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INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN

IN HERMITIAN UNITAL BANACH ∗–ALGEBRAS

VIA A RESULT OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR

(Communicated by F. Kittaneh)

Abstract. Consider the quadratic weighted geometric mean

x�ν y :=
∣∣∣∣∣yx−1

∣∣ν
x
∣∣∣2

for invertible elements x, y in a Hermitian unital Banach ∗ -algebra and real number ν . In this
paper, by utilizing a result of Cartwright and Field, we obtain various upper and lower bounds
for the positive difference

(1−ν) |x|2 +ν |y|2 − x�ν y,

where ν ∈ [0,1] , under various assumptions for the elements involved. Applications for the
classical weighted geometric mean

a�νb := a1/2
(
a−1/2ba−1/2

)υ
a1/2

of positive elements a, b that satisfy the condition 0 < ka � b � Ka for certain numbers 0 <
k < K, are also given.

1. Introduction

Let A be a unital Banach ∗ -algebra with unit 1 . An element a ∈ A is called
selfadjoint if a∗ = a. A is called Hermitian if every selfadjoint element a in A has real
spectrum σ (a) , namely σ (a) ⊂ R .

In what follows we assume that A is a Hermitian unital Banach ∗ -algebra.
We say that an element a is nonnegative and write this as a � 0 if a∗ = a and

σ (a) ⊂ [0,∞) . We say that a is positive and write a > 0 if a � 0 and 0 /∈ σ (a) . Thus
a > 0 implies that its inverse a−1 exists. Denote the set of all invertible elements of
A by Inv(A) . If a,b ∈ Inv(A) , then ab ∈ Inv(A) and (ab)−1 = b−1a−1. Also, saying
that a � b means that a−b � 0 and, similarly a > b means that a−b > 0.

The Shirali-Ford theorem asserts that [14] (see also [2, Theorem 41.5])

a∗a � 0 for every a ∈ A. (SF)

Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [7]):
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(i) If a, b ∈ A, then a � 0, b � 0 imply a+b � 0 and α � 0 implies αa � 0;

(ii) If a, b ∈ A, then a > 0, b � 0 imply a+b > 0;

(iii) If a, b ∈ A, then either a � b > 0 or a > b � 0 imply a > 0;

(iv) If a > 0, then a−1 > 0;

(v) If c > 0, then 0 < b < a if and only if cbc < cac, also 0 < b � a if and only if
cbc � cac;

(vi) If 0 < a < 1, then 1 < a−1;

(vii) If 0 < b < a, then 0 < a−1 < b−1, also if 0 < b � a, then 0 < a−1 � b−1.

Okayasu [13] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach ∗ -algebra with continuous involution, namely if a, b ∈ A and
p ∈ [0,1] then a > b (a � b) implies that ap > bp (ap � bp) .

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a∈ A and a > 0, then 0 /∈ σ (a) and the fact that σ (a) is a compact subset of
C implies that inf{z : z ∈ σ (a)} > 0 and sup{z : z ∈ σ (a)} < ∞. Choose γ to be close
rectifiable curve in {Rez > 0}, the right half open plane of the complex plane, such
that σ (a) ⊂ ins(γ) , the inside of γ. Let G be an open subset of C with σ (a) ⊂ G. If
f : G → C is analytic, we define an element f (a) in A by

f (a) :=
1

2π i

∫
γ

f (z) (z−a)−1 dz.

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on the
choice of γ and the Spectral Mapping Theorem (SMT)

σ ( f (a)) = f (σ (a))

holds.
For any α ∈ R we define for a ∈ A and a > 0, the real power

aα :=
1

2π i

∫
γ
zα (z−a)−1 dz,

where zα is the principal α -power of z. Since A is a Banach ∗ -algebra, then aα ∈ A.
Moreover, since zα is analytic in {Rez > 0}, then by (SMT) we have

σ (aα) = (σ (a))α = {zα : z ∈ σ (a)} ⊂ (0,∞) .

