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INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN

IN HERMITIAN UNITAL BANACH ∗–ALGEBRAS

VIA A RESULT OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR

Abstract. Consider the quadratic weighted geometric mean
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for invertible elements x, y in a Hermitian unital Banach ∗ -algebra and real number ν . In this
paper, by utilizing a result of Cartwright and Field, we obtain various upper and lower bounds
for the positive difference

(1−ν) |x|2 +ν |y|2 − x�ν y,

where ν ∈ [0,1] , under various assumptions for the elements involved. Applications for the
classical weighted geometric mean

a�νb := a1/2
(
a−1/2ba−1/2

)υ
a1/2

of positive elements a, b that satisfy the condition 0 < ka � b � Ka for certain numbers 0 <
k < K, are also given.
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Heinz means inequalities for Hilbert space operators, Publ. Math. Debrecen 80 (2012), no. 3-4, 465–
478.

[10] F. KITTANEH AND Y. MANASRAH, Improved Young and Heinz inequalities for matrix, J. Math. Anal.
Appl. 361 (2010), 262–269.

c© � � , Zagreb
Paper OaM-14-30

http://dx.doi.org/10.7153/oam-2020-14-30


418 S. S. DRAGOMIR

[11] F. KITTANEH AND Y. MANASRAH, Reverse Young and Heinz inequalities for matrices, Linear Mul-
tilinear Algebra, 59 (2011), 1031–1037.

[12] G. J. MURPHY, C∗ -Algebras and Operator Theory, Academic Press, 1990.
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