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Abstract. This paper is a continuation of our work on D. Voiculescu’s topological free entropy
dimension δtop (x1, . . . ,xn) for a family {x1, . . . ,xn} of elements in a unital C*-algebra. We first

give a relation between the topological orbit dimension K
(2)
top and the modified free orbit dimen-

sion K
(2)
2 by using MF-traces. We also introduce a new invariant K

(3)
top which is a modification

of the topological orbit dimension K
(2)
top when K

(2)
top is defined. As an application of K

(3)
top, we

prove that K
(3)
top (A ) = 0 if the separable C*-algebra A has property c*-Γ and has no non-zero

finite-dimensional representations. We also introduce the property MF-c*-Γ. We then show that

K
(3)
top (A ) = 0 if the finitely generated C*-algebra A has property MF-c*-Γ and has no non-zero

finite-dimensional representations.

1. Introduction

This paper is a continuation of the work in [5], [8], [10] on D. Voiculescu’s topo-
logical free entropy dimension δtop (x1, · · · ,xn) for the family {x1, · · · ,xn} of elements
in a unital C*-algebra.

Here we first give a relation between the topological orbit dimension K
(2)
top and

the modified free orbit dimension K
(2)
2 by using MF-traces (Theorem 4). This result

allows us to give a new proof of our main result in [10], which gave an estimation
of the upper bound of topological free entropy dimension for MF-nuclear algebras.

Then we introduce a new invariant K
(3)
top which is a modification of the topological

orbit dimension K
(2)
top when K

(2)
top is defined. The idea for defining K

(3)
top arises from the

concept K3 in [6]. We then extend the domain of K
(3)
top to all MF algebras and prove

that K
(3)
top is a C*-algebra invariant. We also modify the notion K3 in [6] by using the

modified free orbit dimension K
(2)
2 and denote it by K

(3)
3 . We give a relation between

K
(3)
top and K

(3)
3 for countably generated MF algebras by using the relation between the

topological orbit dimension K
(2)
top and the modified free orbit dimension K

(2)
2 . Several

properties of K
(3)
top are given as follows:
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1. K
(3)
top (N1) = K

(3)
top (N2) if C∗ (N1) = C∗ (N2) .

2. If A is finitely generated, then K
(3)
top (A ) = 0 if K

(2)
top (A ) = 0.

3. If N1 ∩N2 is finitely generated and has no non-zero finite-dimensional repre-
sentations (i.e. NFD), then

K
(3)
top (C∗ (N1 ∪N2)) � K

(3)
top (N1)+K

(3)
top (N2) .

4. Suppose N is an MF C*-algebra and D ⊆ A ⊆ N are C*-subalgebras where
D is NFD and has finitely many generators. If there is a unitary u ∈ N such
that uDu∗ ⊆ A , then

K
(3)
top (C∗ (A ∪{u})) � K

(3)
top (A ) .

As an application, we prove that K
(3)
top (A ) = 0 if the separable C*-algebra A has

property c*-Γ and has no finite-dimensional representations. We also introduce the
property MF-c*-Γ. We then conclude that, for a finitely generated C*-algebra A , if
A has property MF-c*-Γ and has no non-zero finite-dimensional representations, then

K
(3)
top (A ) = 0.

The organization of the paper is as follows. In Section 2, we recall the definition
of topological free entropy dimension δtop (x1, · · · ,xn) and topological orbit dimension

K
(2)
top (x1, · · · ,xn) of n -tuple (x1, · · · ,xn) of elements in a unital C*-algebra. In Section

3, we first give a relation between K
(2)
top and K

(2)
2 , then we give a new proof of our main

result in [10]. In Section 4, we introduce topological orbit dimension K
(3)
top for general

MF C*-algebras. Several properties of K
(3)
top are discussed there. Section 5 focuses

on applications of K
(3)
top to central sequence algebras. We prove that K

(3)
top (A ) = 0 if

the separable C*-algebra A has property c*-Γ and has no finite-dimensional repre-
sentations. We also introduce the property MF-c*-Γ. We then conclude that, for a
finitely generated C*-algebra A , if A has property MF-c*-Γ and has no non-zero

finite-dimensional representations, then K
(3)
top (A ) = 0.

2. Definitions and preliminaries

In this section, we are going to recall Voiculescu’s definition of the topological
free entropy dimension [12] and topological orbit dimension in a unital C*-algebra [8].

2.1. A covering of a set in a metric space

Suppose (X ,d) is a metric space and K is a subset of X . A family of balls in X
is called a covering of K if the union of these balls covers K and the centers of these
balls lie in K.
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2.2. Covering numbers in complex matrix algebra (Mk(C))n

Let Mk(C) be the k× k full matrix algebra with entries in C, and τk be the
normalized trace on Mk(C), i.e., τk = 1

k Tr, where Tr is the usual trace on Mk(C).
Let U (k) denote the group of all unitary matrices in Mk(C). Let Mk(C)n denote
the direct sum of n copies of Mk(C). Let M s.a

k (C) be the subalgebra of Mk(C)
consisting of all self-adjoint matrices of Mk(C). Let

(
M s.a

k (C)
)n

be the direct sum
(or orthogonal sum) of n copies of M s.a

k (C). Let ‖·‖ be an operator norm on Mk (C)n

defined by
‖(A1, · · · ,An)‖ = max{‖A1‖ , · · · ,‖An‖}

for all (A1, · · · ,An) in Mk (C)n . Let ‖·‖2 denote the norm induced by τk on Mk (C)n ,
i.e.,

‖(A1, · · · ,An)‖2 =
√

τk(A∗
1A1)+ · · ·+ τk(A∗

nAn)

for all (A1, · · · ,An) in Mk (C)n .
For every ω > 0, we define the ω -‖·‖ -ball Ball(B1, · · · ,Bn;ω ,‖·‖) centered at

(B1, · · · ,Bn) in Mk (C)n to be the subset of Mk (C)n consisting of all (A1, · · · ,An) in
Mk (C)n such that

‖(A1, · · · ,An)− (B1, · · · ,Bn)‖ < ω .

DEFINITION 1. Suppose that Σ is a subset of Mk (C)n . We define ν∞(Σ, ω) to
be the minimal number of ω -‖·‖ -balls that constitute a covering of Σ in Mk (C)n .

For every ω > 0, we define the ω -‖·‖2 -ball Ball(B1, · · · ,Bn;ω ,‖·‖2) centered at
(B1, · · · ,Bn) in Mk (C)n to be the subset of Mk (C)n consisting of all (A1, · · · ,An) in
Mk (C)n such that

‖(A1, · · · ,An)− (B1, · · · ,Bn)‖2 < ω .

DEFINITION 2. Suppose that Σ is a subset of Mk (C)n . We define ν2(Σ,ω) to
be the minimal number of ω -‖·‖2 -balls that constitute a covering of Σ in Mk (C)n .

2.3. Unitary orbits of balls in Mk(C)n

For every ω > 0, we define the ω -orbit -‖·‖ -ball U (B1, · · · ,Bn;ω) centered at
(B1, · · · ,Bn) in Mk(C)n to be the subset of Mk(C)n consisting of all (A1, · · · ,An) in
Mk(C)n such that there exists some unitary matrix W in U (k) satisfying

‖(A1, · · · ,An)− (WB1W
∗, · · · ,WBnW

∗)‖ < ω .

DEFINITION 3. Suppose that Σ is a subset of Mk(C)n. We define o∞(Σ,ω) to be
the minimal number of ω -orbit -‖·‖ -balls that constitute a covering of Σ in Mk(C)n.

For every ω > 0, we define the ω -orbit -‖·‖2 -ball U (B1, · · · Bn;ω ,‖·‖2) cen-
tered at (B1,· · · ,Bn) in Mk(C)n to be the subset of Mk(C)n consisting of all (A1,· · ·,An)
in Mk(C)n such that there exists some unitary matrix W in U (k) satisfying

‖(A1, · · · ,An)− (WB1W
∗, · · · ,WBnW

∗)‖2 < ω .
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DEFINITION 4. Suppose that Σ is a subset of Mk(C)n. We define o2(Σ,ω) to be
the minimal number of ω -orbit -‖·‖2 -balls that constitute a covering of Σ in Mk(C)n.

2.4. Noncommutative polynomials

In this article, we always assume that A is a unital C*-algebra. Let x1,· · ·,xn,y1,· · · ,
ym be self-adjoint elements in A . Let C〈X1, · · · ,Xn,Y1, · · · ,Ym〉 be the set of all non-
commutative polynomials in the indeterminates X1, · · · ,Xn,Y1, · · · ,Ym. Let CQ = Q+iQ
denote the complex-rational numbers, i.e., the numbers whose real and imaginary parts
are rational. The set CQ 〈X1, · · · ,Xn,Y1, · · · ,Ym〉 of noncommutative polynomials with
complex-rational coefficients is countable. For notational convenience, throughout this
paper we write

CQ〈X1, · · · ,Xn,Y1, · · · ,Ym〉 = {Pr : r ∈ N} and CQ〈X1, · · · ,Xn〉 = {Qr : r ∈ N}
and

CQ〈X1,X2 · · · 〉 = ∪∞
m=1CQ〈X1, · · · ,Xm〉.