Following [7], we list below some important properties of real powers:

(viii) If 0 < a∈ A and α ∈ R , then aα ∈ A with aα > 0 and
(
a2

)1/2 = a, [15, Lemma
6];
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(ix) If 0 < a ∈ A and α, β ∈ R , then aαaβ = aα+β ;

(x) If 0 < a ∈ A and α ∈ R , then (aα)−1 =
(
a−1

)α = a−α ;

(xi) If 0 < a, b ∈ A , α, β ∈ R and ab = ba, then aαbβ = bβ aα .

We define the following means for ν ∈ [0,1] , see also [7] for different notations:

a∇νb := (1−ν)a+ νb, a, b ∈ A (A)

the weighted arithmetic mean of (a,b) ,

a!νb :=
(
(1−ν)a−1 + νb−1)−1

, a, b > 0 (H)

the weighted harmonic mean of positive elements (a,b) and

a�νb := a1/2
(
a−1/2ba−1/2

)υ
a1/2 (G)

the weighted geometric mean of positive elements (a,b) . Our notations above are moti-
vated by the classical notations used in operator theory. For simplicity, if ν = 1

2 , we use
the simpler notations a∇b, a!b and a�b. The definition of weighted geometric mean
can be extended for any real ν.

In [7], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach ∗ -algebra:

(xii) If 0 < a, b ∈ A, then a!b = b!a and a�b = b�a;

(xiii) If 0 < a, b ∈ A and c ∈ Inv(A) , then

c∗ (a!b)c = (c∗ac)!(c∗bc) and c∗ (a�b)c = (c∗ac)�(c∗bc) ;

(xiv) If 0 < a, b ∈ A and ν ∈ [0,1] , then

(a!νb)−1 =
(
a−1)∇ν

(
b−1) and

(
a−1)�ν

(
b−1) = (a�νb)−1 .

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real num-
bers, B. Q. Feng obtained in [7] the following inequality between the weighted means
introduced above:

a∇νb � a�νb � a!νb (HGA)

for any 0 < a, b ∈ A and ν ∈ [0,1] .
In [15], Tanahashi and Uchiyama obtained the following identity of interest:

LEMMA 1. If 0 < c, d and λ is a real number, then

(dcd)λ = dc1/2
(
c1/2d2c1/2

)λ−1
c1/2d. (1.1)
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Using this equality we can prove the following fact [6]:

PROPOSITION 1. For any 0 < a, b ∈ A we have

b�1−νa = a�νb (1.2)

for any real number ν.

In [6] we introduced the quadratic weighted mean of (x,y) with x, y ∈ Inv(A)
and the real weight ν ∈ R , as the positive element denoted by x�νy and defined by

x�νy := x∗
(
(x∗)−1 y∗yx−1

)ν
x = x∗

∣∣yx−1
∣∣2ν

x =
∣∣∣∣∣yx−1

∣∣ν
x
∣∣∣2 . (S)

When ν = 1/2, we denote x�1/2y by x�y and we have

x�y = x∗
(
(x∗)−1 y∗yx−1

)1/2
x = x∗

∣∣yx−1
∣∣x =

∣∣∣∣∣yx−1
∣∣1/2

x
∣∣∣2 .

We can also introduce the 1/2-quadratic weighted mean of (x,y) with x, y ∈
Inv(A) and the real weight ν ∈ R by

x�1/2
ν y := (x�νy)1/2 =

∣∣∣∣∣yx−1
∣∣ν

x
∣∣∣ . (1/2-S)

Correspondingly, when ν = 1/2 we denote x�1/2y and we have

x�1/2y =
∣∣∣∣∣yx−1

∣∣1/2
x
∣∣∣ .

The following equalities hold [6]:

PROPOSITION 2. For any x, y ∈ Inv(A) and ν ∈ R we have

(x�νy)−1 = (x∗)−1 �ν (y∗)−1

and (
x−1)�ν

(
y−1) = (x∗�νy∗)−1 .

If we take in (S) x = a1/2 and y = b1/2 with a, b > 0 then we get

a1/2�νb1/2 = a�νb

for any ν ∈ R that shows that the quadratic weighted mean can be seen as an extension
of the weighted geometric mean for positive elements considered in the introduction.

