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ON THE SPECTRUM OF THE SYLVESTER–ROSENBLUM

OPERATOR ACTING ON TRIANGULAR ALGEBRAS

L. W. MARCOUX AND A. R. SOUROUR

(Communicated by S. McCullough)

Abstract. Let A and B be algebras and M be an A -B -bimodule. For A ∈ A , B ∈ B , we
define the Sylvester-Rosenblum operator τA,B : M → M via τA,B(M) = AM+MB for all M ∈
M . We investigate the spectrum of τA,B in three settings, namely: (a) when A = B = Tn(F) ,
the set of upper-triangular matrices over an algebraically closed field F and M ⊆ Mn(F) ; (b)
when A = B = M is a unital triangular Banach algebra; and (c), when M = T (N ) is the
nest algebra associated to a nest N on a complex, separable Hilbert space and A = B =
CI +K (N ) consists of the unitization of the algebra of compact operators in T (N ) .

1. Introduction

Let A and B be algebras over a field F and M be a A -B -bimodule. Fixing
A ∈ A and B ∈ B , it is interesting to study properties of the Sylvester-Rosenblum
operator

τA,B : M → M
T �→ AT +TB.

In the context of operators and matrices (for example, taking M = Mn(F) , the al-
gebra of n×n matrices over a field F), the equation AX +XB =Y has been studied ex-
tensively for many years. Solvability of the equation has several striking consequences
in operator theory, linear algebra and the theory of differential equations. An excel-
lent resource is the expository article [2]. First results are due to Sylvester [11] who
studied solutions of the equation in matrices. The equation were later investigated for
bounded operators on infinite-dimensional spaces by several mathematicians including
M.G. Krein, Dalecki [3, 4], Rosenblum [10] and Kleineke (cited in [10]).

We state two of the results we need in a form suitable for our discussion. For
vector spaces V and W , denote the space of linear maps from W to V by L (W,V ) .
As usual L (V,V ) is written as L (V ) . When X and Y are Banach spaces over C , we
denote by B(Y,X) the space of bounded linear maps from Y into X , and we write
B(X) for B(X,X) . The spectrum of a linear transformation A is denoted by σ(A) . If
A and B are two unital algebras and A∈A ⊆B , then it is possible that the spectrum

Mathematics subject classification (2010): 15A06, 15A24, 46H25, 47L35.
Keywords and phrases: Sylvester equation, Sylvester-Rosenblum operator, triangular algebra, nest al-

gebra.
Research supported in part by NSERC (Canada).

c© � � , Zagreb
Paper OaM-14-29

401

http://dx.doi.org/10.7153/oam-2020-14-29


402 L. W. MARCOUX AND A. R. SOUROUR

of A relative to these algebras will differ. For this reason, we shall also write σA (A)
(resp. σB(A)) to highlight the fact that we are considering the spectrum of A relative
to A (resp. relative to B ).

THEOREM 1. (a) (Sylvester [11]) Let m and n be positive integers, F an
algebraically closed field, A ∈ Mm(F) , B ∈ Mn(F) , and let τA,B be the lin-
ear transformation on the space Mm,n(F) of m× n matrices over F defined by
τA,B(T ) = AT +TB. Then σ(τ) = σ(A)+ σ(B).

(b) (Dalecki, Rosenblum, Kleineke) Let X and Y be Banach spaces over the
complex field. Let A∈B(X) , B∈B(Y) , and consider the linear transformation
τA,B on B(Y,X) defined by τA,B(T ) = AT +TB. Then σ(τA,B) = σ(A)+σ(B).

In the infinite-dimensional setting above (part (b)), the proof of the inclusion

σ(τA,B) ⊆ σ(A)+ σ(B)

may be found in [8] (see also [2]) and follows immediately from general spectral theory
of commuting elements in a Banach algebra applied to left-multiplication by A and
right-multiplication by B . (See Section 3 below as well.) The less obvious reverse
inclusion comes from an unpublished work by Kleineke as stated by Rosenblum [10].
A proof may be found in [1] .

The purpose of the present article is to initiate the study of the spectrum of the
Sylvester-Rosenblum operator in the setting where the algebras A and B are in some
sense “triangular”. More explicitly, in Section 2 below, we consider the case where
A and B consist of all block upper-triangular n× n matrices over the field F , and
M ⊆Mn(F) is a A -B -bimodule. In Section 4, we turn our attention to the case where
A ,B and M are all nest algebras acting on complex Hilbert spaces. Nest algebras are
the natural generalizations to the infinite-dimensional setting of block upper-triangular
matrices over C . The analysis of the spectrum of the operator τA,B is made more
difficult by the fact that if H is a Hilbert space and A is a closed subalgebra of
B(H ) , then the spectrum of an element A ∈ A need not agree with its spectrum
considered as an element of B(H ) . For this reason, we first set up the machinery we
shall need in Section 3, where we consider the spectrum of the Sylvester-Rosenblum
operator τA,B , where A ∈ A , B ∈ B and A = B = M = Tp , a triangular Banach
algebra as defined in that section.

2. Purely algebraic results

Let F a field and n a positive integer. We denote by Mn(F) be the algebra of
n×n matrices with entries in F and let Tn(F) be the algebra of n×n upper triangu-
lar matrices over F . One of the special cases of the results we shall prove is that if
A,B ∈ Tn(F) with F algebraically closed, and if τA,B is the corresponding Sylvester-
Rosenblum operator on Tn(F) , then

σ(τA,B) = {aii +b j j : i � j}.
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We present an illustrative example. For simplicity we consider diagonal A , B . As usual
Ei j denotes the basic matrix units on Tn(F) .

