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ON THE SPECTRUM OF THE SYLVESTER-ROSENBLUM
OPERATOR ACTING ON TRIANGULAR ALGEBRAS

L. W. MARCOUX AND A. R. SOUROUR

(Communicated by S. McCullough)

Abstract. Let o/ and A be algebras and .# be an <7 - 2 -bimodule. For A € &/, B € B, we
define the Sylvester-Rosenblum operator Ty g : . # — .# via Ty (M) =AM+ MB for all M €
A . We investigate the spectrum of 174  in three settings, namely: (a) when o = % = .7,(F),
the set of upper-triangular matrices over an algebraically closed field F and .# C M, (F); (b)
when &/ = % = ./ is a unital triangular Banach algebra; and (c), when .# = 7 (/") is the
nest algebra associated to a nest .#” on a complex, separable Hilbert space and & = % =
CI+ . (/") consists of the unitization of the algebra of compact operators in .7 (.4").

1. Introduction

Let o7 and Z be algebras over a field F and .# be a </ - %-bimodule. Fixing
A € o/ and B € 4, it is interesting to study properties of the Sylvester-Rosenblum
operator
TAB : M — M
T — AT +TB.

In the context of operators and matrices (for example, taking .# = M,,(F), the al-
gebra of n x n matrices over a field ), the equation AX +XB =Y has been studied ex-
tensively for many years. Solvability of the equation has several striking consequences
in operator theory, linear algebra and the theory of differential equations. An excel-
lent resource is the expository article [2]. First results are due to Sylvester [11] who
studied solutions of the equation in matrices. The equation were later investigated for
bounded operators on infinite-dimensional spaces by several mathematicians including
M.G. Krein, Dalecki [3, 4], Rosenblum [10] and Kleineke (cited in [10]).

We state two of the results we need in a form suitable for our discussion. For
vector spaces V and W, denote the space of linear maps from W to V by Z(W,V).
Asusual Z(V,V) is written as .Z (V). When X and 2) are Banach spaces over C, we
denote by #(9),X) the space of bounded linear maps from %) into X, and we write
PB(X) for B(X,%). The spectrum of a linear transformation A is denoted by 6 (A). If
o/ and A are two unital algebras and A € o7 C %, then it is possible that the spectrum
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of A relative to these algebras will differ. For this reason, we shall also write 0 (A)
(resp. 64(A)) to highlight the fact that we are considering the spectrum of A relative
to < (resp. relative to A).

THEOREM 1. (a) (Sylvester [11]) Let m and n be positive integers, F an
algebraically closed field, A € M,,(F), B € M,(F), and let 145 be the lin-
ear transformation on the space My, ,(F) of m x n matrices over F defined by
t48(T) =AT +TB. Then o(t) = 0(A)+0(B).

(b) (Dalecki, Rosenblum, Kleineke) Let X and ) be Banach spaces over the
complex field. Let A € B(X), Be€ B(2), and consider the linear transformation
Tap on B(Y,X) defined by 14 5(T) =AT +TB. Then o(14 ) = 6(A)+0(B).

In the infinite-dimensional setting above (part (b)), the proof of the inclusion
o(tap) Co(A)+0(B)

may be found in [8] (see also [2]) and follows immediately from general spectral theory
of commuting elements in a Banach algebra applied to left-multiplication by A and
right-multiplication by B. (See Section 3 below as well.) The less obvious reverse
inclusion comes from an unpublished work by Kleineke as stated by Rosenblum [10].
A proof may be found in [1] .

The purpose of the present article is to initiate the study of the spectrum of the
Sylvester-Rosenblum operator in the setting where the algebras ./ and 4 are in some
sense “triangular”. More explicitly, in Section 2 below, we consider the case where
o/ and % consist of all block upper-triangular n x n matrices over the field F, and
M CM,(F) isa o - -bimodule. In Section 4, we turn our attention to the case where
o/ % and A are all nest algebras acting on complex Hilbert spaces. Nest algebras are
the natural generalizations to the infinite-dimensional setting of block upper-triangular
matrices over C. The analysis of the spectrum of the operator 74 5 is made more
difficult by the fact that if % is a Hilbert space and </ is a closed subalgebra of
PB(H), then the spectrum of an element A € o/ need not agree with its spectrum
considered as an element of %(.7¢). For this reason, we first set up the machinery we
shall need in Section 3, where we consider the spectrum of the Sylvester-Rosenblum
operator T4 g, where A € &/, B€ # and & = B = .4 = J,, a triangular Banach
algebra as defined in that section.