Let x, y ∈ Inv(A) . If we take in the definition of ”�ν ” the elements a = |x|2 > 0
and b = |y|2 > 0 we also have for real ν

|x|2 �ν |y|2 = |x|
(
|x|−1 |y|2 |x|−1

)υ |x| = |x|
∣∣∣|y| |x|−1

∣∣∣2υ |x| =
∣∣∣∣∣∣|y| |x|−1

∣∣∣υ |x|
∣∣∣2 .

It is then natural to ask how the positive elements x�νy and |x|2 �ν |y|2 do com-
pare, when x, y ∈ Inv(A) and ν ∈ R?

In [6] we proved the following lemma that provides a slight generalization of
Lemma 1.
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LEMMA 2. If 0 < c, d ∈ Inv(A) and λ is a real number, then

(dcd∗)λ = dc1/2
(
c1/2 |d|2 c1/2

)λ−1
c1/2d∗. (1.3)

REMARK 1. The identity (1.3) was proved by. T. Furuta in [8] for positive opera-
tor c and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc1/2 .

The following fundamental fact that connects the quadratic weighted geometric
mean �ν to the weighted geometric mean �ν holds [6]:

THEOREM 1. If x, y ∈ Inv(A) and λ is a real number, then

x�νy = |x|2 �ν |y|2 (1.4)

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and for
the interval I ⊂ (0,∞) assume that f (z) � 0 for any z∈ I. If u∈ A such that σ (u)⊂ I,
then by (SMT) we have

σ ( f (u)) = f (σ (u)) ⊂ f (I) ⊂ [0,∞)

meaning that f (u) � 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various

inequalities in A.

LEMMA 3. Let f (z) and g(z) be analytic in the right half open plane {Rez > 0}
and for the interval I ⊂ (0,∞) assume that f (z) � g(z) for any z ∈ I. Then for any
u ∈ A with σ (u) ⊂ I we have f (u) � g(u) in the order of A.

We have the following inequalities between means [6]:

THEOREM 2. For any x, y ∈ Inv(A) and ν ∈ [0,1] we have

|x|2 ∇ν |y|2 � x�νy � |x|2!ν |y|2 . (1.5)

In particular,
|x|2 ∇ |y|2 � x�y � |x|2! |y|2 . (1.6)

We can define the weighted means for ν ∈ [0,1] and the elements x, y ∈ Inv(A)
and ν ∈ [0,1] by

x∇1/2
ν y :=

(
|x|2 ∇ν |y|2

)1/2
=

(
(1−ν) |x|2 + ν |y|2

)1/2

and

x!1/2
ν y :=

(
|x|2!ν |y|2

)1/2
=

(
(1−ν) |x|−2 + ν |y|−2

)−1/2
.
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For ν = 1/2 we consider

x∇1/2y :=
(
|x|2 ∇ |y|2

)1/2
=

√
2

2

(
|x|2 + |y|2

)1/2

and

x!1/2y :=
(
|x|2! |y|2

)1/2
=
√

2
(
|x|−2 + |y|−2

)−1/2
.

COROLLARY 1. Let A be a Hermitian unital Banach ∗ -algebra with continuous
involution. Then for any x, y ∈ Inv(A) and ν ∈ [0,1] we have

x∇1/2
ν y � x�1/2

ν y � x!1/2
ν y. (1.7)

In particular, we have

x∇1/2y � x�1/2y � x!1/2y. (1.8)

Recall that a C∗ -algebra A is a Banach ∗ -algebra such that the norm satisfies the
condition

‖a∗a‖ = ‖a‖2 for any a ∈ A.

If a C∗ -algebra A has a unit 1 , then automatically ‖1‖ = 1.

It is well know that, if A is a C∗ -algebra, then (see for instance [12, 2.2.5 Theo-
rem])

b � a � 0 implies that ‖b‖ � ‖a‖ .