REMARK 1. We always assume that P1 = 1 and Q1 = 1.

2.5. Voiculescu’s norm-microstates space

For all integers r,k � 1, real numbers R,ε > 0 and noncommutative polynomials
P1, · · · ,Pr, we define

Γ(top)
R (x1, · · · ,xn,y1, · · · ,ym;k,ε,P1, · · · ,Pr)

to be the subset of
(
M s.a

k (C)
)n+m consisting of all these

(A1, · · · ,An,B1, · · · ,Bm) ∈ (M s.a
k (C))n+m

satisfying
max{‖A1‖ , · · · ,‖An‖ ,‖B1‖ , · · · ‖Bm‖} � R

and ∣∣∥∥Pj(A1, · · · ,An,B1, · · · ,Bm)
∥∥−∥∥Pj(x1, · · · ,xn,y1, · · · ,ym)

∥∥∣∣ � ε,∀1 � j � r.

REMARK 2. In the original definition of norm-microstates space in [12], the pa-
rameter R was not introduced. Note the following observation: Let

R > max{‖x1‖ ,‖x2‖ , · · · ,‖xn‖ ,‖y1‖ , · · · ,‖ym‖} .

When R is large enough and ε is small enough,

Γ(top)
R (x1, · · · ,xn,y1, · · · ,ym;k,ε,P1, · · · ,Pr) = Γ(top)

∞ (x1, · · · ,xn,y1, · · · ,ym;k,ε,P1, · · · ,Pr)

for all k � 1. This definition agrees with the one in [12] for large R,r and small ε.
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Define the norm-microstates space of x1, · · · ,xn in the presence of y1, · · · ,ym, de-
noted by

Γ(top)
R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr),

as the projection of Γ(top)
R (x1, · · · ,xn,y1, · · · ,ym;k,ε,P1, · · · ,Pr) onto the space (M s.a

k (C))n

via the mapping
(A1, · · · ,An,B1, · · · ,Bm) → (A1, · · · ,An).

2.6. Voiculescu’s topological free entropy dimension

Define
ν∞

(
Γ(top)

R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr),ω
)

to be the covering number of the set Γ(top)
R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr) by ω -

‖·‖ -balls in the metric space (M s.a
k (C))n equipped with operator norm.

DEFINITION 5. Define

δtop(x1, · · · ,xn;ω) = sup
R>0

inf
ε>0,r∈N

limsup
k→∞

log
(

ν∞

(
Γ(top)

R (x1, · · · ,xn;k,ε,Q1, · · · ,Qr),ω
))

−k2 logω
.

The topological free entropy dimension of x1, · · · ,xn is defined by

δtop(x1, · · · ,xn) = limsup
ω→0+

δtop(x1, · · · ,xn;ω).

Similarly, define

δtop(x1, · · · ,xn : y1, · · · ,ym;ω)

=sup
R>0

inf
ε>0,r∈N

limsup
k→∞

log
(

ν∞

(
Γ(top)

R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr),ω
))

−k2 logω
.

The topological free entropy dimension of x1, · · · ,xn in the presence of y1, · · · ,ym

is defined by

δtop(x1, · · · ,xn : y1, · · · ,ym) = limsup
ω→0+

δtop(x1, · · · ,xn : y1, · · · ,ym;ω).

REMARK 3. Let R > max{‖x1‖ , · · · ,‖xn‖ ,‖y1‖ , · · · ,‖ym‖} . By Remark 2, we
know the supremum over R > 0 is unnecessary, i.e.,

δtop(x1, · · · ,xn : y1, · · · ,ym)

=limsup
ω→0+

inf
ε>0,r∈N

limsup
k→∞

log
(

ν∞

(
Γ(top)

R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr),ω
))

−k2 logω
.
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2.7. Topological orbit dimension K
(2)
top and modified free entropy dimension K

(2)
2

In this subsection, first we are going to recall the C*-algebra invariant “topological

orbit dimension K
(2)
top ” and its basic properties.

DEFINITION 6. ([5]) Define

K
(2)
top(x1, · · · ,xn;ω)= sup

R>0
inf

ε>0,r∈N
limsup

k→∞

log
(
o2

(
Γ(top)

R (x1, · · · ,xn;k,ε,Q1, · · · ,Qr),ω
))

k2 .

The topological orbit dimension of x1, · · · ,xn is defined by

K
(2)
top(x1, · · · ,xn) = sup

ω>0
K

(2)
top(x1, · · · ,xn;ω) = lim

ω→0+
K

(2)
top(x1, · · · ,xn;ω).

Similarly, define

K
(2)
top(x1, · · · ,xn : y1, · · · ,ym;ω)

=sup
R>0

inf
ε>0,r∈N

limsup
k→∞

log
(
o2

(
Γ(top)

R (x1, · · · ,xn : y1, · · · ,ym;k,ε,P1, · · · ,Pr),ω
))

k2

and

K
(2)
top(x1, · · · ,xn : y1, · · · ,ym) = sup

ω>0
K

(2)
top(x1, · · · ,xn : y1, · · · ,ym;ω)

= lim
ω→0+

K
(2)
top(x1, · · · ,xn : y1, · · · ,ym;ω).

After slightly modifying Lemma 3.1.3 in [5], we can quickly get the following
lemma.

LEMMA 1. Let x1, · · · ,xn,v1, · · · ,vp be self-adjoint elements in a unital C*-algebra
A . If d1, · · · ,dr are in the C*-subalgebra generated by x1, · · · ,xn in A , then for every
ω > 0

K
(2)
top (x1, · · · ,xn : v1, · · · ,vp;4ω)

�K
(2)
top (x1, · · · ,xn : d1, · · ·dr,v1, · · · ,vp;2ω) � K

(2)
top (x1, · · · ,xn : v1, · · · ,vp;ω) .

THEOREM 1. ([5]) Suppose that A is a unital C*-algebra and {x1, · · · ,xn} ,{
y1, · · · ,yp

}
are two families of self-adjoint generators of A . Then

K
(2)
top(x1, · · · ,xn) = K

(2)
top(y1, · · · ,yp).

The topological orbit dimension K
(2)
top is in fact a C*-algebra invariant. In view

of this result, we use K
(2)
top (A ) to denote K

(2)
top (x1, · · · ,xn) for an arbitrary generating

set {x1, · · · ,xn} for A . By slightly modifying the proof of Theorem 1, we can get the
following theorem.
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THEOREM 2. Suppose that A is a unital C*-algebra and

x1, · · · ,xn,y1, · · · ,yp,w1, · · · ,wt

are self-adjoint elements in A . If C∗ (x1, · · · ,xn) = C∗ (y1, · · · ,yp) , then

K
(2)
top(x1, · · · ,xn : w1, · · · ,wt) = K

(2)
top(y1, · · · ,yp : w1, · · · ,wt).

REMARK 4. From the definition, it is clear that:

1. K
(2)
top(x1, · · · ,xn : y1, · · · ,yp) � K

(2)
top(x1, · · · ,xn : y1, · · ·yp,yp+1);

2. If K
(2)
top(x1, · · · ,xn : x1, · · · ,xn+ j) = 0 ( j � 0),then

K
(2)
top(x1, · · · ,xn−1 : x1, · · · ,xn+ j) = 0.

Now let’s recall the modified free orbit-dimension K
(2)
2 . Let M be a von Neu-

mann algebra with a tracial state τ, and let x1, · · · ,xn be self-adjoint elements in M .
For any positive numbers R and ε, and any m,k ∈ N , let ΓR (x1, · · · ,xn;m,k,ε;τ) be
the subset of

(
M s.a.

k (C)
)n

consisting of all (A1, · · · ,An) in
(
M s.a.

k (C)
)n

such that

max
1� j�n

∥∥Aj
∥∥ � R and

∣∣τk
(
Ai1 · · ·Aiq

)− τ
(
xi1 · · ·xiq

)∣∣ < ε,

for all 1 � i1, · · · , iq � n and 1 � q � m. Now we define, successively,

K
(2)
2 (x1, · · · ,xn;ω ;τ) = sup

R>0
inf

ε>0,m∈N
limsup

k→∞

log(o2 (ΓR (x1, · · · ,xn;m,k,ε;τ) ,ω))
k2

K
(2)
2 (x1, · · · ,xn;τ) = limsup

ω→0+
K

(2)
2 (x1, · · · ,xn;ω ;τ)

where K
(2)
2 (x1, · · · ,xn;τ) is called the modified free orbit-dimension of x1, · · · ,xn with

respect to the tracial state τ [5].

REMARK 5. ([5]) Suppose x1, · · · ,xn is a family of self-adjoint elements in a von
Neumann algebra with a tracial state τ. Let K2 (x1, · · · ,xn;τ) be the upper orbit di-

mension of x1, · · · ,xn defined in Definition 1 of [7]. Then K
(2)
2 (x1, · · · ,xn;τ) = 0 if

K2 (x1, · · · ,xn;τ) = 0.