2. Purely algebraic results

Let F a field and n a positive integer. We denote by M, (IF) be the algebra of
n x n matrices with entries in F and let 7, (F) be the algebra of n x n upper triangu-
lar matrices over F'. One of the special cases of the results we shall prove is that if
A,B € 7,(F) with F algebraically closed, and if 74 g is the corresponding Sylvester-
Rosenblum operator on .7, (FF), then

G(TAJg) = {a,-,- +bjj i< ]}
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We present an illustrative example. For simplicity we consider diagonal A, B. As usual
E;; denotes the basic matrix units on .7, (F).

EXAMPLE 1. Let A = [a;;], B = [b;;] be n x n diagonal matrices over a field F
and let 7 be the linear transformation on the n("z—H) -dimensional space .7,(F) defined
by

7(X) =AX + XB.
It is then routine to calculate that
T(Eij) = (aii+bjj)Eij forall 1 <i<j<n.

Thus 74 5 admits a spanning set of eigenvectors in 7,(F). From this it easily
follows that 0 (T4 ) = {aii+b;;: 1 <i< j<n}.

Next we describe “block upper-triangular matrix algebras”. To every finite se-
quence of positive integers ny,ny,...n;, satisfying n; +ny + ... +n; = n, we associate
an algebra 7 (ny,ny,...n;) consisting of all n x n matrices over F of the form

All A12 cen Alk
0 Ay ...Ax

A= | . (D
0 0 ...Aw

where A;; is an n; X nj matrix. We call such an algebra a block upper-triangular
algebra. The algebra may be identified as the set of all linear transformation on V =
" leaving a nest of subspaces invariant. The nest consists of the subspaces Vp,---Vj
defined by

Vi=span{e;: 1 <t <nj+ny+---+nj},
where {e;} denotes the standard basis of F".
THEOREM 2. Let A = T (ny,n,...,n;) be a block triangular algebra over an

algebraically closed field F. Fix A,B € A and define v =15 € Z(A) by ©(T) =
AT +TB, T €. Then

o(t)={a+p:aco(Ai).pecoc(B))1<i<j<n}

Proof. We prove this by induction on k, the number of blocks. If k =1, the
result follows by Sylvester’s Theorem. If & > 1, we partition the matrices in 2 as

_ le ZO . o Mnl Mnlm
Z_[O > and we write A = 0 9

two subspaces
o le ZO - 00

} . We decompose 2 as a direct sum of the
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The space & is invariant under 7. The matrix of T with respect to the decomposition
A =06, P S, is of the form {If)l 2 } The matrix R; is the matrix of the Sylvester-
3

Rosenblum operator X +— A1 X 4+ XB as an operator on .£(V,V;). By Sylvester’s The-
orem [11], the set of eigenvalues of R; is the set {oy + P : 04 € 6(A11),B € 6(B)}.
The matrix R3 is the matrix of the compression of 7 to &3, i.e., O7|g, where Q is
the projection on &, along & . This is exactly the spectrum of the Sylvester operator
T; p as an operator on the block triangular algebra %(. By the induction hypothesis

o(R3) ={a+p:ocac(A),Bco(Bj), 2<i<j}.
As 6(7) = 6(R1) U0 (R3), the result follows.

REMARK 1. The requirement that ' be algebraically closed may be relaxed to
the requirement that I include all of the eigenvalues of A and B. This explains the fact
that we may take I to be an arbitrary field in the following Corollary.

COROLLARY 1. Let A,B € 7,(F) over an arbitrary field F and consider T =T p
as an operator on I,(F). Then

o(t) ={aji+bj;: 1<i<j<n}.

As we did earlier in the case where A and B are diagonal matrices, we may iden-
tify eigenvectors for each eigenvalue of 74 p acting on block upper-triangular algebras.

EXAMPLE 2. With the notation of Theorem 2, let o € 6(4;;), B € 0(Bjj),i < j.
As above we let V; =span{e; : 1 <t < nj+---n;} and we define VJQ = span{e; :
ni+---nj <t < n}, the natural complement to V;. Then o is an eigenvalue of the
matrix

A A .. Ay
0 Ay ... Ay
Ajj =
0 0 ...A;
and f is an eigenvalue of the matrix
Bjj Bjn
By=1":
0 ...Bmn

Thus there exists a nonzero vector u € V; and a nonzero vector v € V0 | such that
Ajju= ou and B’[ V= Bv. Tt follows that Au = ou and B'v = Bv. Let T =w/'. Then
clearly T € 2 and

T4 5(T) =Auw' +u/'B = (Au)V' + u(B'v) = o' + Bu' = (ot + B)T.

Therefore T is an eigenvector of 7.
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Let 4 C M, ,(F) be a (,(F), 7,(F))-bimodule, and A € 7, (F), B € Z,(F).
We will next identify the spectrum of 745 € £ (.#). We start by characterizing
(In(F), Z,(F))-bimodules of M,,,(F). The following characterization is similar to
the characterization of weakly closed ideals in nest algebras of operators on Hilbert
space [6].