COROLLARY 2. Let A be a unital C∗ -algebra. Then for any x, y ∈ Inv(A) and
ν ∈ [0,1] we have

(1−ν)‖x‖2 + ν ‖y‖2 �
∥∥∥(1−ν) |x|2 + ν |y|2

∥∥∥ �
∥∥∥∣∣yx−1

∣∣ν
x
∥∥∥2

. (1.9)

In particular,

1
2

(
‖x‖2 +‖y‖2

)
� 1

2

∥∥∥|x|2 + |y|2
∥∥∥ �

∥∥∥∣∣yx−1
∣∣1/2

x
∥∥∥2

. (1.10)

Motivated by the above facts, in this paper we obtain various upper and lower
bounds for the positive difference

(1−ν) |x|2 + ν |y|2− x�νy,

where ν ∈ [0,1] , under various assumptions for the elements involved. Applications
for the classical geometric mean a�νb := a1/2

(
a−1/2ba−1/2

)υ
a1/2 of positive elements

a, b that satisfy the condition 0 < ka � b � Ka for certain numbers 0 < k < K, are
also given.
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2. Refinements and reverses

We have the following inequality that provides a refinement and a reverse for the
celebrated scalar Young’s inequality

1
2

ν (1−ν)
(β −α)2

max{α,β} � (1−ν)α + νβ −α1−νβ ν � 1
2

ν (1−ν)
(β −α)2

min{α,β} (2.1)

for any α, β > 0 and ν ∈ [0,1] .
This result was obtained in 1978 by Cartwright and Field [3] who established a

more general result for n variables and gave an application for a probability measure
supported on a finite interval. For other similar inequalities, see [1], [5] and [9, 10, 11].

Assume that x, y ∈ Inv(A) and the constants M > m > 0 are such that

M �
∣∣yx−1

∣∣ � m. (2.2)

The inequality (2.2) is equivalent to

M2 �
∣∣yx−1

∣∣2 = (x∗)−1 |y|2 x−1 � m2. (2.3)

If we multiply at left with x∗ and at right with x we get the equivalent relation

M2 |x|2 � |y|2 � m2 |x|2 . (2.4)

For [k,K] ⊂ (0,∞) we consider the coefficients

c(k,K) :=

⎧⎪⎨
⎪⎩

(K−1)2 if K < 1,
0 if k � 1 � K,
(k−1)2

K if 1 < k

(2.5)

and

C (k,K) :=

⎧⎪⎪⎨
⎪⎪⎩

(k−1)2

k if K < 1,
1
k max

{
(k−1)2 ,(K−1)2

}
if k � 1 � K,

(K−1)2 if 1 < k.

(2.6)

We have:

THEOREM 3. Assume that x, y ∈ Inv(A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1
2

ν (1−ν)c
(
m2,M2) |x|2 � 1

2
ν (1−ν)

max{M2,1}
∣∣∣(∣∣yx−1

∣∣2 −1
)

x
∣∣∣2 (2.7)

� |x|2 ∇ν |y|2− x�νy

� 1
2

ν (1−ν)
min{m2,1}

∣∣∣(∣∣yx−1
∣∣2−1

)
x
∣∣∣2
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� 1
2

ν (1−ν)C
(
m2,M2) |x|2

for any ν ∈ [0,1] .
In particular, we have

1
8
c
(
m2,M2) |x|2 � 1

8
1

max{M2,1}
∣∣∣(∣∣yx−1

∣∣2−1
)

x
∣∣∣2 (2.8)

� |x|2 ∇ |y|2− x�y

� 1
8

1
min{m2,1}

∣∣∣(∣∣yx−1
∣∣2−1

)
x
∣∣∣2

� 1
8
C

(
m2,M2) |x|2 .

Proof. If we write the inequality (2.1) for α = 1 and β = τ we get

1
2

ν (1−ν)
(τ −1)2

max{τ,1} � 1−ν + ντ − τν � 1
2

ν (1−ν)
(τ −1)2

min{τ,1} (2.9)

for any τ > 0 and for any ν ∈ [0,1] .
If τ ∈ [k,K] ⊂ (0,∞) , then max{τ,1} � max{K,1} and min{k,1} � min{τ,1}

and by (2.9) we get

1
2

ν (1−ν)
minτ∈[k,K] (τ −1)2

max{K,1} � 1
2

ν (1−ν)
(τ −1)2

max{K,1} (2.10)

� 1−ν + ντ − τν

� 1
2

ν (1−ν)
(τ −1)2

min{k,1}

� 1
2

ν (1−ν)
maxτ∈[k,K] (τ −1)2

min{k,1}
for any τ ∈ [k,K] and for any ν ∈ [0,1] .

