1 < j < k;. It follows that

HWk’?FQV <AY),"',A$)> Wi, —Ak,-H2 < &

for some i and unitary Wy, € .#, by (4.5). This is a contradiction. Thus, for any 6>0,
there are &, Ny and ko such that, for any k > ko,€ < &, N > Ny, and any

(Alf"aAn) Er(mp) (xh'"7~xn;k78aQ17"'7QN)a
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there is a noncommutative polynomial Q (X1,---,X,) satisfying
A0 00
~ 04 00
W;Q(Ala"'7An)Wk_ . <5
00 -0
000 A&/,

for a unitary Wy in .#; (C). So the proof will be completed by taking self-adjoint

. . X1, Xn)+(O(X1, X))
noncommutative polynomial it )+§Q( ! ) .

LEMMA 5. Let </ be a unital MF C*-algebra generated by xy,---,x,. If & is
NFD, then for any & > 0, there is a self-adjoint element x € o/ and €, Ny as well as
ky such that for any k > ky,€ < €, N > N; and any

A Er(mp) (X;k,87Q17"',QN),

the following inequality holds

24000
04 0 0

W, AW, — . <8
000
00 0 4/|,

for a unitary Wy in My (C) where {Ay,-+-, A} € [0,1] with A = 52 as 1 <i<k.

Proof. By Lemma 4, for any 6, there are &, Ny and kg such that for any k >
ko, € < &, N > Ny, and any

(Alf"aAn) El"(l()p) (xh'"7~xn;k78aQ17"'7QN)a

there is a noncommutative polynomial Q (X;,--,X,) satisfying
A0 00
~ 0 2,2 00 o)
WEQ (A, An) Wi — . <3 (4.6)
000 2
000 /|,

and Q(Ay,---,A,) is a self-adjoint element in ./} (C) for a unitary W in .} (C)
where {41, A4} € [0,1] with 4; = =1 as 1 <i<k.

Let x=Q(x1,-,x,). Then x is self-adjoint. For g, there are £, N; and k; with

ki > ko such that, forany k > k;,& < &, N >N andany A € T°P) (x;k.&,0;,---,0n),
we have

ottt <4
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for some
(Agk)a e aASIk)> € l—*(tap) (xla e 7~xn;k78/aQ17 e aQN/)

when €’ is small enough and N’ is large enough. By (4.6) and (4.7), the proof can be
completed.

LEMMA 6. ([7]) Let Vy,V, be two Haar unitary matrices in #; (C). For every
0>0, let
QV1,V2:6) ={U € % (k) | |[UVI =V,U ||, < 8}
Then for every 0 < 0 < r there exists a set {Ball (U;L; @) })L R of @ -balls in U (k)
c
2
that cover Q(Vy,V,;8) with the cardinality of A satisfying |A| < (;—g)‘w{ .

LEMMA 7. Let {Ay,---, 44} C[0,1] with A; = % as 1 <i <k where k > 4.
Assume Dy and D are diagonal matrices in 4y (C) such that diagonal entries are
all from {Ay,- -+, Ay} without repetition. For every 0 > 0, let

Q(D1,D2;8)={U € % (k)||UDy — D2U||, < 8}.

I

Then, for every 0 < § < r, there exists a set {Ball (U;L; ﬁ) }A R of @ -ballsin U (k)
=
2
that cover Q(D1,D;;0) with the cardinality of A satisfying |A] < (23_3)87”1{

Proof. Let D=diag (Ay,---,A). Then there exist W, W, € % (k) such that D; =
W\DW; and D, = W,DW; . Let

Q(8) = {U € 7 (&) | |UD ~ DU, < 8}

Clearly
Q(Dy,Dy;8) = {Wz*UW1|U e Ez(a)} :

hence Q(68) and Q(D;,D,;8) have the same covering numbers.
Let {es,}f’tz | be the canonical system of matrix units of .# (C). For every U =

2’;t=1xstest in £~2(5), with x;; € C, we have

k k
Ue2™D _ 2miDyy||? — ik _ 2mide) 2 < 4m|(As — L)x_y,|2
2

sit=1 sit=1

—4n|UD—-DU|} < (218)*.