EXAMPLE 1. Let A = [ai j] , B = [bi j] be n× n diagonal matrices over a field F

and let τ be the linear transformation on the n(n+1)
2 -dimensional space Tn(F) defined

by
τ(X) = AX +XB.

It is then routine to calculate that

τ(Ei j) = (aii +b j j)Ei j for all 1 � i � j � n.

Thus τA,B admits a spanning set of eigenvectors in Tn(F) . From this it easily
follows that σ(τA,B) = {aii +b j j : 1 � i � j � n} .

Next we describe “block upper-triangular matrix algebras”. To every finite se-
quence of positive integers n1,n2, . . .nk , satisfying n1 +n2 + . . .+nk = n, we associate
an algebra T (n1,n2, . . .nk) consisting of all n×n matrices over F of the form

A =

⎡
⎢⎢⎢⎣

A11 A12 . . . A1k

0 A22 . . . A2k
...
0 0 . . . Akk

⎤
⎥⎥⎥⎦ (1)

where Ai j is an ni × n j matrix. We call such an algebra a block upper-triangular
algebra. The algebra may be identified as the set of all linear transformation on V =
Fn leaving a nest of subspaces invariant. The nest consists of the subspaces V1, · · ·Vk

defined by
Vj = span{et : 1 � t � n1 +n2 + · · ·+n j},

where {ei} denotes the standard basis of Fn.

THEOREM 2. Let A = T (n1,n2, . . . ,nk) be a block triangular algebra over an
algebraically closed field F . Fix A,B ∈ A and define τ = τA,B ∈ L (A) by τ(T ) =
AT +TB, T ∈ A . Then

σ(τ) = {α + β : α ∈ σ(Aii),β ∈ σ(Bj j),1 � i � j � n}.

Proof. We prove this by induction on k , the number of blocks. If k = 1, the
result follows by Sylvester’s Theorem. If k > 1, we partition the matrices in A as

Z =
[
Z11 Z0

0 Ẑ

]
and we write A =

[
Mn1 Mn1m

0 Â

]
. We decompose A as a direct sum of the

two subspaces

S1 =
{[

Z11 Z0

0 0

]}
and S2 =

{[
0 0
0 Ẑ

]}
.
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The space S1 is invariant under τ . The matrix of τ with respect to the decomposition

A = S1 ⊕S2 is of the form

[
R1 R2

0 R3

]
. The matrix R1 is the matrix of the Sylvester-

Rosenblum operator X �→ A11X +XB as an operator on L (V,V1). By Sylvester’s The-
orem [11], the set of eigenvalues of R1 is the set {α1 + β : α1 ∈ σ(A11),β ∈ σ(B)}.
The matrix R3 is the matrix of the compression of τ to S2 , i.e., Qτ|S2 where Q is
the projection on S2 along S1 . This is exactly the spectrum of the Sylvester operator
τÂ,B̂ as an operator on the block triangular algebra Â . By the induction hypothesis

σ(R3) = {α + β : α ∈ σ(Aii),β ∈ σ(Bj j), 2 � i � j}.
As σ(τ) = σ(R1)∪σ(R3) , the result follows.

REMARK 1. The requirement that F be algebraically closed may be relaxed to
the requirement that F include all of the eigenvalues of A and B . This explains the fact
that we may take F to be an arbitrary field in the following Corollary.

COROLLARY 1. Let A,B∈Tn(F) over an arbitrary field F and consider τ = τA,B

as an operator on Tn(F) . Then

σ(τ) = {aii +b j j : 1 � i � j � n}.
As we did earlier in the case where A and B are diagonal matrices, we may iden-

tify eigenvectors for each eigenvalue of τA,B acting on block upper-triangular algebras.

EXAMPLE 2. With the notation of Theorem 2, let α ∈ σ(Aii),β ∈ σ(Bj j), i � j.
As above we let Vj = span{et : 1 � t � n1 + · · ·n j} and we define V 0

j = span{et :
n1 + · · ·n j < t � n} , the natural complement to Vj . Then α is an eigenvalue of the
matrix

A[i] :=

⎡
⎢⎢⎢⎣

A11 A12 . . . A1i

0 A22 . . . A2i
...
0 0 . . . Aii

⎤
⎥⎥⎥⎦

and β is an eigenvalue of the matrix

B[ j] :=

⎡
⎢⎣

Bj j . . . Bjn
...
0 . . . Bnn

⎤
⎥⎦ .

Thus there exists a nonzero vector u ∈ Vi and a nonzero vector v ∈ V 0
j−1 such that

A[ j]u = αu and Bt
[ j]v = βv. It follows that Au = αu and Btv = βv. Let T = uvt . Then

clearly T ∈ A and

τA,B(T ) = Auvt +uvtB = (Au)vt +u(Btv)t = αuvt + βuvt = (α + β )T.

Therefore T is an eigenvector of τ .
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Let M ⊆ Mm,n(F) be a (Tm(F),Tn(F))-bimodule, and A ∈ Tm(F) , B ∈ Tn(F) .
We will next identify the spectrum of τA,B ∈ L (M ) . We start by characterizing
(Tm(F),Tn(F))-bimodules of Mmn(F). The following characterization is similar to
the characterization of weakly closed ideals in nest algebras of operators on Hilbert
space [6].