Observe that

min
τ∈[k,K]

(τ −1)2 =

⎧⎨
⎩

(K−1)2 if K < 1,
0 if k � 1 � K,

(k−1)2 if 1 < k

and

max
τ∈[k,K]

(τ −1)2 =

⎧⎪⎨
⎪⎩

(k−1)2 if K < 1,

max
{

(k−1)2 ,(K−1)2
}

if k � 1 � K,

(K−1)2 if 1 < k.

Then
minτ∈[k,K] (τ −1)2

max{K,1} = c(k,K)
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and
maxτ∈[k,K] (τ −1)2

min{k,1} = C (k,K)

as defined by (2.5) and (2.6).
Using the inequality (2.10) we have

1
2

ν (1−ν)c(k,M) � 1
2

ν (1−ν)
(z−1)2

max{M,1} (2.11)

� 1−ν + νz− zν

� 1
2

ν (1−ν)
(z−1)2

min{k,1}
� 1

2
ν (1−ν)C (k,M)

for any real z ∈ [k,K] ⊂ (0,∞) and for any ν ∈ [0,1] .
Let u ∈ A with spectrum σ (u) ⊂ [k,K] ⊂ (0,∞) . Then by applying Lemma 3 for

the corresponding analytic functions in the right half open plane {Rez > 0} involved
in the inequality (2.11) we conclude that we have in the order of A that

1
2

ν (1−ν)c(k,K) � 1
2

ν (1−ν)
max{K,1} (u−1)2 (2.12)

� 1−ν + νu−uν

� 1
2

ν (1−ν)
min{k,1} (u−1)2

� 1
2

ν (1−ν)C (k,K)

for any ν ∈ [0,1] .
If x, y∈ Inv(A) satisfy the condition (2.2) then, by (2.3), the element u =

∣∣yx−1
∣∣2 ∈

Inv(A) and σ (u) ⊂ [
m2,M2

] ⊂ (0,∞) .
By (2.12) we then have

1
2

ν (1−ν)c
(
m2,M2) � 1

2
ν (1−ν)

max{M2,1}
(∣∣yx−1

∣∣2 −1
)2

(2.13)

� 1−ν + ν
∣∣yx−1

∣∣2−(∣∣yx−1
∣∣2)ν

� 1
2

ν (1−ν)
min{m2,1}

(∣∣yx−1
∣∣2−1

)2

� 1
2

ν (1−ν)C
(
m2,M2)

for any ν ∈ [0,1] .
If we multiply this inequality at left with x∗ and at right with x we get

1
2

ν (1−ν)c
(
m2,M2) |x|2 �1

2
ν (1−ν)

max{M2,1}x∗
(∣∣yx−1

∣∣2 −1
)2

x (2.14)
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�(1−ν) |x|2 + νx∗
∣∣yx−1

∣∣2 x− x∗
(∣∣yx−1

∣∣2)ν
x

�1
2

ν (1−ν)
min{m2,1}x∗

(∣∣yx−1
∣∣2−1

)2
x

�1
2

ν (1−ν)C
(
m2,M2) |x|2

for any ν ∈ [0,1] .
Since

x∗
∣∣yx−1

∣∣2 x = x∗
(
(x∗)−1 y∗yx−1

)
x = y∗y = |y|2 ,

x∗
(∣∣yx−1

∣∣2)ν
x = x�νy

and

x∗
(∣∣yx−1

∣∣2 −1
)2

x =
∣∣∣(∣∣yx−1

∣∣2−1
)

x
∣∣∣2

for x, y ∈ Inv(A) , then by (2.14) we get the desired result (2.7).