LEMMA 1. A subspace M of My, (F) is a (F,(F), F,(FF)) -bimodule if and only
if there exists a monotone increasing function (not necessarily strictly increasing)
f{l,---n} —{0,1,--- n} such that # =span{E;; : 1 <i< f(j)}.

Proof. If f is a function that satisfies the assertion, A € .7,(FF),B € Z,(F) and
i < f(j), then clearly AE;; € span{E,;: 1 <i < j} and E;;B € span{E;j : j < J <
n}. Therefore AE; i, EijB € ., the former since i’ <i< j and the latter due to the
monotonicity of f.

For the converse assume that .7 is a bimodule and define f(s) to be the maximum
index r such that .# includes a matrix C = [¢;;] with ¢.; # 0. We observe that if
C € .# with ¢,y #0 and ¥ < r, s > s then each of the following matrices belong to
the bimodule:

Ers = ErrCE.\'.\'a Er’s’ = Er’rCE.\'.\"'

The fact that E,y € .4 proves the monotonicity of f and the fact that E,.; € .4 proves
that .# = span{E;;:i < f(j)}.

THEOREM 3. Let F be an algebraically closed field, A € F,(F),B € Z,(F) and
M C Myn(F) be a nonzero (F,(F), ,(F))-bimodule. If T = 14 5 is considered as
an operator on A , then 6(t) = {aii+bj;j: 1 <i< f(j)}, where f is the function
affiliated with A described in Lemma 1.

Proof. We prove this by induction on m. If m =1, then .Z = {[O, Y | R *]}
where the number of initial zeros is # = max{s : f(s) = 0} (which may be zero). The
map T is then recognized as the Sylvester-Rosenblum operator 7, p where a = A and
B’ is the compression of B to the last n —¢ rows and columns. By Sylvester’s Theorem
o(t)={a}+0(B)={a+bjj:t+1<j<n}={a+bj;: 1 < f(j)}.

For m > 1 we decompose 2 as a direct sum of the two subspaces .#} consisting of
the first m— 1 rows of .# and .7, consisting of the last row of . . The subspace .7 is
invariant under 7 and so as in the proof of Theorem 2, the spectrum of 7 is the union of
the spectrum of 7|5, and the spectrum of the compression of 7 to .5 . By the induction
hypothesis 0(7|# ) = {aii+bj;: 1 <i<m—1,i < f(j)}. Asin the proof of the case
m = 1, the spectrum of the compression of 7 to ./ equals {au, +bj;: f(j) =m}.

3. Triangular Banach algebras

Let ./ and % be unital Banach algebras, and suppose that .# is a Banach .o/ -
A-bimodule. That is, .# is a Banach space, a left-.Z module and a right % -module,
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and the (continuous) module actions satisfy:

IAMB|.x < ||All | M]|.||B

B

foral Ac o/, Be B,and M € .4 .

Let us now fix A € &7 and B € £, and denote by Ly (resp. Rp) the left multi-
plication operator L4 (M) = AM (resp. the right multiplication operator Rg(M) = MB)
forall M € . . 1tis easily seen that Ly, Rp € A(.#) and that ||Ls| < ||A||» and that
IIRg|| < ||B| % The corresponding Sylvester-Rosenblum operator

TA7BZ.%—> M
T — AT+ TB

is bounded (indeed 74 p = La + Rp), and as noted in the introduction — observing that
LaRp = RpL, — it follows from the general theory of abelian Banach algebras that

O(.4)(TaB) € 0z(1)(La) + Oz(.1)(Rp) C 0/ (A) + 05(B).

Our main goal is to consider a particular example of this phenomenon where .4/ C
A is anest, 4 = T (N) is the corresponding nest algebra, and «# = # = CI +
S (A) is the unitization of the algebra of compact operators in Z (A).

It will be useful, however, to frame our first results in terms of so-called triangular
Banach algebras, which we now define.