LEMMA 1. A subspace M of Mmn(F) is a (Tm(F),Tn(F))-bimodule if and only
if there exists a monotone increasing function (not necessarily strictly increasing)
f : {1, · · · n} −→ {0,1, · · · n} such that M = span{Ei j : 1 � i � f ( j)} .

Proof. If f is a function that satisfies the assertion, A ∈ Tm(F),B ∈ Tn(F) and
i � f ( j) , then clearly AEi j ∈ span{Er′ j : 1 � i′ � j} and Ei jB ∈ span{Ei j′ : j � j′ �
n}. Therefore AEi j,Ei jB ∈ M , the former since i′ � i � j and the latter due to the
monotonicity of f .

For the converse assume that M is a bimodule and define f (s) to be the maximum
index r such that M includes a matrix C = [ci j] with crs 	= 0. We observe that if
C ∈ M with crs 	= 0 and r′ � r , s′ � s then each of the following matrices belong to
the bimodule:

Ers = ErrCEss, Er′s′ = Er′rCEss′ .

The fact that Ers′ ∈M proves the monotonicity of f and the fact that Er′s ∈M proves
that M = span{Ei j : i � f ( j)}.

THEOREM 3. Let F be an algebraically closed field, A ∈ Tm(F),B ∈ Tn(F) and
M ⊆ Mmn(F) be a nonzero (Tm(F),Tn(F))-bimodule. If τ = τA,B is considered as
an operator on M , then σ(τ) = {aii + b j j : 1 � i � f ( j)}, where f is the function
affiliated with M described in Lemma 1.

Proof. We prove this by induction on m . If m = 1, then M = {[0, · · ·0,∗, · · ·∗]}
where the number of initial zeros is t = max{s : f (s) = 0} (which may be zero). The
map τ is then recognized as the Sylvester-Rosenblum operator τa,B′ where a = A and
B′ is the compression of B to the last n− t rows and columns. By Sylvester’s Theorem
σ(τ) = {a}+ σ(B′) = {a+b j j : t +1 � j � n} = {a+b j j : 1 � f ( j)}.

For m > 1 we decompose A as a direct sum of the two subspaces S1 consisting of
the first m−1 rows of M and S2 consisting of the last row of M . The subspace S1 is
invariant under τ and so as in the proof of Theorem 2, the spectrum of τ is the union of
the spectrum of τ|S1 and the spectrum of the compression of τ to S2 . By the induction
hypothesis σ(τ|S1) = {aii +b j j : 1 � i � m−1, i � f ( j)}. As in the proof of the case
m = 1, the spectrum of the compression of τ to S2 equals {amm +b j j : f ( j) = m}.

3. Triangular Banach algebras

Let A and B be unital Banach algebras, and suppose that M is a Banach A -
B -bimodule. That is, M is a Banach space, a left-A module and a right B -module,
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and the (continuous) module actions satisfy:

‖AMB‖M � ‖A‖A ‖M‖M ‖B‖B,

for all A ∈ A , B ∈ B , and M ∈ M .
Let us now fix A ∈ A and B ∈ B , and denote by LA (resp. RB ) the left multi-

plication operator LA(M) = AM (resp. the right multiplication operator RB(M) = MB)
for all M ∈ M . It is easily seen that LA,RB ∈ B(M ) and that ‖LA‖ � ‖A‖A and that
‖RB‖ � ‖B‖B . The corresponding Sylvester-Rosenblum operator

τA,B : M → M
T �→ AT +TB

is bounded (indeed τA,B = LA +RB ), and as noted in the introduction – observing that
LARB = RBLA – it follows from the general theory of abelian Banach algebras that

σB(M )(τA,B) ⊆ σB(M )(LA)+ σB(M )(RB) ⊆ σA (A)+ σB(B).

Our main goal is to consider a particular example of this phenomenonwhere N ⊆
H is a nest, M = T (N ) is the corresponding nest algebra, and A = B = CI +
K (N ) is the unitization of the algebra of compact operators in T (N ) .

It will be useful, however, to frame our first results in terms of so-called triangular
Banach algebras, which we now define.

Let p � 1 be an integer. Suppose that A1,A2, . . . ,Ap are Banach algebras and
that Mi j , 1 � i < j � p , are Ai−A j bimodules with the additional multiplication that
satisifies Mi jM jk ⊆ Mik , 1 � i < j < k � p . Then we construct triangular Banach
algebras of the form

Tp =

⎡
⎢⎢⎢⎣

A1 M12 M13 . . . M1p

A2 M23 . . . M2p
. . .

Ap

⎤
⎥⎥⎥⎦ ,

where for

T =

⎡
⎢⎢⎢⎣

a1 m12 m13 . . . m1p

a2 m23 . . . m2p
. . .

ap

⎤
⎥⎥⎥⎦ ∈ Tp,

we define ‖T‖= ∑p
k=1 ‖ak‖Sk +∑1�i< j�p‖mi j‖Mi j . For our purposes, the norm should

be interpreted as a conveyor of topological information, rather than isometric informa-
tion. That is to say, any topology on Tp equivalent to the norm topology we have
just defined would work just as well. Linear combinations and products of elements
of Tp are provided by the natural matrix linear combinations and products - where the
entrywise-products are defined through module actions where appropriate. For exam-
ple, if p = 2, then the multiplication in T is the natural one defined by[

a1 m
0 a2

] [
b1 n
0 b2

]
=

[
a1b1 a1n+mb2

0 b1b2

]
.
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Since Tp is a Banach algebra, it is clearly a Banach bimodule over itself. Given
X = [xi j] and Y = [yi j] ∈Tp (so that it is understood that xi j = 0 = yi j if i > j ), we can
once again consider the corresponding Sylvester-Rosenblum operator τX ,Y = LX +RY ,
and observe that ‖τX ,Y‖ � ‖X‖+ ‖Y‖ < ∞ . (We emphasize that for our purposes, all
that matters is that τX ,Y is continuous.)