COROLLARY 3. Let A be a unital C∗ -algebra. Assume that x, y ∈ Inv(A) and
the constants M > m > 0 are such that (2.2) holds, then we have

1
2

ν (1−ν)c
(
m2,M2)‖x‖2 � 1

2
ν (1−ν)

max{M2,1}
∥∥∥(∣∣yx−1

∣∣2 −1
)

x
∥∥∥2

(2.15)

�
∥∥∥|x|2 ∇ν |y|2− x�νy

∥∥∥
� 1

2
ν (1−ν)

min{m2,1}
∥∥∥(∣∣yx−1

∣∣2 −1
)

x
∥∥∥2

� 1
2

ν (1−ν)C
(
m2,M2)‖x‖2

for any ν ∈ [0,1] .
In particular,

1
8
c
(
m2,M2)‖x‖2 � 1

8
1

max{M2,1}
∥∥∥(∣∣yx−1

∣∣2−1
)

x
∥∥∥2

(2.16)

�
∥∥∥|x|2 ∇ |y|2− x�y

∥∥∥
� 1

8
1

min{m2,1}
∥∥∥(∣∣yx−1

∣∣2 −1
)

x
∥∥∥2

� 1
8
C

(
m2,M2)‖x‖2 .

REMARK 2. Using the triangle inequality we have

0 �
∥∥∥|x|2 ∇ν |y|2

∥∥∥−‖x�νy‖ �
∥∥∥|x|2 ∇ν |y|2 − x�νy

∥∥∥
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and by (2.15) we get the following reverse of the second inequality in (1.9)∥∥∥(1−ν)|x|2 + ν |y|2
∥∥∥ (2.17)

�
∥∥∥∣∣yx−1

∣∣ν
x
∥∥∥2

+
1
2

ν (1−ν)
min{m2,1}

∥∥∥(∣∣yx−1
∣∣2 −1

)
x
∥∥∥2

�
∥∥∥∣∣yx−1

∣∣ν
x
∥∥∥2

+
1
2

ν (1−ν)C
(
m2,M2)‖x‖2

provided that x, y and ν are as in Corollary 3.
In particular,

1
2

∥∥∥|x|2 + |y|2
∥∥∥ �

∥∥∥∣∣yx−1
∣∣1/2

x
∥∥∥2

+
1
8

1
min{m2,1}

∥∥∥(∣∣yx−1
∣∣2−1

)
x
∥∥∥2

(2.18)

�
∥∥∥∣∣yx−1

∣∣1/2
x
∥∥∥2

+
1
8
C

(
m2,M2)‖x‖2 .

COROLLARY 4. If 0 < a, b ∈ A and 0 < k < K are such that

ka � b � Ka, (2.19)

then

1
2

ν (1−ν)c(k,K)a � 1
2

ν (1−ν)
max{K,1}

∣∣∣∣
(∣∣∣b1/2a−1/2

∣∣∣2 −1

)
a1/2

∣∣∣∣
2

(2.20)

� a∇νb−a�νb

� 1
2

ν (1−ν)
min{k,1}

∣∣∣∣
(∣∣∣b1/2a−1/2

∣∣∣2−1

)
a1/2

∣∣∣∣
2

� 1
2

ν (1−ν)C (k,K)a

for any ν ∈ [0,1] , where c(k,K) and C (k,K) are given by (2.5) and (2.6).
In particular, we have

1
8
c(k,K)a � 1

8
1

max{K,1}
∣∣∣∣
(∣∣∣b1/2a−1/2

∣∣∣2 −1

)
a1/2

∣∣∣∣
2

(2.21)

� a∇b−a�b

� 1
8

1
min{k,1}

∣∣∣∣
(∣∣∣b1/2a−1/2

∣∣∣2−1

)
a1/2

∣∣∣∣
2

� 1
8
C (k,K)a.

The proof follows by Theorem 3 applied for x = a1/2, y = b1/2, M =
√

K and
m =

√
k.
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3. Some related results

We observe that since

max{α,β}min{α,β} = αβ for α,β > 0,

then the inequality (2.1) can be written in an equivalent form as

1
2

ν (1−ν)min{α,β} (β −α)2

αβ
� (1−ν)α + νβ −α1−νβ ν (3.1)

� 1
2

ν (1−ν)max{α,β} (β −α)2

αβ

for any α, β > 0 and ν ∈ [0,1] .
We define the following coefficients associated with the interval [k,K] ⊂ (0,∞) :

d (k,K) :=

⎧⎪⎨
⎪⎩

k(K−1)2

K if K < 1,
0 if k � 1 � K,
(k−1)2

k if 1 < k

(3.2)

and

D(k,K) :=

⎧⎪⎪⎨
⎪⎪⎩

(k−1)2

k if K < 1,

max
{

K(k−1)2

k ,(K−1)2
}

if k � 1 � K,

(K−1)2 if 1 < k.