2.8. MF-Traces and MF-nuclear algebras

We note that the definition of δtop (x1, · · · ,xn) makes sense if and only if, for every
ε > 0 and every r,k0 ∈ N , there is a k � ko such that

Γ(top) (x1, · · · ,xn;k,ε,Q1, · · · ,Qr) �= ∅.
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In [8], it has shown that this is equivalent to C∗ (x1, · · · ,xn) being an MF C*-algebra
in the sense of Blackadar and Kirchberg [1]. A C*-algebra A is an MF-algebra if
A can be embedded into Π1�k<∞Mmk (C)/∑1�k<∞ Mmk (C) for some increasing se-
quence {mk} of positive integers. In particular C*(x1, · · · ,xn) is an MF-algebra if
there is a sequence {mk} of positive integers and sequences {A1k} , · · · ,{Ank} with
A1k, · · · ,Ank ∈ Mmk (C) such that

lim
k→∞

‖Q(A1k, · · · ,Ank)‖ = ‖Q(x1, · · · ,xn)‖

for every *-polynomial Q(X1, · · · ,Xn) .

Throughout the rest of this paper, we always assume that a C*-algebra is MF.

DEFINITION 7. ([10]) Suppose A =C∗ (x1, · · · ,xn) is an MF C*-algebra. A tra-
cial state τ on A is an MF-trace if there is a sequence {mk} of positive integers
and sequences {A1k} , · · · ,{Ank} with A1k, · · · ,Ank ∈ Mmk (C) such that, for every ∗ -
polynomial Q :

1. limk→∞ ‖Q(A1k, · · · ,Ank)‖ = ‖Q(x1, · · · ,xn)‖ , and

2. limk→∞ τmk (Q(A1k, · · · ,Ank)) = τ (Q(x1, · · · ,xn)) .

We let T S (A ) denote the set of all tracial states on A and TMF (A ) denote
the set of all MF-traces on A .

DEFINITION 8. ([10]) A C*-algebra A =C∗ (x1, · · · ,xn) is MF-nuclear if πτ (A )′′

is hyperfinite for every τ ∈ TMF (A ) where πτ is the GNS representation of A with
respect to τ.

DEFINITION 9. ([10]) A tracial state τ on a unital C*-algebra A is called finite-
dimensional state if there is a finite dimensional C*-algebra B with a tracial state ρ
and a unital ∗ -homomorphism π : A → B such that τ = ρ ◦π .

PROPOSITION 1. ([10]) Suppose A =C∗ (x1, · · · ,xn) is an MF-algebra. Then:

1. TMF (A ) is a nonempty weak*-compact convex set.

2. Every finite-dimensional state on A is in TMF (A ) .

3. If π is a unital ∗ -homomorphism on A and π (A ) is an MF-algebra, then

{ϕ ◦π : ϕ ∈ TMF (π (A ))} ⊆ TMF (A ) .
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3. Relation between K
(2)
top and K

(2)
2

DEFINITION 10. ([5]) Let A be a unital C*-algebra and T S (A ) be the set of
all tracial states of A . Suppose that x1, · · · ,xn is a family of self-adjoint elements in
A . Define

KK
(2)
2 (x1, · · · ,xn) = sup

τ∈T S (A )
K

(2)
2 (x1, · · · ,xn;τ) .

THEOREM 3. ([5]) Suppose that A is a unital C*-algebra and x1, · · · ,xn is a
family of self-adjoint generating elements in A . Then

K
(2)
top(x1, · · · ,xn) � KK

(2)
2 (x1, · · · ,xn) .

We can generalize the preceding theorem as follows.

THEOREM 4. Let A be a unital C*-algebra and {x1, · · · ,xn} be a family of self-
adjoint generating elements in A . Then

K
(2)
top(x1, · · · ,xn) � sup

τ∈TMF (A )
K

(2)
2 (x1, · · · ,xn;τ)

where TMF (A ) is the set of all MF-tracial states on A .

The proof of the above theorem is similar to the proof of Theorem 4.3.1 in [5]. We
also need to note that τ in the original proof of Theorem 4.3.1 in [5] is an MF-tracial
state by the equality

|τ (Q(a1, · · · ,an))| = lim
s→∞

∣∣τη(qs) (Q(a1, · · · ,an))
∣∣

for every noncommutative polynomial Q and τη(qs) =
Trkqs ◦ψη(qs)

kqs
. Hence we omit the

proof of Theorem 4 here.
Now we are ready to simplify the proof of the following theorem.

THEOREM 5. ([10]) Suppose A is an MF-nuclear C*-algebra with a family of
self-adjoint generators x1, · · · ,xn. Then

δtop (x1, · · · ,xn) � 1.

Proof. It is known that the GNS representation of an MF-nuclear C*-algebra with
respect to an MF-tracial state yields an injective von Neumann algebra. From [7] and
Remark 5

K
(2)
2 (x1, · · · ,xn;τ) = 0 for any τ ∈ TMF (A ) .

So, from Theorem 4, we know that K
(2)
top (x1, · · · ,xn) = 0. Hence, by Theorem 3.1.2 in

[5],
δtop (x1, · · · ,xn) � 1.
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4. Definition and properties of K
(3)
top

Suppose A is a unital C*-algebra. We agree ∞·0 = 0. For any subset G ⊆ A ,
we define

K
(3)
top(x1, · · · ,xn : G )

= inf
{

∞·K(2)
top(x1, · · · ,xn : y1, · · · ,yt) : {y1, · · · ,y} is a finite subset of G

}
,

K
(3)
top(G ) = sup

E⊆G
E is finite

inf
F⊆G

F is finite

K
(3)
top(E : F).

REMARK 6. When G is finite, it is not difficult to see that

K
(3)
top(x1, · · · ,xn : G ) = ∞·K(2)

top(x1, · · · ,xn : G )

and
K

(3)
top(G ) = ∞·K(2)

top(G ).

The proof of the following theorem is similar to the Theorem 3.3 in [6], so we
omit it.

THEOREM 6. If A is an MF-algebra, then the following are equivalent:

1. K
(3)
top(A ) = 0;

2. if x1, · · · ,xn ∈A , then there exist y1, · · · ,yt ∈A such that K
(2)
top(x1, · · ·xn : y1, · · · ,yt)

= 0;

3. for any generating set G of A , K
(3)
top(G ) = 0;

4. there exists a generating set G of A such that K
(3)
top(G ) = 0;

5. if G is a generating set of A , and A0 is a finite subset of G , then, for any
finite subset A with A0 ⊆ A ⊆ G , there exists a finite subset B of G so that

K
(3)
top(A : B) = 0;

6. there is an increasing directed family {Ai : i ∈ Λ} of C*-subalgebras of A such
that:

(a) each Ai is countably generated;

(b) K
(3)
top(Ai) = 0 ;

(c) A = ∪i∈ΛAi ;

7. if A is a countable subset of M , then there exists a countably generated subal-

gebra B of M such that A ⊆ B and K
(3)
top(B) =0.
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REMARK 7. If A is finitely generated, then K
(3)
top (A ) = 0 if K

(2)
top (A ) = 0.

COROLLARY 1. Suppose A is a C*-algebra, G is a generating set of A . Then

K
(3)
top (A ) = K

(3)
top (G ) .

COROLLARY 2. Suppose {Al}l∈Λ is an increasingly directed family of C*-alge-
bras. Then

K
(3)
top (∪Al) � liminf

l
K

(3)
top (Al) .

Proof. If liminfl K
(3)
top (Al) = ∞ , the inequality holds clearly. Suppose that

liminfl K
(3)
top (Al) = 0. Let x1, · · · ,xn ∈ ∪Al. Then we can find an l ∈ Λ such that

x1, · · · ,xn ∈ Al and K
(3)
top (Al) = 0. Therefore, we can find y1, · · · ,yp ∈ Al with

K
(3)
top (x1, · · · ,xn : y1, · · · ,yp) = 0.

It follows that K
(3)
top (∪Al) = 0 by Theorem 6 (6).

We modify the K3 in [6] by using the modified free orbit dimension K
(2)
2 .

DEFINITION 11. Let M be a von Neumann algebra with a tracial state τ, and let
x1, · · · ,xn be self-adjoint elements in M . Define

K
(3)
3 ((x1, · · · ,xn : G );τ)

= inf
{

∞·K(2)
2 ((x1, · · · ,xn : y1, · · · ,yt);τ) : {y1, · · · ,yt} is a finite subset of G

}
and

K
(3)
3 (G ;τ)= sup

E⊆G
E is finite

inf
F⊆G

F is finite

K
(3)
3 ((E : F);τ).

REMARK 8. Note that if K3 (G ;τ) = 0, then K
(3)
3 (G ;τ) = 0 by Remark 5.

Now we are ready to get the relationship between K
(3)
top (G ) and K

(3)
3 (G ;τ).