We saw above that σB(Tp)(τX ,Y ) ⊆ σB(Tp)(X)+σB(Tp)(Y ) . By setting F = C in
Example 1, we see that this containment is, in general, strict. Our goal is to precisely
determine σ(τX ,Y ) in the setting of nest algebras acting on a Hilbert space.

In analogy to both the matrix and nest algebra settings, we shall define the di-
agonal Dp of Tp to be the algebra Dp = ⊕p

k=1Ak . The map Δ : Tp → Dp ⊆ Tp ,
Δ(Z = [zi j]) = ⊕p

k=1zkk is a contractive (hence continuous), linear, idempotent homo-
morphism.

We refer to Δ as an “expectation” of Tp onto the diagonal Dp .
Observe that for all T = [ti j],X = [xi j] , and Y = [yi j] ∈ Tp , we have that τxii ,y j j :

Mi j → Mi j is a Sylvester-Rosenblum operator, and that

τΔ(X),Δ(Y)(T ) = [τxii ,y j j (ti j)].

It is easy to see from this that τΔ(X),Δ(Y ) is invertible (or equivalently bijective) if
and only if each τxii ,y j j is invertible , 1 � i � j � p .

Our first goal is to show that σB(Tp)(τX ,Y ) ⊆ σB(Tp))(τΔ(X),Δ(Y )) , which will sim-
plify many of our computations later on.

We do this by first introducing a family of natural ideals of Tp , consisting of
those upper triangular matrices whose first k diagonals (starting at the main diagonal
and proceeding “upwards”) are all zero.

For 0 � k � p , set

Jk := {T ∈ Tp : ti j = 0 if j− i < k}.
Then J0 = Tp , Jp = {0} , and Jk �Tp , 0 � k � p . By virtue of the fact that each
such Jk is an ideal, it is clear that τX ,Y (Jk) ⊆ Jk and τΔ(X),Δ(Y)(Jk) ⊆ Jk for all
k .

Note also that if T = [ti j] ∈ Jk , then a routine calculation shows that

[τX ,Y (T )]i i+k = τxii ,yi+k i+k(ti i+k) = τΔ(X),Δ(Y)(ti i+k).

From this it in turn follows that τX ,Y (T ) = τΔ(X),Δ(Y)(T ) for all T ∈ Jp−1 .

PROPOSITION 1. Let Tp be a triangular Banach algebra and X ,Y ∈ Tp . If
τΔ(X),Δ(Y) is invertible, then so is τX ,Y .

Proof. Suppose that τΔ(X),Δ(Y ) is invertible. Let T = [ti j] ∈ ker τX ,Y . For 0 � i �
p ,

0 = [τX ,Y (T )]ii = τxii ,yii(tii).

But as observed above, the fact that τΔ(X),Δ(Y) is injective implies that each τxii,yii is
injective, and thus tii = 0, 1 � i � p . In other words, T ∈ J1 .
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Let k = max{1 � � � p : T ∈ J�} . If k < p , then ti j = 0 for all i � j < i+k , but
there exists 1 � i0 � p− k such that ti0 i0+k 	= 0. From our observation above,

0 = [τX ,Y (T )]i0 i0+k = τxi0 i0 ,yi0+k i0+k(ti0 i0+k).

Since each τxii ,y j j is injective, ti0 i0+k = 0, a contradiction. Thus k = p ; i.e. T = 0.
Thus shows that τX ,Y is injective. (Note that this argument only required the in-

jectivity of τΔ(X),Δ(Y) .)
Next, let us show that τX ,Y is surjective. We will show that Jk ⊆ ranτX ,Y , 0 �

k � p−1. Since J0 = Tp , this clearly suffices.
Note that if 0 	=W = [wi j] ∈ Jp−1 , then by hypothesis there exists T = [ti j] ∈ Tp

such that τΔ(X),Δ(Y )(T ) = W . Thus

τxii ,y j j (ti j) =

{
0 if (i, j) 	= (1, p)
w1,p if (i, j) = (1, p).

Since τΔ(X),Δ(Y ) is injective, each τxii ,y j j is injective and thus ti j = 0 for all (i, j) 	=
(1, p) . In particular, T ∈ Jp−1 . But then

τX ,Y (T ) = τΔ(X),Δ(Y )(T ) = W,

and thus Jp−1 ⊆ ranτX ,Y . In fact, we have just argued that Jp−1 = τX ,Y (Jp−1) .
Let k = min{0 � � � p : J� = τX ,Y (J�)} . Suppose that k > 0, and let Z =

[zi j] ∈ Jk−1 . Since τΔ(X),Δ(Y ) is surjective, there exists S = [si j] ∈ Tp such that
τΔ(X),Δ(Y)(S) = Z . By injectivity of each τxii,y j j , 1 � i � j � p , we see that S ∈ Jk−1 .
But then

[τΔ(X),Δ(Y)(S)]i i+(k−1) = [τX ,Y (S)]i i+(k−1), 1 � i � p− (k−1),

and thus τX ,Y (S)∈Jk−1 . Furthermore, Z−τX ,Y (S)∈Jk . Choose S0 ∈Jk such that
τX ,Y (S0) = Z− τX ,Y (S) ∈ Jk .