Let p > 1 be an integer. Suppose that 27j,.9%,...,/, are Banach algebras and
that .#;;, 1 <i< j< p,are o —/; bimodules with the additional multiplication that
satisifies .#;;. 4 C My, 1 <i< j<k< p. Then we construct triangular Banach
algebras of the form
o My M ... My

gt Mo ... Moy

)

L%’):
J2{17

where for
ay mpp mp3 ... mMjp

az mp3 ... nmyp
T= _ € I,

ap

we define ||T]| = X;_, llal|.# +Zi<i<j<pImijl.4; - For our purposes, the norm should
be interpreted as a conveyor of topological information, rather than isometric informa-
tion. That is to say, any topology on .7, equivalent to the norm topology we have
just defined would work just as well. Linear combinations and products of elements
of .7, are provided by the natural matrix linear combinations and products - where the
entrywise-products are defined through module actions where appropriate. For exam-
ple, if p =2, then the multiplication in .7 is the natural one defined by

ay m by n| _ |aiby ain+mby
0 ap 0 b2 o 0 b1b2 ’
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Since 7, is a Banach algebra, it is clearly a Banach bimodule over itself. Given
X = [x;j] and Y = [y;;] € , (so that it is understood that x;; = 0 = y;; if i > j), we can
once again consider the corresponding Sylvester-Rosenblum operator Ty y = Ly + Ry,
and observe that ||7x y| < ||X||+||Y || < eo. (We emphasize that for our purposes, all
that matters is that 7y y is continuous.)

We saw above that 0 7,)(Tx,y) € 0(7,)(X) + 05(7,)(Y). By setting F = C in
Example 1, we see that this containment is, in general, strict. Our goal is to precisely
determine o(7y y) in the setting of nest algebras acting on a Hilbert space.

In analogy to both the matrix and nest algebra settings, we shall define the di-
agonal 7, of 7, to be the algebra 7, = &}_,%. The map A: .7, — 2, C .J,,
AZ = [z]) = @lezkk is a contractive (hence continuous), linear, idempotent homo-
morphism.

We refer to A as an “expectation” of .7}, onto the diagonal Z,,.

Observe that for all 7' = [t;;],X = [x;], and Y = [y;;] € 7},, we have that 7, .. :
M;j — M is a Sylvester-Rosenblum operator, and that

Tax)am)(T) = [Txii7ij (ti7)]-

It is easy to see from this that Tx(x) A(y) is invertible (or equivalently bijective) if
and only if each Teiinyjj is invertible , 1 <i<j<p.

Our first goal is to show that G,%(/yp)(fx.y) - q%(%))(TA(XM(Y)), which will sim-
plify many of our computations later on.

We do this by first introducing a family of natural ideals of .7,, consisting of
those upper triangular matrices whose first & diagonals (starting at the main diagonal
and proceeding “upwards”) are all zero.

For 0 <k < p, set
kaZ{TE%ZlijZOifj—i<k}.

Then %o =.9,, 7, =1{0},and 7, <1.9,, 0 <k < p. By virtue of the fact that each

such 7 is an ideal, it is clear that Ty y(_Zx) C Zkx and To(x)av)( k) C Fi for all
k.
Note also that if T = [;;] € _#i, then a routine calculation shows that

[Ty (T)]iitk = T yianies (tiirk) = Tax)ay) i)
From this it in turn follows that Tx y (T) = Tz(x)a)(T) forall T € 7, .

PROPOSITION 1. Let .9, be a triangular Banach algebra and X,Y € J,. If
TA(X).A(y) IS invertible, then so is Tx y .

Proof. Suppose that Ty(x) a(y) is invertible. Let T = [t;;] € ker Tx y . For 0 <i <
p )
0= [TX.,Y(T)}ii = Txii.yii (lii)'
But as observed above, the fact that 7x(x) z(y) 18 injective implies that each 7y, is
injective, and thus #;; =0, 1 <i < p. In other words, T € jl .
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Let k=max{l <{<p:Te #} Ifk<p,thent;; =0 forall i < j<i+k,but
there exists 1 < i < p — k such that #;;,+x # 0. From our observation above,

0= [txy (T)ligip+x = Thiyig Vi +hig +k (tigig-+k)-

Since each Teiiyjj is injective, #;,;,+x = 0, a contradiction. Thus k= p;ie. T =0.

Thus shows that Ty y is injective. (Note that this argument only required the in-
Jectivity of Ty(x)a(y)-)

Next, let us show that Ty y is surjective. We will show that _#; Crantyy, 0 <
k<p—1.Since Zy= 7, this clearly suffices.

Note that if 0 # W = [w;;] € _#,_1, then by hypothesis there exists T = [t;;] € .7,
such that 7y(x) A(y)(T) = W. Thus

o if (i,j) # (1,p)
Ty (tif) = {wm if (i, j) = (1, p).

Since Tx(x)a(r) is injective, each 1y, .. is injective and thus #;; =0 for all (7, /) #

(1,p). In particular, T € _#,_;. But then
Wy (T) = tax)am)(T) =W,

and thus _#,_; Crantyy. Infact, we have just argued that ¢, | = Txy(_Zp—1).