THEOREM 7. Let A be an MF-algebra and G be a countably generating set of
A . Then

K
(3)
top (G ) � sup

τ∈T S (A )
K

(3)
3 (G ;τ).

Proof. If K
(3)
top (G ) = 0, the inequality holds clearly. Otherwise, K

(3)
top (G ) = ∞. It

follows from the definition of K
(3)
top that, there is a finite subset E ⊆ G such that for

every finite subset F ⊆ G , K
(3)
top(E : F) = ∞ . It implies that 0 < K

(2)
top(E : F) for every
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finite subset F ⊆G . Hence for any finite subset F of G we can find a sequence {Fi}∞
i=1

of finite subsets of G with
F = F0 ⊆ F1 ⊆ ·· ·

and ∪iFi = G . Therefore

C∗ (E ∪F0) ⊆C∗ (E ∪F1) ⊆ ·· ·

and

∪iC∗ (E ∪Fi)
‖·‖

= A .

Since for each i, K
(2)
top(E : Fi) > 0, we can find a tracial state τi on C∗ (E ∪Fi)

such that
K

(2)
2 (E : Fi;τi) � K

(2)
top(E : Fi)− εi > 0 (4.1)

for some small εi > 0 by Theorem 4. We may regard C∗ (E ∪F0) as a subalgebra of
C∗ (E ∪Fi) for i � 1, then

K
(2)
2 (E : F0 : τi) � K

(2)
2 (E : Fi;τi) > 0 for every i. (4.2)

Let

π : ∪iC∗ (E ∪Fi)
‖·‖ −→ ΠiC

∗ (E ∪Fi)/ΣiC
∗ (E ∪Fi)

be the embedding defined by

π (A) = (0, · · · ,0,︸ ︷︷ ︸
the first i positions

A,A, · · ·) for every A ∈C∗ (E ∪Fi)

and τ̃ be the tracial state on

Πi∈NC∗ (E ∪Fi)/Σi∈NC∗ (E ∪Fi)

define by τ̃ ([{Ai}]α) = limi→α τi(Ai) where α is a free ultrafilter over N and

[{Ai}]α ∈ Πi∈NC∗ (E ∪Fi)/Σi∈NC∗ (E ∪Fi) .

Define τ = τ̃ ◦π , then τ is a tracial state on A . Note for any finite subset G of G , we
can always find a suitable index i such that

G ⊆ Fi ⊆ Fi+1 ⊆ ·· · .

Therefore τ̃ is irrelevant to the selection of finite subset F = F0, so is τ. Let {εt}
be a decreasing sequence of positive numbers with limt→∞ εt = 0 and {mt}∞

t=1 be an
increasing sequence of integers with limt→∞ mt = ∞ . Then, for large R > 0, we can
find a subsequence {it}∞

t=1 of integers such that when ε is small enough and m is big
enough,

ΓR (E : F0;k,ε,m;τit ) ⊆ ΓR (E : F0;k,εt ,mt ;τ) for every k.
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It implies that, for any ω > 0,

inf
ε,m

limsup
k→∞

log(o2 (ΓR (E : F0;k,ε,m;τit ) ,ω))
k2

�limsup
k→∞

log(o2 (ΓR (E : F0;k,εt ,mt ;τ) ,ω))
k2 for every it ,

it follows that

limsup
t→∞

inf
ε,m

limsup
k→∞

log(o2 (ΓR (E : F0;k,ε,m;τit ) ,ω))
k2

�limsup
t→∞

limsup
k→∞

log(o2 (ΓR (E : F0;k,εt ,mt ;τ) ,ω))
k2 .

Therefore we can find an index t0 such that

inf
ε,m

limsup
k→∞

log
(
o2

(
ΓR

(
E : F0;k,ε,m;τit0

)
,ω

))
k2

�limsup
t→∞

inf
ε,m

limsup
k→∞

log(o2 (ΓR (E : F0;k,ε,m;τit ) ,ω))
k2

�limsup
t→∞

limsup
k→∞

log(o2 (ΓR (E : F0;k,εt ,mt ;τ) ,ω))
k2 .

So by (4.1) and (4.2),

0 < K
(2)
2 ((E : F0);τit0

) = sup
0<ω<1

sup
R>0

inf
ε,m

limsup
k→∞

log
(
o2

(
ΓR

(
E : F0;k,ε,m;τit0

)
,ω

))
k2

� sup
0<ω<1

sup
R>0

limsup
t→∞

inf
ε,m

limsup
k→∞

log(o2 (ΓR (E : F0;k,ε,m;τit ) ,ω))
k2

� sup
0<ω<1

sup
R>0

limsup
t→∞

limsup
k→∞

log(o2 (ΓR (E : F0;k,εt ,mt ;τ) ,ω))
k2

= sup
0<ω<1

sup
R>0

inf
εt ,mt

limsup
k→∞

log(o2 (ΓR (E : F0;k,εt ,mt ;τ) ,ω))
k2

= K
(2)
2 ((E : F0);τ).

Note that F0 = F is an arbitrary subset of G . Then

K
(3)
3 (G ;τ)= sup

E⊆G
E is finite

inf
F⊆G

F is finite

K
(3)
3 ((E : F);τ)= sup

E⊆G
E is finite

inf
F⊆G

F is finite

{
∞·K(2)

2 ((E : F);τ)
}

= ∞.

It follows that
K

(3)
top (G ) � sup

τ∈T S (A )
K

(3)
3 (G ;τ).

In the rest of this section, we are going to give the analogs of Theorem 3.14 and
Theorem 3.17 in [6]. The following lemma can be found in [6]:
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LEMMA 2. ([6]) Suppose A is a normal element in a von Neumann algebra M
with tracial state τ such that A has no eigenvalues. Then there is a positive element Y
with the uniform distribution on [0,1] such that W ∗ (A) = W ∗ (Y ) .

REMARK 9. ([10]) It is well known that every self-adjoint element in a finite von
Neumann algebra M has an eigenvalue if and only if M has a finite-dimensional
invariant subspace.

To prove our next lemma, we need to recall the concepts of a Haar unitary matrix
in Mk (C) and a Haar unitary element in an infinite-dimensional von Neumann algebra
M .

DEFINITION 12. A unitary matrix A in Mk (C) is called a Haar unitary matrix
if the eigenvalues of A are the k -th roots of unity. Equivalently, if τk

(
Ai

)
= 0 for

1 � i < k and τk
(
Ak

)
= 1.

DEFINITION 13. Suppose M is an infinite-dimensional von Neumann algebra
with a tracial state τ. Then a unitary u in M is called a Haar unitary if τ (um) = 0
when m �= 0. In addition, M is called diffuse if M contains a Haar unitary.

DEFINITION 14. A C*-algebra A is called NFD if it has no non-zero finite-
dimensional representations.

Now we are ready to show the following lemma.

LEMMA 3. Suppose A is a unital MF C*-algebra generated by x1, · · · ,xn. Then
the following statements are equivalent:

1. A is an NFD algebra;

2. For any δ > 0, there are ε0 , N0 and k0 such that for any k > k0,ε < ε0 , N > N0,
and any

(A1, · · · ,An) ∈ Γ(top) (x1, · · · ,xn;k,ε,Q1, · · · ,QN)

there is a noncommutative polynomial Q̃(X1, · · · ,Xn) such that∥∥∥Uk − Q̃(A1, · · · ,An)
∥∥∥

2
< δ

for a Haar unitary Uk ∈ Mk (C) .

Proof. First, suppose (1) holds and there are δ0 and sequences {εi} with εi → 0,
{Ni} with Ni → ∞ , {ki} with ki → ∞ as well as(

A(i)
1 , · · · ,A(i)

n

)
∈ Γ(top) (x1, · · · ,xn;ki,εi,Q1, · · · ,QNi) for each i

such that ∥∥∥Uki −Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥
2
> δ0
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for any noncommutativepolynomial Q(X1, · · · ,Xn) and any Haar unitary Uki ∈Mki (C) .

Note that any subsequence of
{(

A(i)
1 , · · · ,A(i)

n

)}
has the same property, so we may as-

sume that
lim

i

∥∥∥Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥ = ‖Q(x1, · · · ,xn)‖
and

lim
i

τki

(
Q

(
A(i)

1 , · · · ,A(i)
n

))
= lim

i
τ (Q(x1, · · · ,xn))

for any noncommutative polynomial Q where τ on A is the MF-tracial state de-
fined by

{
τki

}
. Let α be a free ultrafilter over N , (N ,ρ) be the tracial ultraproduct

α
Π

(
Mki (C) ,τki

)
and y j =

[{
A(i)

j

}]
α
∈N for 1 � j � n. Note (N ,ρ) is a II1 factor,

then for any noncommutative polynomial Q(X1, · · · ,Xn)

‖Q(y1, · · · ,yn)‖ � lim
i

∥∥∥Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥ = ‖Q(x1, · · · ,xn)‖ .