Then V := S−S0 ∈Jk−1 and τX ,Y (V ) = Z , so that Z ∈ ranτX ,Y . Hence Jk−1 =
τX ,Y (Jk−1) , contradicting our choice of k . Thus k = 0, and so τX ,Y is surjective.

This completes the proof.

COROLLARY 2. Let Tp be a triangular Banach algebra and X ,Y ∈ Tp . Then

σB(Tp)(τX ,Y ) ⊆ σB(Tp)(τΔ(X),Δ(Y)).

Proof. Let λ ∈ C and denote by I = ⊕p
i=1Ii the identity of Tp , where Ii in turn

denotes the identity of Ai , 1 � i � p .
It is clear that Δ(I) = I , and that λ I − τX ,Y = τλ I−X ,Y and λ I − τΔ(X),Δ(Y) =

τλ I−Δ(X),Δ(Y) .
Thus λ ∈ σB(Tp)(τX ,Y ) (resp. λ ∈ σB(Tp)(τΔ(X),Δ(Y ))) if and only if

0 ∈ σB(Tp)(τλ I−X ,Y ) (resp. 0 ∈ σB(Tp)(τΔ(λ I−X),Δ(Y) )).
The result now follows immediately from Proposition 1.
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PROPOSITION 2. Let Tp be a triangular Banach algebra and X ,Y ∈ Dp . Then

σB(Tp)(τX ,Y ) ⊆ Λ := {αi + β j : αi ∈ σAi(xii),β j ∈ σB j (y j j),1 � i � j � n}.

Proof. Suppose that λ 	∈ Λ . For T = [ti j] ∈ Tp ,

(λ I− τX ,Y )(T ) = [(λ − τxii,y j j )(ti j)].

But as observed above, for each 1 � i � j � p , τxii,y j j = Lxii +Ryj j and by the theory
of commutative Banach algebras,

σB(Mi j)(τxii ,y j j ) ⊆ σAi(xii)+ σB j(y j j).

Thus each λ − τxii,y j j is invertible, 1 � i � j � p , whence λ 	∈ σB(Tp)(τX ,Y ) .
By combining Corollary 2 and Proposition 2 we arrive at the following result.

COROLLARY 3. Let Tp be a triangular Banach algebra and X ,Y ∈ Tp . Then

σB(Tp)(τX ,Y ) ⊆ Λ := {α + β : α ∈ σAi(xii),β ∈ σB j (y j j),1 � i � j � n}.
In the case where F = C , the block upper-triangular algebras T (n1,n2, . . . ,nk)

of Mn(C) (where n = n1 + n2 + · · ·+ nk ) defined in Section 2 are the prototype of a
nest algebra acting on a finite-dimensional Hilbert space. We saw in Theorem 2 that
in this setting, the containment described in Corollary 3 is actually an equality. Indeed,
Example 2 allows us to produce an eigenvector for each α + β in the set Λ above.

We now turn our attention to the case of nest algebras acting on infinite-dimension-
al, complex, separable Hilbert spaces.

4. Nest algebras

Let H denote a complex, infinite-dimensional, separable Hilbert space. Given a
closed subspace M ⊆ H , we denote by P(M) the orthogonal projection of H onto
M . A nest on H is a chain N of closed subspaces of H , which is closed under
the operations of taking closed linear spans, arbitrary intersections, and which contains
{0} and H . Given N1 < N2 ∈ N , the subspace N2 �N1 is referred to as an interval
in N . A partition of N is a finite set E := {E1,E2, . . . ,Er} of pairwise orthogonal
intervals for which H = ⊕r

m=1Em . Thus E is a partition precisely when there exist
0 = N0 < N1 < N2 · · · < Nr = H such that (after reindexing the Ej ’s if necessary)
Em = Nm �Nm−1 , 1 � m � r .

For each N ∈ N , we may define N− := ∨{M ∈ N : M < N} (here ∨ denotes
the “closed linear span”). If N− 	= N , we refer to N− as the immediate predecessor
of N , and we refer to N �N− as an atom of N . (These are the minimal non-zero
intervals of N .) As H is separable, it is clear that N admits at most countably
many atoms. We write AN = {Aα : α ∈ Λ} to denote the set of atoms of N . Given
atoms Aα = Nα � (Nα)− and Aβ = Nβ � (Nβ )− in AN , we set

Aα � Aβ
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if Nα � Nβ . It follows that (AN ,�) is a totally ordered set. More generally, given two
intervals E1 = N1�M1 and E2 = N2�M2 for some Mk � Nk ∈ N , k = 1,2, we shall
define

E1 � E2

if N1 � M2 .
Corresponding to N is a WOT-closed algebra

T (N ) = {T ∈ B(H ) : TN ⊆ N for all N ∈ N }.

We refer to T (N ) as a nest algebra, and denote by K (N ) = T (N )∩K (H ) the
closed, two-sided ideal of compact operators in T (N ) .