Let k=min{0 <{<p: _Z =1xy( 7)}. Suppose that k >0, and let Z =
[zij] € Fr—1. Since Tpx)a(y) is surjective, there exists S = [s;;] € 7, such that
Tax).Av)(S) = Z. By injectivity of each Ty, ., 1 <i<j<p,weseethat S€ ;1.
But then

[Tax).a) iir@—1) = [ty (iip 1), 1 <i<p—(k—1),

and thus 7x y(S) € _#;—1 . Furthermore, Z — tx y (S) € _#;. Choose So € _#; such that
TX7y(S()) =7Z— TX7y(S) S fk .
Then V:=S—So€ 1 and 7xy(V)=Z,sothat Z €rantyy. Hence #;_| =
Tx7y( jk,l), contradicting our choice of k. Thus k = 0, and so Ty y is surjective.
This completes the proof.

COROLLARY 2. Let .9, be a triangular Banach algebra and XY € ,,. Then

0%(7,)(Txy) € 02(7,)(Tax).ar))-

Proof. Let A € C and denote by I = &7, I; the identity of .7, where [; in turn
denotes the identity of «7;, 1 <i< p.

It is clear that A(I) =1, and that A1 — txy = Tj;_xy and Al — Tp(x)ay) =
TAI-AX),A(Y) -

Thus A € Q%(%)(Txy) (resp. S GQ%’(Z,)(TA(X),A(Y))) if and only if

0 € 0p(7,)(Tar-xy) (tesp. 0 € 07, (Taar—x)ax)))
The result now follows immediately from Proposition 1.
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PROPOSITION 2. Let 9, be a triangular Banach algebra and X,Y € &,,. Then
057, (txy) CAi={0i+Bj: 0 € 04 (xii),Bj € 0,(yjj), 1 <i< j<n}
Proof. Suppose that A ¢ A. For T = [t;;] € .7,

(A =ty )(T) = [(A = T;;) (1))

But as observed above, foreach 1 <i< j<p, Taiiyjj = Ly, +Ryjj and by the theory
of commutative Banach algebras,

O () (Trinyj;) € Ocr (Xit) + 02,(v)j)-

Thus each A — Ty,y;; is invertible, 1 < i< j < p, whence A 0%(7, )(Txy).
By combining Corollary 2 and Proposition 2 we arrive at the following result.

COROLLARY 3. Let .9, be a triangular Banach algebra and XY € ,,. Then
0p(7,)(txy) CA:={a+B o€ oyxi),B €0z (v), 1 <i<j<n}

In the case where F = C, the block upper-triangular algebras 7 (ny,na,...,ny)
of M,,(C) (where n =nj +ny+---+ny) defined in Section 2 are the prototype of a
nest algebra acting on a finite-dimensional Hilbert space. We saw in Theorem 2 that
in this setting, the containment described in Corollary 3 is actually an equality. Indeed,
Example 2 allows us to produce an eigenvector for each o + 3 in the set A above.

We now turn our attention to the case of nest algebras acting on infinite-dimension-
al, complex, separable Hilbert spaces.

4. Nest algebras

Let 27 denote a complex, infinite-dimensional, separable Hilbert space. Given a
closed subspace M C 7, we denote by P(M) the orthogonal projection of ¢ onto
M. A nest on J7 is a chain ./ of closed subspaces of .7, which is closed under
the operations of taking closed linear spans, arbitrary intersections, and which contains
{0} and .7Z. Given N| < N, € .4, the subspace N, © N is referred to as an interval
in 4. A partition of .4 is a finite set & := {E|,E>,...,E,} of pairwise orthogonal
intervals for which ¢ = @/, _|E,,. Thus & is a partition precisely when there exist
0 =Ny <Ny <Np--- <N, = such that (after reindexing the E;’s if necessary)
Ey=NuO©SNyu_1,1<m<r.

For each N € ./, we may define N_ :=V{M € 4 : M < N} (here \V denotes
the “closed linear span”). If N_ # N, we refer to N_ as the immediate predecessor
of N, and we refer to N& N_ as an atom of .#". (These are the minimal non-zero
intervals of .4".) As 7 is separable, it is clear that .#” admits at most countably
many atoms. We write Ay = {A4 : @ € A} to denote the set of atoms of 4. Given
atoms Ay = Ny © (Ng)— and Ag = Ng © (Ng)- in A 4, we set

A <Ap
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if No < Np. It follows that (A s, <) is a totally ordered set. More generally, given two
intervals E; = Ny ©M; and E; = N, © M, for some My < Ny € A, k=1,2, we shall
define

E\<E;

if Ny <M,.
Corresponding to .4 is a WOT-closed algebra

T(N)={T € B(A#):TNCNforallN € N}

We refer to .7 (.4") as a nest algebra, and denote by # (N) = T (N )N JF () the
closed, two-sided ideal of compact operators in 7 (.4").