Hence π : A → N defined by π (xi) = yi is a unital ∗ -homomorphism and then ρ ◦
π = τ. Since A has no non-zero finite-dimensional representations, we know that
π (A )′′ has no finite-dimensional invariant subspace. It implies that π (A )′′ is diffused
by Lemma 2, Remark 9 and Definition 13. Therefore we can find a Haar unitary U =[{

Uki

}]
α ∈ π (A )′′ where we may assume Uki is a Haar unitary in Mki (C) without

loss of generality. It implies that for any δ0 > 0 there is a noncommutative polynomial
Q̃(X1, · · · ,Xn) satisfying

∥∥∥U − Q̃(y1, · · · ,yn)
∥∥∥

2
= lim

α

∥∥∥Uki − Q̃
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥
2
<

δ0

2
.

So we can find an integer i such that∥∥∥Uki − Q̃
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥
2
< δ0.

This contradicts the assumption, hence statement (1) implies statement (2).
On the other hand, suppose (2) holds and A has a non-zero finite-dimensional

representation. Then by Proposition 1 and Definition 7, there is a finite-dimensional

MF-tracial state τ and sequence
{(

A(i)
1 , · · · ,A(i)

n

)}
i
in which A(i)

k ∈ Mki (C) such that

lim
i

∥∥∥Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥ = ‖Q(x1, · · · ,xn)‖

and
lim

i
τki

(
Q

(
A(i)

1 , · · · ,A(i)
n

))
= lim

i
τ (Q(x1, · · · ,xn))

for any noncommutative polynomial Q. As in the argument above, we let (N ,ρ) be

the tracial ultraproduct
α
Π

(
Mki (C) ,τki

)
and y j =

[{
A(i)

j

}]
α

∈ N for 1 � j � n.

Then (N ,ρ) is a II1 factor and there is a ∗ -homomorphism π : A →N with π (xi) =
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yi and ρ ◦π = τ. Since τ is finite-dimensional and ρ is faithful, we have π (A )′′ is
finite-dimensional. Thus there is no Haar unitary U =

{(
Uki

)}
in N which lies in

π (A )′′ . It implies that ∥∥∥Uki −Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥
2
> δ0

for any noncommutativepolynomial Q(X1, · · · ,Xn) and any Haar unitary Uki ∈Mki (C) .
This contradicts the statement (2). Hence (2) implies (1).

LEMMA 4. Let A be a unital MF C*-algebra generated by x1, · · · ,xn. If A is
NFD, then for any δ > 0, there are ε0 , N0 and k0 such that for any k > k0,ε < ε0 ,
N > N0, and any

(A1, · · · ,An) ∈ Γ(top) (x1, · · · ,xn;k,ε,Q1, · · · ,QN) ,

there is a self-adjoint noncommutative polynomial Q̃(X1, · · · ,Xn) satisfying∥∥∥∥∥∥∥∥∥
W ∗

k Q̃(A1, · · · ,An)Wk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

< δ

for a unitary Wk in Mk (C) where {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1
k as 1 � i � k .

Proof. Assume to the contrary that there are δ0 and sequences {εi}i∈N with εi →
0, {Ni}i∈N with Ni → ∞ , {ki}i∈N with ki → ∞ as well as(

A(i)
1 , · · · ,A(i)

n

)
∈ Γ(top) (x1, · · · ,xn;ki,εi,Q1, · · · ,QNi)

such that ∥∥∥∥∥∥∥∥∥
W ∗

k Q
(
A(i)

1 , · · · ,A(i)
n

)
Wk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

> δ0

for any non-commutative polynomial Q(X1, · · · ,Xn) and any unitary Wk in Mk (C) .
Then by Lemma 3, without loss of generality, we may assume that for {εi}i∈N ,{Ni}i∈N

and {ki}i∈N there is a sequence {Qi (X1, · · · ,Xn)}i∈N of noncommutative polynomials
such that ∥∥Uki −Qi (A1, · · · ,An)

∥∥
2 <

1
i

(4.3)

for a Haar unitary Uki ∈ Mki (C) and any

(A1, · · · ,An) ∈ Γ(top) (x1, · · · ,xn;ki,εi,Q1, · · · ,QNi) .
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So by using the same argument in the proof of Lemma 3, we may assume that

lim
i

∥∥∥Q
(
A(i)

1 , · · · ,A(i)
n

)∥∥∥ = ‖Q(x1, · · · ,xn)‖

and
lim

i
τki

(
Q

(
A(i)

1 , · · · ,A(i)
n

))
= τ (Q(x1, · · · ,xn))

for any noncommutative polynomial Q(X1, · · · ,Xn) where τ is the MF-tracial state
on A defined by

{
τki

}
. Therefore we can get a unital ∗ -homomorphism π : A →

N defined by π (xl) = yl for 1 � l � n where (N ,ρ) is the tracial ultraproduct
α
Π

(
Mki (C) ,τki

)
and yl =

[{
A(i)

l

}]
α

∈ N for 1 � l � n and ρ ◦π = τ. Hence, by

(4.3),

lim
j→∞

lim
i→α

∥∥∥Uki −Qj

(
A(i)

1 , · · · ,A(i)
n

)∥∥∥
2
= 0. (4.4)

Let u =
[{

Uki

}]
α ∈ N . Then by (4.4),

lim
j

∥∥u−Qj (y1, · · · ,yn)
∥∥

2 = 0.

It implies that the Haar unitary u =
[{

Uki

}]
α is in π (A )′′ . Therefore we can find a

positive element y ∈ π (A )′′ such that u = e2π iy. Assume y = [
{
Aki

}
]α in which Aki

is self-adjoint in Mki (C) . Hence there is a self-adjoint element x ∈ π (A ) such that

‖y− x‖2 <
δ0

2
. (4.5)

Without loss of generality, we may also assume x = Q̃(y1, · · · ,yn) for some noncommu-
tative polynomial Q̃(X1, · · · ,Xn) . Since u = e2π iy , we may assume that e2π iAki = Uki .
We can therefore get a unitary Wki such that

WkiAkiW
∗
ki

=

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λki

⎞
⎟⎟⎟⎠

where
{

λ1, · · · ,λki

} ⊆ [0,1] with λ j = j−1
ki

as 1 � j � ki. It follows that

∥∥∥W ∗
ki
Q̃

(
A(i)

1 , · · · ,A(i)
n

)
Wki −Aki

∥∥∥
2
< δ0

for some i and unitary Wki ∈Mki by (4.5). This is a contradiction. Thus, for any δ > 0,
there are ε0 , N0 and k0 such that, for any k > k0,ε < ε0 , N > N0, and any

(A1, · · · ,An) ∈ Γ(top) (x1, · · · ,xn;k,ε,Q1, · · · ,QN) ,
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there is a noncommutative polynomial Q̃(X1, · · · ,Xn) satisfying∥∥∥∥∥∥∥∥∥
W ∗

k Q̃(A1, · · · ,An)Wk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

< δ

for a unitary Wk in Mk (C) . So the proof will be completed by taking self-adjoint

noncommutative polynomial
Q̃(X1,···,Xn)+(Q̃(X1,···,Xn))∗

2 .

LEMMA 5. Let A be a unital MF C*-algebra generated by x1, · · · ,xn. If A is
NFD, then for any δ > 0, there is a self-adjoint element x ∈ A and ε1 , N1 as well as
k1 such that for any k > k1,ε < ε1 , N > N1 and any

A ∈ Γ(top) (x;k,ε,Q1, · · · ,QN) ,

the following inequality holds∥∥∥∥∥∥∥∥∥
W ∗

k AWk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

< δ

for a unitary Wk in Mk (C) where {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1
k as 1 � i � k .

Proof. By Lemma 4, for any δ , there are ε0 , N0 and k0 such that for any k >
k0,ε < ε0 , N > N0, and any

(A1, · · · ,An) ∈ Γ(top) (x1, · · · ,xn;k,ε,Q1, · · · ,QN) ,

there is a noncommutative polynomial Q̃(X1, · · · ,Xn) satisfying∥∥∥∥∥∥∥∥∥
W ∗

k Q̃(A1, · · · ,An)Wk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

<
δ
2

(4.6)

and Q̃(A1, · · · ,An) is a self-adjoint element in Mk (C) for a unitary Wk in Mk (C)
where {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1

k as 1 � i � k .

Let x = Q̃(x1, · · · ,xn) . Then x is self-adjoint. For δ
2 , there are ε1 , N1 and k1 with

k1 > k0 such that, for any k > k1,ε < ε1 , N > N1 and any A∈Γ(top) (x;k,ε,Q1, · · · ,QN) ,
we have ∥∥∥Q̃

(
A(k)

1 , · · · ,A(k)
n

)
−A

∥∥∥ <
δ
2

(4.7)
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for some (
A(k)

1 , · · · ,A(k)
n

)
∈ Γ(top) (x1, · · · ,xn;k,ε ′,Q1, · · · ,QN′

)
when ε ′ is small enough and N′ is large enough . By (4.6) and (4.7), the proof can be
completed.