4.1. Fine picture of the spectrum

Let K,L∈K (N ) . Our goal is to calculate the spectrum of the Sylvester-Rosenblum
operator

τK,L : T (N ) → T (N )
T �→ KT +TL.

To that end, we shall define three sets associated with τK,L .

• Ωatom := {κ +λ : κ ∈ σB(Aα )(P(Aα)K|Aα ),λ ∈ σB(Aβ )(P(Aβ )L|Aβ ),Aα � Aβ ∈
AN } ;

• Ωleft := {κ : κ ∈ σB(Aα )(P(Aα)K|Aα ),Aα = Nα � (Nα)− ∈ AN ,dim(Nα )⊥ =
∞} ; and

• Ωright := {λ : λ ∈ σB(Aβ )(P(Aβ )L|Aβ ),Aβ = Nβ � (Nβ )− ∈ AN ,dim(Nβ )− =
∞} .

Obviously each of these sets depends upon K and L . We set Ω(= ΩK,L) :=
Ωatom∪Ωleft ∪Ωright ∪{0}. We shall demonstrate that

σB(T (N ))(τK,L) = Ω.

EXAMPLE 3. Let us illustrate what Ω looks like in an example.
Consider the complex Hilbert space H = L2([0,1],dx)⊕C2⊕L2([0,1],dx)⊕C ,

where dx represents Lebesgue measure on the interval [0,1] . For each 0 � t � 1, let
Nt := { f ∈ H : f = χ[0,t] f} , where χ[0,t] is the characteristic function of the interval
[0,t] , and let N be the nest

N = {Nt ⊕0⊕0⊕0,N1⊕C
2⊕0⊕0,N1⊕C

2⊕Nt ⊕0,H : t ∈ [0,1]}.

Thus the atoms of N are A1 = 0⊕C
2⊕0⊕0 and A2 = 0⊕0⊕0⊕C , and A1 � A2 .

Let K,L ∈ K (N ) , and suppose that σB(C2)(K1) = {1,2} , σB(C)(K2) = {4} ,
σB(C2)(L1) = {8,16} , σB(C)(L2) = {32} .

Then:
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• Ωatom := {1+8,1+16,2+8,2+16,1+32,2+32,4+32}= {9,10,17,18,33,34,
36} ;

• Ωleft := {1,2} ; and

• Ωright := {8,16,32} .

Thus Ω = {0,1,2,8,9,10,16,17,18,32,33,34,36} .

4.2. Finite partitions

It is now time to relate the theory of Sylvester-Rosenblum operators on nest al-
gebras to our work in the previous section. Suppose that E := {E1,E2, . . . ,Ep} is a
partition of a given nest N . Relative to the decomposition H = E1 ⊕E2 ⊕·· ·⊕Ep ,
any T ∈ T (N ) admits a block upper-triangular form

T =

⎡
⎢⎢⎢⎢⎢⎣

T1,1 T1,2 · · · · · · T1,p

T2,2 T2,3 · · · T2,p
. . .

. . .
...

Tp−1,p−1 Tp−1,p

Tp,p

⎤
⎥⎥⎥⎥⎥⎦ .

Moreover, for each 1 � i � p , the set Ai := {Ti,i : T = [Ti, j] ∈ T (N )} forms a nest
algebra on the space Ei , while each of the spaces Mi, j = B(Ej,Ei) , 1 � i � j � p ,
forms a Ai -A j bimodule. Using the construction of Section 3, we obtain a triangular
Banach algebra TE which coincides (as a set of operators on H ) with T (N ) . It is
not too difficult to verify that the norm we associated to TE in the previous section is
equivalent to the original operator norm on T (N ) .

The diagonal of the nest algebra T (N ) is the set D(N ) := T (N )∩T (N )∗ .
The set Datom := ⊕α∈ΛB(Aα) ⊆ D(N ) is called the atomic part of the diagonal. It
is known that the map Φ : B(H )→Datom defined by Φ(T ) = ∑α∈Λ P(Aα)TP(Aα) is
a contractive projection of B(H ) onto Datom , and that Φ|T (N ) is multiplicative.

We shall also require the following two results. The second appears in [5], Lemma
3.5.

THEOREM 4. (Ringrose [9]) Let H be an infinite-dimensional, separable, com-
plex Hilbert space and K ∈ K (H ) be a compact operator. Let N denote a maximal
nest of invariant subspaces of K , and AN = {Aα : α ∈ Λ} denote the atoms of N .
Then each atom is one-dimensional, and

σB(H )(K) = σT (N )(K) = {0}∪{Kα : Aα ∈ AN },
where Kα = P(Aα)KP(Aα) ∈ C . Moreover, the non-zero eigenvalues are repeated
according to their algebraic multiplicity.

PROPOSITION 3. Let N be a nest and K ∈ K (N ) . Given ε > 0 , there exists
a partition E = {E1,E2, . . . ,Er} of N such that for each 1 � m � r , either Em is an
atom, or ‖P(Em)KP(Em)‖ < ε .
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For a subset Z ⊆ C and ε > 0, we write Zε := {w ∈ C : |w− z| < ε for some z ∈
Z} .

THEOREM 5. Let N be a nest and K,L ∈ K (N ) . Let Ω = ΩK,L be the set
defined in section 4.1. Then σB(T (N ))(τK,L) ⊆ Ω .