Hence ‘ ‘ 5
HU627TID _627TIDU||2 < 27.[6

for U € Q(8). So the result can be obtained by Lemma 6.
The following lemma is analogous to Lemma 3.13 in [6].
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LEMMA 8. Let X1, -+, Xp, Y1, ¥p: Vi, -+, Vs, W1, ,W; be elements in an MF
C*-algebra of . If C*(x1,--+,x,) NC* (y1,---,yp) is NFD, then

A3) .
ﬁf()p('xh"'axnayla'”ayp' Vl,"',Vs,Wl,"',W[)

3 3
<ﬁ1((,1)7(x1,---,xn:vl,---,vs)+ﬁ1((,l)7(y1,~~~,yp:wl,---,W;).

Proof. Without loss of generality, we may assume that ||x;|| < 1 and ||y;|| <1 for
each 1 <i<nand 1<j<p. Ifoneofﬁ,(sz),(xh---,xn $Vi,--+,vs) and
R,(il), (¥15-++»¥p 1 wi,---,w;) is infinite, the proof is clear. So we can assume that
3 3
ﬁf(az))(xlf"axn : Vl;"'avs) :ﬁf(g;(yly"'ayp : Wl,"',W[) =0. (48)
By Lemma 5, for » > 0, ® > 0 we can find a self-adjoint element
dr,a)EC*(x17"'7xn)mC*(yl7"'7yp)7 (49)
€ >0, Ny € N and k; € N such that for any k > k;,€ < &, N > N; and any
De r([()p) (dr,a);ka& Ql P QN) 5
the following inequality holds
0
A
Wi DW, —

oo O

0
0 2

for a unitary Wy in . (C) where {A,---,A4¢} C [0,1] with ;= 5! as 1 <i<k. By
(4.8), (4.9) and Theorem 2,

2 2
ﬁf(();(xla"'7xn7dr,w : Vl;"'avs) :ﬁf(()l)y(}’l;"'a}’p;dr,w : Wla"'7wt) =0.

If
(A1,-,An,B1,--,By,D)
EF(t”p)(xl,---7xn7y17---7yp,dr,m:V1,---7vs,W17---,W;;le-,P;n7k78),
then
(A1,--,An,D) Er(mp)(xl,“'7xn7dr,w1V17"',V57W17"',Wz;Pl/r",P,/,,l,k,S)
and

(Bla"'7BpaD) Er(mp) (y17"'ay17adr,w : Vla"'7V.\‘7w17'"aWI;Pl//a"'7Pr/riz7k7£)
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where
P{v" 3 ml 6C<X17 "7Xn+17Vl7"'7VY7W17"'7m>

and
P{/a : PN EC<Yla"'7Yp+17V17'"a‘/SaWb"';th>

) myp

respectively. Let {% A{H A7L DA) be a set of 4g -orbit-balls that cover

48 S del

f . . / /
r( ()p)(xla"'7xn7dr,w . Vl;'"aVS7w1a"'7wt7k587P1a : 7Pm1)

with the cardinality of Ay satisfying

0]
|Ak| =07 (F(I()p)(xh'"axnadna) : vla"'7vS7W17"'7Wt;k7£7P1/7 : P;;q) :-8)
Also let {% (BY,---,BJ,D°); 42 ocs, beasetof o3 -orbit-balls that cover

. . 1 /"
1—‘R (Y1a"'7)’p7dr,w . Vla"'7V.\'awla"'7wt’k7£apl PR P, )

T my

with the cardinality of X satisfying

ra
‘Zk| =02 (FR (Yh"'a}’p;dr,w : V17'"aVS7w1a"'7wt;k587P1N7 ' aP;;;Z) 48)

When m and k are large enough and ¢ is small enough, we let D®, D to be diagonal
matrices in Lemma 7. For any

(Alf"aArHBlf"aB[HD)
6FR(XI,'"7xn7y17"'7yp»dr7co3Vl»"'7Vs»W17"',Wt§P17"'»Pzn7k73)7

there exist some A € Ay,0 € X and W, W, € % (k) such that

H(Al,~.~,An,D)—W1 (A%7’AﬁaDA>W1* 2<%,
|‘(B1’.'.7Bp’D)_W2(3?7'”7327DG)W2*H2g%.