LEMMA 6. ([7]) Let V1,V2 be two Haar unitary matrices in Mk (C) . For every
δ > 0, let

Ω(V1,V2;δ ) = {U ∈ U (k) |‖UV1−V2U‖2 � δ} .

Then for every 0 < δ < r there exists a set
{

Ball
(
Uλ ; 4δ

r

)}
λ∈Λ

of 4δ
r -balls in U (k)

that cover Ω(V1,V2;δ ) with the cardinality of Λ satisfying |Λ| � ( 3r
2δ

)4rk2

.

LEMMA 7. Let {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1
k as 1 � i � k where k � 4.

Assume D1 and D2 are diagonal matrices in Mk (C) such that diagonal entries are
all from {λ1, · · · ,λk} without repetition. For every δ > 0, let

Ω(D1,D2;δ ) = {U ∈ U (k) |‖UD1−D2U‖2 � δ} .

Then, for every 0 < δ < r, there exists a set
{

Ball
(
Uλ ; 4δ

r

)}
λ∈Λ

of 4δ
r -balls in U (k)

that cover Ω(D1,D2;δ ) with the cardinality of Λ satisfying |Λ| � (
3r
2δ

)8πrk2

.

Proof. Let D = diag(λ1, · · · ,λk) . Then there exist W1,W2 ∈U (k) such that D1 =
W1DW∗

1 and D2 = W2DW ∗
2 . Let

Ω̃(δ ) = {U ∈ U (k) |‖UD−DU‖2 � δ} .

Clearly

Ω(D1,D2;δ ) =
{
W ∗

2 UW1|U ∈ Ω̃(δ )
}

,

hence Ω̃(δ ) and Ω(D1,D2;δ ) have the same covering numbers.
Let {est}k

s,t=1 be the canonical system of matrix units of Mk (C) . For every U =

∑k
s,t=1 xstest in Ω̃(δ ), with xst ∈ C , we have

∥∥Ue2π iD− e2π iDU
∥∥2

2 =
k

∑
s,t=1

∣∣∣(e2π iλs − e2π iλt
)

xst

∣∣∣2 �
k

∑
s,t=1

4π |(λs−λt)xst |2

= 4π ‖UD−DU‖2
2 � (2πδ )2 .

Hence ∥∥Ue2π iD− e2π iDU
∥∥2

2 � 2πδ

for U ∈ Ω̃(δ ). So the result can be obtained by Lemma 6.
The following lemma is analogous to Lemma 3.13 in [6].
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LEMMA 8. Let x1, · · · ,xn,y1, · · · ,yp,v1, · · · ,vs,w1, · · · ,wt be elements in an MF
C*-algebra A . If C*(x1, · · · ,xn)∩C∗ (y1, · · · ,yp) is NFD, then

K
(3)
top (x1, · · · ,xn,y1, · · · ,yp : v1, · · · ,vs,w1, · · · ,wt )

�K
(3)
top (x1, · · · ,xn : v1, · · · ,vs)+K

(3)
top (y1, · · · ,yp : w1, · · · ,wt ) .

Proof. Without loss of generality, we may assume that ‖xi‖� 1 and
∥∥y j

∥∥ � 1 for

each 1 � i � n and 1 � j � p. If one of K
(3)
top (x1, · · · ,xn : v1, · · · ,vs) and

K
(3)
top (y1, · · · ,yp : w1, · · · ,wt ) is infinite, the proof is clear. So we can assume that

K
(3)
top (x1, · · · ,xn : v1, · · · ,vs) = K

(3)
top (y1, · · · ,yp : w1, · · · ,wt ) = 0. (4.8)

By Lemma 5, for r > 0, ω > 0 we can find a self-adjoint element

dr,ω ∈C∗ (x1, · · · ,xn)∩C∗ (y1, · · · ,yp) , (4.9)

ε1 > 0, N1 ∈ N and k1 ∈ N such that for any k > k1,ε < ε1 , N > N1 and any

D ∈ Γ(top) (dr,ω ;k,ε,Q1, · · · ,QN) ,

the following inequality holds∥∥∥∥∥∥∥∥∥
W ∗

k DWk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

<
rω
48

for a unitary Wk in Mk (C) where {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1
k as 1 � i � k . By

(4.8), (4.9) and Theorem 2,

K
(2)
top (x1, · · · ,xn,dr,ω : v1, · · · ,vs) = K

(2)
top (y1, · · · ,yp,dr,ω : w1, · · · ,wt) = 0.

If

(A1, · · · ,An,B1, · · · ,Bp,D)

∈ Γ(top)(x1, · · · ,xn,y1, · · · ,yp,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;P1, · · · ,Pm,k,ε),

then

(A1, · · · ,An,D) ∈ Γ(top)(x1, · · · ,xn,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;P′
1, · · · ,P′

m1
,k,ε)

and

(B1, · · · ,Bp,D) ∈ Γ(top) (y1, · · · ,yp,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;P
′′
1 , · · · ,P′′

m2
,k,ε

)
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where
P′

1, · · · ,P′
m1

∈ C〈X1, · · · ,Xn+1,V1, · · · ,Vs,W1, · · · ,Wt〉
and

P′′
1 , · · · ,P′′

m2
∈ C〈Y1, · · · ,Yp+1,V1, · · · ,Vs,W1, · · · ,Wt〉

respectively. Let
{
U (Aλ

1 , · · · ,Aλ
n ,Dλ ); rω

48

}
λ∈Λk

be a set of rω
48 -orbit-balls that cover

Γ(top)(x1, · · · ,xn,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;k,ε,P′
1, · · · ,P′

m1
)

with the cardinality of Λk satisfying

|Λk| = o2

(
Γ(top)(x1, · · · ,xn,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;k,ε,P′

1, · · · ,P′
m1

);
rω
48

)
.

Also let
{
U (Bσ

1 , · · · ,Bσ
n ,Dσ ); rω

48

}
σ∈Σk

be a set of rω
48 -orbit-balls that cover

ΓR
(
y1, · · · ,yp,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;k,ε,P′′

1 , · · · ,P′′
m2

)
with the cardinality of Σk satisfying

|Σk| = o2

(
ΓR

(
y1, · · · ,yp,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;k,ε,P′′

1 , · · · ,P′′
m2

)
;
rω
48

)
.

When m and k are large enough and ε is small enough, we let Dσ ,Dλ to be diagonal
matrices in Lemma 7. For any

(A1, · · · ,An,B1, · · · ,Bp,D)
∈ ΓR (x1, · · · ,xn,y1, · · · ,yp,dr,ω : v1, · · · ,vs,w1, · · · ,wt ;P1, · · · ,Pm,k,ε) ,

there exist some λ ∈ Λk,σ ∈ Σk and W1,W2 ∈ U (k) such that∥∥∥(A1, · · · ,An,D)−W1

(
Aλ

1 , · · · ,Aλ
n ,Dλ

)
W ∗

1

∥∥∥
2
� rω

24
,

∥∥(B1, · · · ,Bp,D)−W2
(
Bσ

1 , · · · ,Bσ
p ,Dσ )

W ∗
2

∥∥
2
� rω

24
.

Therefore ∥∥∥W1D
λW ∗

1 −W2D
σW ∗

2

∥∥∥
2
=

∥∥∥W ∗
2 W1D

λ −DσW ∗
2 W1

∥∥∥
2
� rω

12
.

From Lemma 7, there exists a set
{
Ball

(
Uλ ,σ ,γ ,

ω
3

)}
γ∈Δk

in U (k) which cover

Ω
(
Dλ ,Dσ ; rω

12

)
with cardinality |Δk| �

( 18
ω

)8πrk2

. This implies that∥∥∥(A1, · · · ,An,B1, · · · ,Bp,D)

−
(
W2Uλ ,σ ,γA

λ
1U∗

λ ,σ ,γW
∗
2 ,· · ·,W2Uλ ,σ ,γA

λ
nU∗

λ ,σ ,γW
∗
2 ,W2B

σ
1 W ∗

2 ,· · ·,W2B
σ
pW ∗

2 ,W2D
σW ∗

2

)∥∥∥
2

< nω .
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Therefore∥∥∥(A1, · · · ,An,B1, · · · ,Bp)

−
(
W2Uλ ,σ ,γA

λ
1U∗

λ ,σ ,γW
∗
2 , · · · ,W2Uλ ,σ ,γA

λ
nU∗

λ ,σ ,γW
∗
2 ,W2B

σ
1 W ∗

2 , · · · ,W2B
σ
pW

∗
2

)∥∥∥
2

<nω .

Then we get

K
(top)
2 (x1, · · · ,xn,y1, · · · ,yp, : dr,ω ,v1, · · · ,vs,w1, · · · ,wt ;2nω) (4.10)

� inf
m∈N,ε>0

limsup
k−→∞

log(|Λk| |Σk| |Δk|)
k2 � 8πr (log(18)− logω) .