Proof. Let ε > 0. By applying Proposition 3 to each of K and L , and then
choosing a “common refinement” of each partition thereby obtained, we can find a
partition E = {Em}r

m=1 of N such that for each 1 � m � r , either Em is an atom,
or ‖P(Em)KP(Em)‖ < ε and ‖P(Em)LP(Em)‖ < ε . By refining our partition once
more if necessary, we may also assume without loss of generality that any finite-
dimensional subspace Em is an atom. As seen in section 4.2, we may then decom-
pose H = ⊕r

m=1Em and write K = [Ki j] , L = [Li j] as block-upper triangular operator
matrices relative to this decomposition.

By Corollary 3,

σB(T (N ))(τK,L) ⊆ Φ := {αi + β j : αi ∈ σAi(Kii),β j ∈ σA j (Lj j),1 � i � j � r}.

We now show that Φ ⊆ Ω2ε . To do this, we proceed by a case-by-case analysis.
Fix 1 � i � j � r , and let αi ∈ σAi(Kii),β j ∈ σA j (Lj j) .

CASE 1. Suppose that both Ei and Ej are atoms. Then Ai = B(Aαi) and A j = B(Aα j )
for some αi,α j ∈ Λ . Moreover, i � j implies that Aαi � Aα j , and so αi + β j ∈
Ωatom ⊆ Ω2ε .

CASE 2. Suppose that Ei is an atom, but that Ej is not. Here, Ai = B(Aαi) for some
αi ∈ Λ , and this time ‖Lj‖ < ε , by our choice of E . As such, β j ∈ σA j (Lj j)
implies that |β j| < ε .

By our choice of the partition E , the fact Ej is not an atom implies that dim Ej =
∞ . But then αi ∈ Ωleft , and so αi + β j ∈ (Ωleft)ε ⊆ Ω2ε .

CASE 3. Suppose that Ei is not an atom, but that Ej is. This case is analogous to the
previous case. This time, A j = B(Aα j ) for some α j ∈ Λ , and ‖Ki‖ < ε . As
such, αi ∈ σAi(Kii) implies that |αi| < ε .

By our choice of the partition E , the fact Ei is not an atom implies that dim Ei =
∞ . Arguing as above, β j ∈ Ωright , and so αi + β j ∈ (Ωright)ε ⊆ Ω2ε .

CASE 4. Suppose that neither Ei nor Ej is an atom. By our choice of E , this implies
that ‖Kii‖ < ε and ‖Lj j‖ < ε . Thus αi ∈ σAi(Kii),β j ∈ σA j (Lj j) implies that
|αi| < ε and |β j| < ε . But then |αi + β j| < 2ε , so αi + β j ∈ {0}2ε ⊆ Ω2ε .

Hence σB(T (N ))(τK,L) ⊆ Φ ⊆ Ω2ε . But ε > 0 was arbitrary, and so

σB(T (N ))(τK,L) ⊆ ∩ε>0Ω2ε = Ω.
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There remains to show that the reverse inclusion holds, namely that Ω ⊆
σB(T (N ))(τK,L) . Note that since the latter set is closed, it suffices to prove that Ω ⊆
σB(T (N ))(τK,L) .

Before proceeding to the main result of this paper, we pause to remind the reader
that if K ∈ K (H ) is a compact operator, then κ ∈ σB(H )(K) implies that κ is an
approximate eigenvalue of K ; that is, there exists a sequence (xn)∞

n=1 of unit vectors
in H such that limn→∞(K − κI)xn = 0. Indeed, any eigenvalue of K is clearly an
approximate eigenvalue of K , while the only other possibility is that κ = 0 is not an
eigenvalue, in which case H must be infinite-dimensional. But compact operators
acting on infinite-dimensional Hilbert spaces are not bounded below, which is the state-
ment that 0 is an approximate eigenvalue of K as well.

THEOREM 6. Let N be a nest and K,L ∈ K (N ) . Let Ω = ΩK,L be the set
defined in section 4.1. Then

σB(T (N ))(τK,L) = Ω.

Proof. As noted above, we have reduced the problem to showing that Ω ⊆
σB(T (N ))(τK,L) .

CASE 1. Suppose that γ ∈ Ωatom , and write γ = κ + λ where κ ∈ σB(Aα )(Kα),λ ∈
σB(Aβ )(Lβ ) , and Aα � Aβ ∈ AN .

Let E = {E1,E2, . . . ,Er} be a partition of N such that Aα , Aβ ∈ E , say Aα =
Ei and Aβ = Ej . Since Aα � Aβ , we have that i � j . Write K = [Kst ] and
L = [Lst ] with respect to the decomposition H = ⊕r

m=1Em . Let V = ⊕i
s=1Es

and W = ⊕r
t= jEt .

Since K and L are compact, κ ∈ σB(Ei)(Kii) implies that κ ∈ σB(V )(P(V )K|V ) ,
and as such it is an approximate eigenvalue of P(V)K|V . Similarly, λ∈σB(Ej)(Lj j)
implies that λ ∈ σB(W )((P(W )L|W )∗) , and as such it is an approximate eigen-
value of (P(W )L|W )∗ . Thus we can find unit vectors (vn)∞

n=1 in V and (wn)∞
n=1

in W such that

lim
n

(K−κI)vn = lim
n

(P(V )K|V −κP(V))vn = 0,

and similarly

lim
n

(L−λ I)∗wn = lim
n

(P(W )L|W )∗ −λP(W ))wn = 0.