Therefore

HWID’IWf‘ ~waDws | =

w
“W,.D* — DOWEW, H <’
! R PIND)

From Lemma 7, there exists a set {Ball (Uy 5.4, %)}.., in % (k) which cover

YEA
Q(D*,D%;%2) with cardinality |A| < (1 )Sﬂrk This implies that

H (Ala"' 7An7B17"' 7Bp7D)

—(WzUmyA%Uj?g’ng ¢ Walp o JARUS o W5 WBTWS ;- WoBS Wz*,WgDGW2*> X

<nm.



372 Q.L1,D. HADWIN, W. L1 AND J. SHEN

Therefore
H (Ala"' 7An7B17"' 7Bp)

- <W2UMWA% U g Wi - Waly g AL US o W5 WaBJWS -, WaBS W2*>

,

<n@.
Then we get
AP (X, XYL Ypst Ao VEs e Vs, WL, W13 200) (4.10)

< inf  limsup
meN,e>0 p_

IOg Ak Zk Ak
1og (1A 24 1)) LL I |)<8nr(10g(18)—logw).

Now by Lemma 1 and the fact that d,., € C* (x1,---,x,) NC* (y1,---,¥p), We have

(top) . )
»ﬁg (xla"'7xn7yl7"'7ypa' V],"'7VS,W1,"'7Wt,4n(D)
(top) . .
gﬁz (xla"'7xn7yl7"'7ypa' dr,a)avlv"'7vS7Wl7"'7Wt32nw)~

Hence by (4.10) and the fact that r is arbitrary, we can conclude that
ﬁgtop) (xla"'axnvyla"'7yp : vla"'avsvwla"'7wt) =0.
This completes the proof.

THEOREM 8. Suppose < is a separable C*-algebra, N, and N5 are C*-subalge-
bras of <. If ¥ NN is NFD and finitely generated, then

R (CH(MUM)) < R (M) + 82 ().

Proof. If ﬁgmp ) (M) =00 or ﬁgmp ) (43) = oo, the inequality holds automatically.
Now suppose that

Riop (M) = Kio) () =0. (.11)
By assumption, we let AN A = C*(dy,---,d;) and 4 = 41 U.A;. Then

¢ is a generating set of C* (4] U.43). Suppose A is any finite subset of ¥ with
{di,-+,d;} CA. So we may assume that

AZ{xh'"»xn»d17"'»dl»y1»"'7Ym}
where {xj, -+, x,} C A1 and {y,--,ym} C A5. By (4.11), there exist

Vl,"'7vs€</V1,W17"',Wt E</V2

such that

ﬁf(il)y(xla"'7xn7dl7"'adl : Vl,"',V_y) :ﬁf((:j);(yla"'7yhd17"'adl : Wla"'7wt) =0.



TOPOLOGICAL ORBIT DIMENSION IN C*-ALGEBRAS 373

Then from Lemma 8, we know that
ﬁgtop) (A : vla"'7vS7Wla"'7wt) =0.
Therefore, by Theorem 6 (5), Rgmp ) (C* (A UA3)) = 0. This completes the proof.

THEOREM 9. Let A be an MF C*-algebra, and 9, </ be C*-subalgebras of
N with 9 C of C. N where 9 is finitely generated and NFD . If there is a unitary
uc N suchthat u*9u C of , then

K (C (o U{u}) < &SP (o).