Now by Lemma 1 and the fact that dr,ω ∈C∗ (x1, · · · ,xn)∩C∗ (y1, · · · ,yp) , we have

K
(top)
2 (x1, · · · ,xn,y1, · · · ,yp, : v1, · · · ,vs,w1, · · · ,wt ;4nω)

�K
(top)
2 (x1, · · · ,xn,y1, · · · ,yp, : dr,ω ,v1, · · · ,vs,w1, · · · ,wt ;2nω) .

Hence by (4.10) and the fact that r is arbitrary ,we can conclude that

K
(top)
3 (x1, · · · ,xn,y1, · · · ,yp : v1, · · · ,vs,w1, · · · ,wt) = 0.

This completes the proof.

THEOREM 8. Suppose A is a separable C*-algebra, N1 and N2 are C*-subalge-
bras of A . If N1∩N2 is NFD and finitely generated, then

K
(3)
top (C∗ (N1∪N2)) � K

(3)
top (N1)+K

(3)
top (N2) .

Proof. If K
(top)
3 (N1) = ∞ or K

(top)
3 (N2) = ∞ , the inequality holds automatically.

Now suppose that

K
(3)
top (N1) = K

(3)
top (N2) = 0. (4.11)

By assumption, we let N1 ∩ N2 = C∗ (d1, · · · ,dl) and G = N 1 ∪N2 . Then
G is a generating set of C∗ (N1∪N2) . Suppose A is any finite subset of G with
{d1, · · · ,dl} ⊆ A. So we may assume that

A = {x1, · · · ,xn,d1, · · · ,dl,y1, · · · ,ym}
where {x1, · · · ,xn} ⊆ N1 and {y1, · · · ,ym} ⊆ N2. By (4.11), there exist

v1, · · · ,vs ∈ N1,w1, · · · ,wt ∈ N2

such that

K
(3)
top (x1, · · · ,xn,d1, · · · ,dl : v1, · · · ,vs) = K

(3)
top (y1, · · · ,yt ,d1, · · · ,dl : w1, · · · ,wt) = 0.
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Then from Lemma 8, we know that

K
(top)
3 (A : v1, · · · ,vs,w1, · · · ,wt ) = 0.

Therefore, by Theorem 6 (5), K
(top)
3 (C∗ (N1∪N2)) = 0. This completes the proof.

THEOREM 9. Let N be an MF C*-algebra, and D , A be C*-subalgebras of
N with D ⊆ A ⊆ N where D is finitely generated and NFD . If there is a unitary
u ∈ N such that u∗Du ⊆ A , then

K
(top)
3 (C∗ (A ∪{u})) � K

(top)
3 (A ) .

Proof. If K
(top)
3 (A ) = ∞ , the proof is clear. Now suppose that K

(top)
3 (A ) = 0 and

D =C∗ (d1, · · · ,dl) . By Lemma 5, for r > 0, ω > 0 we can find a self-adjoint element
dr,ω ∈ D , ε1 > 0, N1 ∈ N and k1 ∈ N such that for any k > k1,ε < ε1 , N > N1 and
any

D ∈ Γ(top) (dr,ω ;k,ε,Q1, · · · ,QN) ,

the following inequality holds∥∥∥∥∥∥∥∥∥
W ∗

k DWk −

⎛
⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
2

<
rω
192

for a unitary Wk in Mk (C) where {λ1, · · · ,λk} ⊆ [0,1] with λi = i−1
k as 1 � i � k .

Let x1, · · · ,xn be elements in A . Then there exist y1, · · · ,yp in A such that

K
(top)
2 (x1, · · · ,xn,d1, · · ·dl,dr,ω ,u∗dr,ωu : y1, · · · ,yp) = 0.

Suppose {
U

(
T λ
1 , · · · ,T λ

n+l,A
λ ,Bλ ;

rω
192

)}
λ∈Λk

is a set of rω
192 -orbit-balls in Mk (C)n+l+2 that cover

Γ(top) (x1, · · · ,xn,d1, · · ·dl,dr,ω ,u∗dr,ωu : y1, · · · ,yp : k,ε,P1, · · · ,Pm)

where P1, · · · ,Pm ∈ C〈X1, · · · ,Xn+l+2,Y1, · · · ,Yp〉 with the cardinality of Λk satisfying

|Λk| = o2

(
Γ(top) (x1, · · · ,xn,d1, · · ·dl,dr,ω ,u∗dr,ωu : y1, · · · ,yp;k,ε,P1, · · · ,Pm) ,

rω
192

)
.

When m,k are sufficiently large and ε is sufficiently small, we can let Aλ be a diagonal
matrix in Lemma 7 and then Bλ = U∗AλU for some unitary matrix U. It implies that
for such Aλ and Bλ ,∥∥∥(T1, · · · ,Tn+l,A,B)−V

(
Tλ
1 , · · · ,T λ

n+l,A
λ ,Bλ

)
V ∗

∥∥∥
2
� rω

64
.



374 Q. LI, D. HADWIN, W. LI AND J. SHEN

For sufficiently large m′ and sufficiently small ε < rω
64 , when

(T1, · · · ,Tn+l,A,B,C,D)

∈ Γ(top)
(

x1, · · · ,xn,d1, · · ·dl,dr,ω ,u∗dr,ωu,
u+u∗

2
,
u−u∗

2i
: y1, · · · ,yp;P′

1, · · · ,P′
m′ ,k,ε

)

where P′
1, · · · ,P′

m′ ∈ C〈X1, · · · ,Xn+l+2,Y1, · · · ,Yp〉 , we may assume that

‖C+ iD−W‖ <
rω
64

(4.12)

for some unitary W ∈ Mk (C) and

‖A(C+ iD)− (C+ iD)B‖ � ε <
rω
64

(4.13)

as well as

(T1, · · · ,Tn+l,A,B) ∈ Γ(top) (x1, · · · ,xn,d1, · · ·dl,dr,ω ,u∗dr,ωu : y1, · · · ,yp;k,ε,P1, · · · ,Pm) .

It implies that there exist some λ ∈ Λk and V ∈ U (k) such that∥∥∥(T1, · · · ,Tn+l,A,B)−
(
VT λ

1 V ∗, · · · ,VTλ
n+lV

∗,VAλV ∗,VBλV ∗
)∥∥∥

2
(4.14)

� rω
64

.

So, by (4.13) and (4.14), we have∥∥∥V ∗ (C+ iD)VAλ −BλV ∗ (C+ iD)V
∥∥∥

2
=

∥∥∥(C+ iD)VAλV ∗ −VBλV ∗ (C+ iD)
∥∥∥

2

�3 · rω
64

,

therefore, by (4.12), ∥∥∥V ∗WVAλ −BλV ∗WV
∥∥∥

2
� rω

8
.

By Lemma 7,
{
Ball

(
Uσ ; ω

2

)}
σ∈Σk

is a set of ω
2 -balls in U (k) that cover

Ω
(
Aλ ,Bλ , rω

8

)
with the cardinality of Σk satisfying |Σk| �

(
12
ω

)8πrk2

. Hence
‖V ∗WV −Uσ‖2 � ω

2 for some σ ∈ Σk. Following (4.12),

‖V ∗ (C+ iD)V −Uσ‖2 < ω .

It implies that∥∥∥∥(T1, · · · ,Tn+l,C,D)−
(

VTλ
1 V ∗, · · · ,VT λ

n+lV
∗,V

Uσ +Uσ∗

2
V ∗,V

Uσ−Uσ∗

2i
V ∗

)∥∥∥∥
2
�3ω .

Therefore,

o2

(
Γ(top)

(
x1,· · ·,xn,d1,· · ·,dl,

u+u∗

2
,
u−u∗

2i
: dr,ω ,u∗dr,ωu,y1,· · ·,yp;k,ε,P1,· · ·,Pm

)
,3ω

)
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� |Λk| |Σk| .
Hence, by Lemma 1, we get

0 � K
(top)
2

(
x1, · · · ,xn,d1, · · ·dl,

u+u∗

2
,
u−u∗

2i
: y1 · · · ,yp,6ω

)

� K
(top)
2

(
x1, · · · ,xn,d1, · · ·dl,

u+u∗

2
,
u−u∗

2i
: dr,ω ,u∗dr,ωu,y1 · · · ,yp,3ω

)

� inf
m∈N,ε>0

limsup
k−→∞

log(|Λk| |Σk|)
k2

� inf
m∈N,ε>0

limsup
k−→∞

(
log(|Λk|)

k2 +8πr(log12− logω)
)

= 8πr(log12− logω).

Since r is an arbitrarily small positive number, we have

K
(top)
2

(
x1, · · · ,xn,d1, · · ·dl,

u+u∗

2
,
u−u∗

2i
: y1 · · · ,yp,6ω

)
= 0.

Therefore

K
(top)
3

(
x1, · · · ,xn,d1, · · ·dl

u+u∗

2
,
u−u∗

2i
: y1 · · · ,yp

)
= 0.

Then, by Theorem 6 (5),

K
(top)
3 (C∗ (A ∪{u})) = 0.