4.1. Fine picture of the spectrum

Let K,Le # (/). Our goal is to calculate the spectrum of the Sylvester-Rosenblum
operator

L T(N)— T(N)
T +— KT+TL.

To that end, we shall define three sets associated with g s .

* Quom:={K+A:K €0y, (P(Aa)Klrs) A € Opay) (P(Ag)L|ay ), Ax < Ag €

Ay}
o Qe i={K:KE€ Gﬂ(Aa)(P(Aa)K|Aa);Aa = Nu© (No)— € A y,dim(Ng) " =
o} ; and

o Qo :={A:14¢ Gﬂ(Aﬁ)(P(Aﬁ)L‘Aﬁ)7Aﬁ =Ng©S (N/;)f € A/,dim(Nl;), =
oo}

Obviously each of these sets depends upon K and L. We set Q(= Qg ) :=
Qatom U Qiefi U Qright U {0}. We shall demonstrate that

Oz (kL) = Q.

EXAMPLE 3. Let us illustrate what Q looks like in an example.

Consider the complex Hilbert space . = L?(]0, 1],dx) & C> & L*([0,1],dx) & C,
where dx represents Lebesgue measure on the interval [0,1]. For each 0 <7 < 1, let
N={fen:f= X041 }+, where X0, 1s the characteristic function of the interval
[0,7], and let .4 be the nest

N ={N®0B0BO,NSC*2000,N,&C* N, ®0,. :1 €[0,1]}.

Thus the atoms of .4 are A; =0 C2@0®0 and Ay =0D0P0DC,and A < A,.
Let K,L € J(./), and suppose that 02 (K1) = {1,2}, 0y(c)(K2) = {4},
Oc2)(L1) = {8,16}, 0(c)(L2) = {32}.
Then:
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o Quom:={1+8,1+16,2+8,2+16,1+32,2+32,4+32} = {9, 10,17, 18,33, 34,
36};

(] Qleft = {1,2}; and
(] Qright = {8, 16,32}.
Thus Q = {0,1,2,8,9,10,16,17,18,32,33,34,36}.

4.2. Finite partitions

It is now time to relate the theory of Sylvester-Rosenblum operators on nest al-
gebras to our work in the previous section. Suppose that & := {E,E»,...,E,} is a
partition of a given nest 4. Relative to the decomposition % = E| G E, & --- B E,,
any T € 7 (/#") admits a block upper-triangular form

TiyTip - Ti,p
I hys - T

Tyrp-1 Tp-1p
Tpp

Moreover, for each 1 <i < p, the set .o :={T;; : T = [T; ;] € 7 (A")} forms a nest
algebra on the space E;, while each of the spaces .#; j = B(E;,E;), 1 <i< j<p,
forms a 7 -/; bimodule. Using the construction of Section 3, we obtain a triangular
Banach algebra Z which coincides (as a set of operators on ) with .7 (4"). It is
not too difficult to verify that the norm we associated to .7 in the previous section is
equivalent to the original operator norm on .7 (4").

The diagonal of the nest algebra .7 (.4") is the set Z(AN") := T (AN )NT(AN)*.
The set Zatom ‘= PaeaB(Aa) C Z(A) is called the atomic part of the diagonal. It
is known that the map @ : B(H#) — Daom defined by O(T) =Y ,cp P(Aq)TP(Ag) is
a contractive projection of Z(#) onto Pyom , and that d)\f/( .y is multiplicative.

We shall also require the following two results. The second appears in [5], Lemma
3.5.

THEOREM 4. (Ringrose [9]) Let 57 be an infinite-dimensional, separable, com-
plex Hilbert space and K € () be a compact operator. Let N denote a maximal
nest of invariant subspaces of # , and A_y = {Aq : o0 € A} denote the atoms of N .
Then each atom is one-dimensional, and

o) (K) =074 (K) ={0} U{Key:Aq €Ay},
where Ko = P(Aq)KP(Ag) € C. Moreover, the non-zero eigenvalues are repeated

according to their algebraic multiplicity.

PROPOSITION 3. Let A be a nest and K € # (A"). Given € > 0, there exists
a partition & = {E\,E»,...,E.} of A such that for each 1 <m < r, either E,, is an
atom, or |P(E,)KP(E,)| < €.
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For a subset Z C C and € > 0, we write Zg := {w e C: |w—z| < € for some z €
Z}.

THEOREM 5. Let A" be a nest and K,L € JH (N"). Let Q = Qg 1. be the set
defined in section 4.1. Then 057 4)) (kL) € Q.