Proof. If ﬁgmp ) (o) = oo, the proofis clear. Now suppose that ﬁgmp ) (/) =0 and
2 =C*(dy,---,d;). By Lemma 5, for r >0, @ >0 we can find a self-adjoint element
drw € 7, € >0, N € N and k; € N such that for any k > kj,e <&, N> N; and
any
D eTUP) (d, 41k, ,01,-++,0n),

the following inequality holds

M 000
00X 0O
W DW — o
00 .0 192
000 4/|,
for a unitary Wy in .2 (C) where {A;,--, 4} € [0,1] with A; = 5L as 1 <i< k.
Let x1,---,x, be elements in /. Then there exist y;,---,y, in &/ such that

-Rg()p) (xla e ,)Cn,dl, o 'dladr,wyu*dr,wu Ve ayp) =0.
Suppose
(0]
w (Tl,---,T’1 ,A’I,B’l;r—>}
{ 1 n+l 192 lEAk
is a set of g5 -orbit-balls in .2} (C)"*"*2 that cover
r(top) (xl7"'7xn7d17'"dladna)au*dr,wu:yla"'7yp : k787P17"'7Pm)

where Py,---, Py € C(X1,---, X142, Y1, -+, Yp) with the cardinality of Ay satisfying

o]
‘Ak‘ =02 <F(t()p) (xla e 7~xn7dla o 'dl;dr,w;u*dr,wu VL ayp;k78apla e 7Pm) ) ﬁ) .
When m, k are sufficiently large and ¢ is sufficiently small, we can let A* bea diagonal
matrix in Lemma 7 and then B* = U*A*U for some unitary matrix U. It implies that
for such A* and B*,

n

(T Tors A B) =V (T T AR B )V
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ro

o1 When

For sufficiently large m’ and sufficiently small & <

(T17"'7Tn+l7AaB7C7D)

u+u* u—u*
S 1"([017) (xla"'7~xn7d17'"dladr,wyu*dr,wua .yla'"7yp;P1/7"'aP;;q’7k7£)

2 72
where P[,---, P/, € C(Xy,-, X, 4112,Y1,-+,Y)), Wwe may assume that
r@
C+iD-W| < — 4.12
Ic+ip W <22 @12

for some unitary W € .#; (C) and

IA(C+iD)— (C+iD)B| < & < 2—(: 4.13)

as well as
(T17"'7Tn+l7A7B) S r(top) (xla"'7xn7d17'"dladnahu*dr,wu:ylf"7yp;k787P17"'7Pm)~

It implies that there exist some A € Ay and V € % (k) such that

(Ti,--,Ty1,A,B) — (VTI’IV*, " ,VQLV*,VA‘V*,VBW*)
ra

64"

So, by (4.13) and (4.14), we have

‘2 (4.14)

<

HV* (C +iD)VA* — BV (C+iD)VH2 = H(C+iD)VA7LV* _ VBV (C+iD)H2
ra
<3 —,
64
therefore, by (4.12),

@
HV*WVA’1 —B’lv*WVH2 < %

By Lemma 7, {Ball (U°;%)} is a set of ¢ -ballsin % (k) that cover

[

2
Q (A, B*, £2) with the cardinality of ¥; satisfying || < (lco—z)gmk . Hence
|[V*WV —Us||, < § for some o € X;. Following (4.12),

|V*(C+iD)V -U°|, < o.
It implies that

UO' UG* UO'_UG*
J; VeV V*)

<3w.

H(T1,~~~,T,1+Z,C,D)— (VT%V*,---,VT,,LV*,V 5
2

Therefore,

u+u* u—u*
2 72

02<F("’p)<x1,"',xn,dl,'",dz, :d,7w,u*d,7wu,y1,'",yp;k,S,Pl,"',Pm),-”w)
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< A [Zi] -
Hence, by Lemma 1, we get
u+u* u—u*
Ogﬁgap) <X1,"'7xn7d1,"'dl, 7 2 3)’1"'7)’1:»6(9)
u+u* u—u* .
<§g017) <X1,"'7xn7d1,"'dl, ) 72—i:dr,a)7u dl’,wu7yl"'7yp73w)

log (|A] [
< inf limsupw
meEN,e>0 f__00 k
log (|A«l)
k2

meN,e>0 p_ o

< inf limsup< +8nr(10g12—loga))>

=8nr(log12 —logw).
Since r is an arbitrarily small positive number, we have

u+u* u—u*
2 72

o) <x1,~~~,xn,d1,~“d17 3}’1--.,)’1?’660):0.

Therefore
u+u* u—u*

ﬁgt()p) (xl,---,xn,dh"'dl T :y1-.-,yp>:0.

Then, by Theorem 6 (5),

/) (C* (a/U{u})) = 0.