COROLLARY 3. Let A =C∗ (x1, · · · ,xn) and B be unital MF C*-algebras. Sup-
pose G is a countable group of actions

{
αg

}
g∈G on A and D = A �αG is either a

full or reduced crossed product of A by the actions of G. If A is NFD and there is an
onto *-homomorphism π : A �αG −→ B , then

K
(top)
3 (B) � K

(top)
3 (A ) .

Proof. If K
(top)
3 (A ) = ∞ , the assertion is clear. Now suppose K

(top)
3 (A ) = 0.

Note that π
(
g−1

)
π (A )π (g) ⊆ π (A ) . Then, by Theorem 9,

K
(top)
3 (π (A )∪{π (g)}) = 0.

From Theorem 8, we know that

K
(top)
3 (π (A )∪{π (g1)}∪{π (g2)}) = 0.

Let
Bn = C∗ (π (A )∪{π (g1)}∪ · · ·∪{π (gn)}) .

Then K
(top)
3 (Bn) = 0 by successively using Theorem 8. Therefore

K
(top)
3 (B) = liminf

n
K

(top)
3 (Bn) = 0

by Corollary 1, Corollary 2 and the fact that B =∪Bn
‖·‖

.



376 Q. LI, D. HADWIN, W. LI AND J. SHEN

5. Applications

Let A be a unital C*-algebra and ω be a free ultrafilter on N. Let cω (A ) denote
the closed two-sided ideal of the C*-algebra l∞ (A ) given by

cω (A ) =
{

(an)n�1 ∈ l∞ (A ) | lim
n→ω

‖an‖ = 0
}

.

The C*-ultrapower Aω is defined to be the quotient C*-algebra l∞ (A )/cω (A ) , and
we use πω to denote the quotient mapping l∞ (A ) → Aω . Let l : A → l∞ (A ) denote
the “diagonal” inclusion mapping l (a) = (a,a, · · ·) ∈ l∞ (A ) , a ∈ A ; and put lω =
πω ◦ l : A →Aω . Both mappings l and lω are injective. Therefore, we can view A as
a subalgebra of Aω . The relative commutant defined by Aω ∩A ′ is called the central
sequence algebra of A .

Suppose N is a von Neumann algebra with a tracial state τ . Consider the asso-
ciated norm, limω ‖a‖2,τ = (τ(a∗a))

1
2 , for any a ∈ N . Let N ω denote the von Neu-

mann algebra l∞ (N )/cτ,ω (N ) where cτ,ω (N ) consists of the bounded sequences
(a1,a2, · · ·) with limω ‖an‖2,τ = 0.

If M is a II1 factor, then M has property Γ if and only if M ω ∩M ′ has a
representing sequence (U1,U2, · · ·) such that each Un is a Haar unitary in M . If M
is a II1 von Neumann algebra with a separable predual, then M is defined in [11]
to have property Γ if and only if each II1 factor in the central decomposition of M
has property Γ . It follows from direct integral theory that if M has property Γ , then
M ω ∩M ′ contains a representing sequence of Haar unitaries. The following theorem
is due to Dixmier [3] and Connes [2].

THEOREM 10. Let M be a separable II1 factor. The following conditions are
equivalent:

1. M has property Γ;

2. M ω ∩M ′ �= CI;

3. M ω ∩M ′ is a diffuse von Neumann algebra.

Let πτ (A )′′ be the weak closure of A under the GNS representation of A with
respect to the state τ.

In [11], a separable unital C*-algebra is said to have property c*-Γ if, for every
tracial state τ on A such that πτ (A )′′ is a II1 factor and πτ (A )′′ has property Γ ,
which is equivalent to πτ (A )′′ having property Γ whenever πτ (A )′′ is a II1 von Neu-
mann algebra. If A is NFD, then πτ (A )′′ has no finite-dimensional representations.
Therefore πτ (A )′′ is II1 for every tracial state τ on A . So if A is NFD and has
property c*-Γ, then πτ (A )′′ has property Γ for every tracial state τ on A . Actually
we can say more in this case.

LEMMA 9. Let A be a separable unital C*-algebra. If A is NFD, then A
has property c*-Γ if and only if for every tracial state τ on A , the central sequence
algebra of πτ (A )′′ has no non-zero finite-dimensional representations.
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Proof. If A has property c*-Γ and is NFD, then πτ (A )′′ has property Γ for
every tracial state τ on A . So the central sequence algebra of each II1 factor in the
central decomposition of πτ (A )′′ has no finite-dimensional representations by Theo-
rem 10.

On the other hand, if the central sequence algebra of πτ (A )′′ has no finite-
dimensional representations for every tracial state, then the central sequence algebra
of each II1 factor in the central decomposition of πτ (A )′′ has no finite-dimensional
representations. So by Theorem 10 , A has property c*-Γ .

The following amazing result is due to Kirchberg and Rørdam [9].

LEMMA 10. ([9])Let A be a separable unital C*-algebra, let τ be a faithful
tracial state on A , let N be the weak closure of A under the GNS representation of
A with respect to the state τ, and let ω be a free ultrafilter on N . It follows that the
natural *-homomorphisms

Aω −→ N ω , Aω ∩A ′ −→ N ω ∩N ′

are surjective.

We say that an MF algebra A with no non-zero finite-dimensional representa-
tions has property MF-c*-Γ if, for every MF-trace τ on A , the central sequence al-
gebra

(
πτ (A )′′

)ω ∩πτ (A )′ has no non-zero finite-dimensional representations, i.e.,
πτ (A )′′ has property Γ.

THEOREM 11. ([6]) If M is a von Neumann algebra with a central net of Haar
unitaries, then K3 (M ) = 0.

THEOREM 12. Let A be a unital separable MF C*-algebra. Suppose A is NFD

and has property c*-Γ . Then K
(top)
3 (A ) = 0.

Proof. Let Nτ=πτ (A )′′ be the weak closure of A under the GNS representation
of A with respect to the tracial state τ. Since A is NFD and has property c*-Γ , there
is a central sequence {un} of Haar unitaries in Nτ such that [{un}] = u ∈ (Nτ)ω ∩
(Nτ)′ . If follows that K3 (A ;τ) = 0 by Theorem 11 for every tracial state τ. Hence

K
(3)
3 (A ;τ) = 0 by Remark 8. Since

K
(3)
top(A ) � sup

τ∈TS(A )
K

(3)
3 (A ;τ) = 0,

by Theorem 7, K
(3)
top (A ) = 0.

COROLLARY 4. Let A be a unital MF C*-algebra. Suppose each tracial state on
A is faithful and Aω ∩A ′ has no non-zero finite-dimensional representations. Then

K
(3)
top (A ) = 0.
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Proof. Since Aω ∩A ′ has no non-zero finite-dimensional representations, we
know A is NFD. Let Nτ be the weak closure of A under the GNS representation of
A with respect to the tracial state τ. Since τ is faithful, the natural *-homomorphisms

Aω ∩A ′ −→ (Nτ)ω ∩ (Nτ)′

is surjective by Lemma 10. It follows that (Nτ)
ω ∩ (Nτ)

′ has no finite-dimensional

representations, hence A has property c*-Γ by Lemma 9. Therefore K
(3)
top (A ) = 0 by

Theorem 12.

COROLLARY 5. Suppose A is a unital, finitely generated MF C*-algebra. If A

is NFD and has property MF-c*-Γ , then K
(3)
top (A ) = 0.

Proof. Let Nτ=πτ (A )′′ be the weak closure of A under the GNS represen-
tation of A with respect to the tracial state τ. Since A has property MF-c*-Γ ,
(Nτ)

ω ∩ (Nτ)
′ has no finite-dimensional representation. Then there is a central se-

quence {un} of Haar unitaries in Nτ such that [{un}] = u∈ (Nτ)
ω ∩(Nτ)

′ . It follows

that K3 (A ;τ) = 0 by Theorem 11. Hence K
(3)
3 (A ;τ) = 0 by Remark 8. It implies

that K
(2)
2 (A ;τ) = 0 for every MF-tracial state τ. Note that by Theorem 4

K
(2)
top(A ) � sup

τ∈TMF (A )
K

(2)
2 (A ;τ) = 0.

Hence K
(3)
top (A ) = 0 by Remark 7.

REMARK 10. We don’t know whether the property MF-c*-Γ is equivalent to

K
(3)
top (A ) = 0 in which A is finitely generated and NFD. But it is well known that

C∗
r (F2) is simple, hence C∗

r (F2) is NFD. Note C∗
r (F2) is an MF C*-algebra and

has a unique tracial state. So by the facts that the set of MF-tracial states is not
empty and L(F2) has no property Γ, we know C∗

r (F2) has no property MF-c*-Γ. So

we may hope K
(3)
top (C∗

r (F2)) = ∞ , i.e., K
(2)
top (C∗

r (F2)) �= 0. Actually, Voiculescu [12]
proved that δtop (S1,S2) = 2, where S1 and S2 are free semicircle elements. Therefore

K
(2)
top (C∗

r (F2)) �= 0 by Theorem 3.1.2 in [5].
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