Proof. Let € > 0. By applying Proposition 3 to each of K and L, and then
choosing a “common refinement” of each partition thereby obtained, we can find a
partition & = {E,}/,_, of .4 such that for each 1 < m < r, either E,, is an atom,
or |[P(E,)KP(Ey)| < € and ||P(E)LP(Ey)|| < €. By refining our partition once
more if necessary, we may also assume without loss of generality that any finite-
dimensional subspace E,, is an atom. As seen in section 4.2, we may then decom-
pose ¢ = @ _E,, and write K = [K;;], L = [L;;| as block-upper triangular operator
matrices relative to this decomposition.

By Corollary 3,

o7 () (kL) CP:={0+Pj: o € 0.4(Kii), Bj € 07 (Ljj), 1 <i< j<r}

We now show that @ C Q,.. To do this, we proceed by a case-by-case analysis.
Fix I<i<j<r,andlet o; € G,Q/i(Ki,‘),ﬁj S G,Qyj(ij).

CASE 1. Suppose that both E; and E; are atoms. Then < = #(Ay,) and 7 = HB(Aq;)
for some ¢, c; € A. Moreover, i < j implies that Ag; < Aaj, and so o; +[3j S
Qanom c 928-

CASE 2. Suppose that E; is an atom, but that E; is not. Here, .; = %(Ay,) for some
o; € A, and this time ||L;| < €, by our choice of &. As such, f; € 0.,(Lj;)
implies that |B;| < €.

By our choice of the partition &, the fact E; is not an atom implies that dim E; =
co. But then 05 € Qiefr, and s0 o + B € (Qier)e C Qo

CASE 3. Suppose that E; is not an atom, but that £ is. This case is analogous to the
previous case. This time, <7/; = %(Ay;) for some a; € A, and ||Ki[| < €. As
such, o € 0, (Kj;) implies that |o;| < €.

By our choice of the partition &, the fact E; is not an atom implies that dim E; =
co. Arguing as above, fB; € Qiight, and 50 0 + B € (Qright)e € Qe

CASE 4. Suppose that neither E; nor E; is an atom. By our choice of &, this implies
that HK”H < € and HL“H < €. Thus o; € G(%(Kii),ﬁj S G%(ij) 1mphes that
‘OC,'| < € and |ﬁj| < €. But then |(Xi+ﬁj‘ < 2€,s0 (Xi-l-ﬁj S {0}25 C Q.

Hence 0(7(.4)) (kL) € @ C L. But € > 0 was arbitrary, and so

07 () (T L) C Nes0e = Q.
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There remains to show that the reverse inclusion holds, namely that QcC
047 () (Tk.L). Note that since the latter set is closed, it suffices to prove that Q C
Op(7 () (TK.L)-

Before proceeding to the main result of this paper, we pause to remind the reader
that if K € () is a compact operator, then K € 0 (K) implies that x is an
approximate eigenvalue of K ; that is, there exists a sequence (x,);_; of unit vectors
in S such that lim,_..(K — xI)x, = 0. Indeed, any eigenvalue of K is clearly an
approximate eigenvalue of K, while the only other possibility is that k¥ = 0 is not an
eigenvalue, in which case 7 must be infinite-dimensional. But compact operators
acting on infinite-dimensional Hilbert spaces are not bounded below, which is the state-
ment that O is an approximate eigenvalue of K as well.

THEOREM 6. Let A be a nest and K,L € J#(.N). Let Q = Qg be the set
defined in section 4.1. Then

o7 () (Tk L) = 2.

Proof. As noted above, we have reduced the problem to showing that Q C
o7 () (TK.L)-

CASE 1. Suppose that y € Quom, and write ¥y = K+ A where kK € 0z(4,)(Ka),A €
G,%(Aﬁ)(Lﬁ)’ and Ay SAp € A y.

Let & = {E|,Ey,...,E,} be apartition of 4" such that Ay, Ag € &, say Ay =
E; and Ag = E;. Since Ay < Ag, we have that i < j. Write K = [Ky] and
L = [Lg] with respect to the decomposition # = @&/ _|E,. Let V = &' _ E;
and W =&, E;.

Since K and L are compact, K € O(g,) (Kii) implies that k € 65y)(P(V)K]v),
and as such itis an approximate eigenvalue of P(V)K|y . Similarly, A € 0z, (L;))

implies that A € ow)((P(W)L|w)"), and as such it is an approximate eigen-
value of (P(W)L|w)*. Thus we can find unit vectors (v,)r_, in V and (wy);_,
in W such that

lim(K — xI)v, =1lim(P(V)K|y — kP(V))v, =0,

and similarly

lim(L — A1)*wy = lim(P(W)L|w)" — AP(W))w, =0.