By Lemma 2.8 of [5], it follows that vn ⊗w∗
n ∈ T (N ) . Observe that

lim
n

(τK,L − γI)(vn⊗w∗
n) = lim

n
τK−κI,L−λ I(vn ⊗w∗

n)

= lim
n

(K−κI)(vn⊗w∗
n)+ (vn⊗w∗

n)(L−λ I)

= lim
n

((K−κI)vn)⊗w∗
n + vn⊗ ((L−λ I)∗wn)∗

= 0.
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Thus τK,L − γI is not bounded below, and so γ ∈ σB(T (N ))(τK,L) .

CASE 2. Suppose that γ ∈ Ωleft , and write γ = κ , with κ ∈ σB(Aα )(Kα) for some
Aα = Nα �(Nα)−,dim N⊥

α = ∞ . Consider E = {E1,E2,E3} , where E1 =(Nα )− ,
E2 = Aα , and E3 = N⊥

α .

Write K = [Kst ]1�s,t�3 and L = [Lst ]1�s,t�3 relative to the decomposition H =

E1 ⊕E2 ⊕E3 . Then κ ∈ σB(E2)(K22) implies that κ ∈ σB(E1⊕E2)(
[
K11 K12

0 K22

]
) .

As noted above, this implies that there exists a sequence of unit vectors (vn)∞
n=1

in E1⊕E2 such that limn(K−κI)vn = 0.

Also, dim E3 = ∞ implies that there exists a sequence (wn)n of unit vectors in
E3 such that limn L∗wn = 0. Using Lemma 2.8 of [5] once again, we find that
vn ⊗w∗

n ∈ T (N ) for all n � 1, and

lim
n

(τK,L −κI)(vn⊗w∗
n) = lim

n
τK−κI,L(vn ⊗w∗

n)

= lim
n

(K−κI)(vn⊗w∗
n)+ (vn⊗w∗

n)(L)

= lim
n

((K−κI)vn)⊗w∗
n + vn⊗ (L∗wn)∗

= 0.

As before, κ ∈ σB(T (N ))(τK,L) .

CASE 3. The proof that Ωright ⊆ σB(T (N ))(τK,L) is analogous to that of CASE 2, and
is left to the reader.

CASE 4. That 0 ∈ σB(T (N ))(τK,L) follows from the fact that any nest algebra on an
infinite dimensional space admits a sequence (Fn)n of norm-one, rank-one oper-
ators which converge to 0 in the weak-operator topology. But then limn KFn =
0 = limn FnL in the norm topology. Hence

lim
n

(τK,L −κI)(Fn) = lim
n

KFn +FnL = 0.

As before, τK,L is not bounded below, and so 0 ∈ σB(T (N ))(τK,L) .

This proves that Ω ⊆ σB(T (N ))(τK,L) which we showed was sufficient to complete the
proof of the Theorem.

COROLLARY 4. Let H be an infinite-dimensional, separable Hilbert space and
N be a nest on H . Let K,L ∈ K (N ) and let Ω denote the set defined in para-
graph 4.1. Given α,β ∈ C , set R = αI +K and S = β I +L. Then

σB(T (N ))(τR,S) = {α + β + ω : ω ∈ Ω}.

Proof. This follows immediately from Theorem 6, combined with the routine ob-
servation that

τR,S = (α + β )I + τK,L.
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EXAMPLE 4. Consider the standard ONB {en}∞
n=1 for �2 , and let N be the nest

on �2 given by
Nk = span{e1,e2, . . . ,ek}, k � 0,

and N∞ = �2 . Let K = [ki j] and L = [li j] ∈ K (N ) . Let Ωatom,Ωleft and Ωright be the
sets defined in Section 4.1. Then

(a) For each n � 1, An = Cen is an atom of N . Thus

Ωatom = {kii + l j j : 1 � i � j < ∞}.

(b) For each n � 1, An = Cen is an atom of N , and N⊥
n is infinite-dimensional.

Thus
Ωleft = {kii : 1 � i < ∞}.

Note, however, that since L ∈ K (N ) , we know that limn lnn = 0, and so kii =
lim j kii + l j j ∈ Ωatom for all 1 � i . In particular,

Ωleft ⊆ Ωatom.

But K ∈ K (N ) also implies that limi kii = 0, whence

{0} ⊆ Ωatom.

(c) Given any atom An = Cen of N , dimNn−1 = n−1 < ∞ , and so

Ωright = ∅.

It follows from Theorem 6 that

σB(T (N ))(τK,L) = {kii + l j j : 1 � i � j < ∞}.

The situation is not as simple as that above when the operators X ,Y ∈ T (N )
implementing the Sylvester-Rosenblum operator τX ,Y are not compact. For example,
let S ∈ T (N ) denote the unilateral backward shift which satisfies Sek = ek−1 , k � 1,
Se1 = 0, and let Y = 2I ∈ T (N ) .

In this case, sii = 0 for all i � 1, and y j j = 2 for all j � 1. Thus

{sii + y j j : 1 � i � j < ∞} = {2}.

On the other hand, τS,Y = τS−2I,0 = LS−2I . But S−2I ∈T (N ) is invertible in B(H ) ,
and since T (N ) is inverse-closed (see, for example [7], Remark 1), we have that

σB(T (N ))(τS,Y ) = σB(T (N ))(LS−2I) = {z ∈ C : |z−2|� 1}.
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