COROLLARY 3. Let &/ =C* (x1,---,x,) and A be unital MF C*-algebras. Sup-
pose G is a countable group of actions {ag}gec on o/ and 9 = o x4G is either a

full or reduced crossed product of </ by the actions of G. If </ is NFD and there is an
onto *-homomorphism T : 7 X oG — B, then

ﬁgt()p) (@) < Rgt()p) (JZ{) '
Proof. 1f ﬁgmp ) () = oo, the assertion is clear. Now suppose ﬁgmp ) () =0.
Note that 7 (g~!) 7 (<) m(g) C w (). Then, by Theorem 9,
85 (n () U{x (8)}) = 0.
From Theorem 8, we know that

/Y (m (/) U{m (1)} U {7 (82)}) = 0.
Let
By =C" (r() U{m(g)} U+ U{m(gn)})-

Then ﬁgmp ) (%,) = 0 by successively using Theorem 8. Therefore
/YP) () = liminf &) (8,) =0

by Corollary 1, Corollary 2 and the fact that :U%’HH'H .
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5. Applications

Let </ be a unital C*-algebra and ® be a free ultrafilter on N. Let ¢4, (<7) denote
the closed two-sided ideal of the C*-algebra [* (/) given by

co () = { (@)1 €17 ()| im [las]| = 0.

The C*-ultrapower <, is defined to be the quotient C*-algebra [* (<) /¢ (<7), and
we use T, to denote the quotient mapping [* (&) — o7,. Let | : &/ — [ (/) denote
the “diagonal” inclusion mapping ! (a) = (a,a,---) € " (%/), a € &/ ; and put I, =
ol :of — o,. Both mappings [ and [, are injective. Therefore, we can view .27 as
a subalgebra of <7,. The relative commutant defined by <%, N.&/’ is called the central
sequence algebra of <f .

Suppose 4" is a von Neumann algebra with a tracial state 7. Consider the asso-
ciated norm, limg, ||al|, , = (T(a*a))% ,forany a € 4. Let A4'® denote the von Neu-
mann algebra [ (A) /cz.o () Where ¢z (4) consists of the bounded sequences
(ai,az,---) with limg, [|a||2,: = 0.

If ./ is a Il factor, then .# has property T if and only if .Z® N.#" has a
representing sequence (Uy,U,,--+) such that each U, is a Haar unitary in .# . If .#
is a I} von Neumann algebra with a separable predual, then . is defined in [11]
to have property T if and only if each II; factor in the central decomposition of .Z
has property I'. It follows from direct integral theory that if .# has property I', then
M N .A' contains a representing sequence of Haar unitaries. The following theorem
is due to Dixmier [3] and Connes [2].

THEOREM 10. Let .# be a separable 11| factor. The following conditions are
equivalent:

1. A has property T,
2. H°n.H' #ClI,
3..#°NA is a diffuse von Neumann algebra.

Let 7, («7)" be the weak closure of .7 under the GNS representation of .7 with
respect to the state 7.

In [11], a separable unital C*-algebra is said to have property c*-T" if, for every
tracial state T on .o/ such that 7; («7)” is a II; factor and m; (27)” has property T,
which is equivalent to 7; ()" having property I" whenever 7, (<7)" is a II; von Neu-
mann algebra. If .27 is NFD, then 7; (.7)" has no finite-dimensional representations.
Therefore 7, (o7)” is II) for every tracial state T on 7. So if <7 is NFD and has
property c*-T', then 7; (<7)” has property T" for every tracial state T on .o/ . Actually
we can say more in this case.

LEMMA 9. Let &/ be a separable unital C*-algebra. If </ is NFD, then <f
has property c*-T if and only if for every tracial state T on </, the central sequence
algebra of 7y (o )H has no non-zero finite-dimensional representations.
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Proof. If </ has property c*-T" and is NFD, then 7 (/)" has property T for
every tracial state T on /. So the central sequence algebra of each I} factor in the
central decomposition of 7r; (.27)” has no finite-dimensional representations by Theo-
rem 10.