By Lemma 2.8 of [5], it follows that v, @ w; € . (.4"). Observe that
liin(TKL —y(vp@wy) = lir{ImK,KLL,u(vn QRw))
= 1i£n(1< — k) (v @wy) + (va@w)(L—AI)
= li}gn((K —KDvy) @Wy + v, @ (L —AT) wy)*
=0.
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Thus 7 1 — yI is not bounded below, and s0 ¥ € Oz 7(.4)) (Tk L) -

2. Suppose that y € Qieri, and write ¥ = k, with kK € 0z, (Ky) for some
Ag =Ny ©(Ny)—,dim N =co. Consider & = {E},E;,E3}, where E; = (Ny)—,
Ey =Aq,and E3 =N .

Write K = [Ky]1<sr<3 and L = [Ly]1<,<3 relative to the decomposition 77" =

K1 K2 )
0 Kxnl|™

oo

E\&E,®E;. Then x € G@(EZ)(KQQ) implies that K € 635’(E169E2)(|:
As noted above, this implies that there exists a sequence of unit vectors (v;)
in E; @ E;, such that lim, (K — xI)v, = 0.

Also, dim E3 = o implies that there exists a sequence (wy), of unit vectors in
E3 such that lim, L*w, = 0. Using Lemma 2.8 of [5] once again, we find that
v @whe T(AN) forall n > 1, and

n=1

li}ln(TKL — kD) (vp@w)) = li}grHK_KLL(v,, QRwy)
= li;n(K — k) (vp@wy) + (va@w))(L)
= lirll‘n((K — KD)vp) @ w4+ v, @ (L'wp)*
=0.
As before, kK € Gy 7 (1)) (Tk.L)-

3. The proof that Qiighe € 67 (.+))(Tk.L) is analogous to that of CASE 2, and
is left to the reader.

4. That 0 € 657 (.s)) (k1) follows from the fact that any nest algebra on an
infinite dimensional space admits a sequence (F,), of norm-one, rank-one oper-
ators which converge to 0 in the weak-operator topology. But then lim, KF;,, =
0 =lim, F,,L in the norm topology. Hence

lim(1g . — kI)(F,) = imKF, + F,L = 0.
n n

As before, Tk 1. is not bounded below, and so 0 € 67 ( W))(TKL)'

proves that Q C 657 (.s))(Tk.L) Which we showed was sufficient to complete the

proof of the Theorem.

COROLLARY 4. Let ¢ be an infinite-dimensional, separable Hilbert space and

N be aneston F. Let K,.L € % (N) and let Q denote the set defined in para-
graph 4.1. Given o, € C, set R=ol+K and S = BI+ L. Then

Ou7(r)(trs) ={a+B+w:weQ}.

Proof. This follows immediately from Theorem 6, combined with the routine ob-

servation that

TR,s = (OC-I—ﬁ)I-l— TK,L-
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EXAMPLE 4. Consider the standard ONB {e,};_| for /5, and let .#" be the nest
on ¢, given by
Ny =span{ey,ez,...,ex}, k=0

and Noo = (5. Let K = [k;j] and L= [l;;] € X (A"). Let Quiom, Qe and Qg be the
sets defined in Section 4.1. Then

(a) Foreach n > 1, A, = Ce, is an atom of .#". Thus
Qqiom = {kii+1j;: 1 <i < j<oo}.

(b) For each n > 1, A, = Ce, is an atom of .4/, and an is infinite-dimensional.
Thus
Qleft = {kll 1<i< °°}

Note, however, that since L € Z (.4"), we know that lim,/,, =0, and so k;; =
lim; kj; +1;; € Qqom for all 1 <. In particular,

Qietc € Qutom-
But K € # (/") also implies that lim; k;; = 0, whence
{0} < Qaom.-
(¢) Given any atom A,, = Ce,, of 4", dimN,_| =n—1 < oo, and so
Qiight = 2.

It follows from Theorem 6 that

Oz (kL) = ki +1jj: 1 <i < j< oo

The situation is not as simple as that above when the operators X,Y € .7 (.4")
implementing the Sylvester-Rosenblum operator Ty y are not compact. For example,
let S € (/) denote the unilateral backward shift which satisfies Se; = e;_1, k > 1,
Se;=0,andletY =21 T (N).

In this case, s;; =0 forall i > 1, and y;; =2 forall j > 1. Thus

{sityjji1<i<j<eo}={2}

On the other hand, sy = Ts_270 = Ls—27. But S—21 € 7 (/") isinvertible in A(J¢),
and since .7 (/") is inverse-closed (see, for example [7], Remark 1), we have that

037 (Tsy) = Oz(7(n))(Ls—2a) ={z€C: [z -2[ < 1}
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