On the other hand, if the central sequence algebra of 7; (/)" has no finite-
dimensional representations for every tracial state, then the central sequence algebra
of each II; factor in the central decomposition of 7;(.27)” has no finite-dimensional
representations. So by Theorem 10, <7 has property c*-T .

The following amazing result is due to Kirchberg and Rgrdam [9].

LEMMA 10. ([9])Let </ be a separable unital C*-algebra, let T be a faithful
tracial state on <, let N be the weak closure of </ under the GNS representation of
o/ with respect to the state T, and let ® be a free ultrafilter on N. It follows that the
natural *-homomorphisms

Ay — N, dyNd — NN
are surjective.

We say that an MF algebra ./ with no non-zero finite-dimensional representa-
tions has property MF-c*-T" if, for every MF-trace T on <7, the central sequence al-
gebra (7; (o )”)w N7 (</) has no non-zero finite-dimensional representations, i.e.,
i (<7)" has property T

THEOREM 11. ([6]) If # is a von Neumann algebra with a central net of Haar
unitaries, then K3 () = 0.

THEOREM 12. Let < be a unital separable MF C*-algebra. Suppose </ is NFD
and has property c¢*-T". Then Rgmp) (o) =0.

Proof. Let N;=m; (/)" be the weak closure of .<7 under the GNS representation
of .o/ with respect to the tracial state 7. Since . is NFD and has property c¢*-T", there
is a central sequence {u,} of Haar unitaries in .#; such that [{u,}] =u € (A47)®N
(A7) . If follows that £3 (o7;7) = 0 by Theorem 11 for every tracial state 7. Hence

Rgg) («7;7) =0 by Remark 8. Since

&

mp(%) < sup ﬁg3) («;71)=0,

TeTS()
by Theorem 7, ﬁ,(sz), (o) =0.

COROLLARY 4. Let &/ be a unital MF C*-algebra. Suppose each tracial state on
o is faithful and </, N/’ has no non-zero finite-dimensional representations. Then

& () =0.

op
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Proof. Since <7, N .2/’ has no non-zero finite-dimensional representations, we
know .o/ is NFD. Let .47 be the weak closure of .7 under the GNS representation of
o/ with respect to the tracial state 7. Since 7 is faithful, the natural *-homomorphisms

ANt — (N) N (A7)

is surjective by Lemma 10. It follows that (.4;)® N (.#;)" has no finite-dimensional

representations, hence <7 has property ¢*-I" by Lemma 9. Therefore ﬁ,(sz), («7) =0 by
Theorem 12.

COROLLARY 5. Suppose </ is a unital, finitely generated MF C*-algebra. If </
is NF'D and has property MF-c¢*-T', then ﬁ,(sz), (o) =0.

Proof. Let AN;=n; (/)" be the weak closure of 7 under the GNS represen-
tation of ./ with respect to the tracial state 7. Since ./ has property MF-c*-T,
(A7) N (A7) has no finite-dimensional representation. Then there is a central se-
quence {u,} of Haar unitaries in .#; such that [{u,}] =u € (A7)* N (A7) . Itfollows

that &5 (&/;7) = 0 by Theorem 11. Hence Rf) («7;7) = 0 by Remark 8. It implies
that ﬁéz) («7;7) = 0 for every MF-tracial state 7. Note that by Theorem 4

Ro) < sup &) (/1) =0,
T€97MF(,QY)

Hence ﬁ,(sz), («7) =0 by Remark 7.

REMARK 10. We don’t know whether the property MF-c*-T" is equivalent to

ﬁ,(il), («/) =0 in which & is finitely generated and NFD. But it is well known that
C: (F,) is simple, hence C;(IF,) is NFD. Note C; (F,) is an MF C*-algebra and
has a unique tracial state. So by the facts that the set of MF-tracial states is not
empty and L (F,) has no property I', we know C; (F,) has no property MF-c*-T". So
we may hope R,(il), (Cr(Fp)) =, ie., R,(fl), (C!(F,)) # 0. Actually, Voiculescu [12]
proved that &, (S1,52) =2, where S; and S, are free semicircle elements. Therefore

&%) (C; (F)) # 0 by Theorem 3.1.2 in [5].
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