(3.3)

THEOREM 4. Assume that x, y ∈ Inv(A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1
2

ν (1−ν)d
(
m2,M2) |x|2 � 1

2
ν (1−ν)min

{
m2,1

}∣∣∣|y|−1
(
|y|2−|x|2

)∣∣∣2 (3.4)

� |x|2 ∇ν |y|2 − x�νy

� 1
2

ν (1−ν)max
{
M2,1

}∣∣∣|y|−1
(
|y|2 −|x|2

)∣∣∣2
� 1

2
ν (1−ν)D

(
m2,M2) |x|2 ,

for any ν ∈ [0,1] , where the coefficients d (·, ·) and D(·, ·) are defined by (3.2) and
(3.3).

In particular, we have

1
8
d

(
m2,M2) |x|2 � 1

8
min

{
m2,1

}∣∣∣|y|−1
(
|y|2 −|x|2

)∣∣∣2 (3.5)

� |x|2 ∇ |y|2− x�y

� 1
8

max
{
M2,1

}∣∣∣|y|−1
(
|y|2−|x|2

)∣∣∣2
� 1

8
D

(
m2,M2) |x|2 .
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Proof. If we write the inequality (3.1) for α = 1 and β = τ we get

1
2

ν (1−ν)min{τ,1} (τ −1)2

τ
� 1−ν + ντ − τν (3.6)

� 1
2

ν (1−ν)max{τ,1} (τ −1)2

τ
for any τ > 0 and for any ν ∈ [0,1] .

If τ ∈ [k,K] ⊂ (0,∞) , then max{τ,1} � max{K,1} and min{k,1} � min{τ,1}
and by (3.6) we get

1
2

ν (1−ν)min{k,1} min
τ∈[k,K]

(τ −1)2

τ
(3.7)

�1
2

ν (1−ν)min{k,1} (τ −1)2

τ
�1−ν + ντ − τν

�1
2

ν (1−ν)max{K,1} (τ −1)2

τ

�1
2

ν (1−ν)max{K,1} max
τ∈[k,K]

(τ −1)2

τ
.

Consider the function δ : (0,∞) → (0,∞) , δ (τ) = (τ−1)2

τ . Then

δ ′ (τ) =
2(τ −1)τ − (τ −1)2

τ2 =
(τ −1)(τ +1)

τ2 .

This shows that the function δ is strictly decreasing on (0,1) , strictly increasing on
(1,∞) , δ (1) = 0 and

lim
τ→0+

δ (τ) = lim
τ→∞

δ (τ) = ∞.

By taking into account all possible locations of the interval [k,K] and the number 1 we
have

min
τ∈[k,K]

δ (τ) =

⎧⎪⎨
⎪⎩

(K−1)2

K if K < 1,
0 if k � 1 � K,
(k−1)2

k if 1 < k

and

max
τ∈[k,K]

δ (τ) =

⎧⎪⎪⎨
⎪⎪⎩

(k−1)2

k if K < 1,

max
{

(k−1)2

k , (K−1)2

K

}
if k � 1 � K,

(K−1)2

K if 1 < k.

Since

min{k,1} min
τ∈[k,K]

(τ −1)2

τ
=

⎧⎪⎨
⎪⎩

k(K−1)2

K if K < 1,
0 if k � 1 � K,
(k−1)2

k if 1 < k
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and

max{K,1} max
τ∈[k,K]

(τ −1)2

τ
=

⎧⎪⎪⎨
⎪⎪⎩

(k−1)2

k if K < 1,

max
{

K(k−1)2

k ,(K−1)2
}

if k � 1 � K,

(K−1)2 if 1 < k,

then by (3.7) we have

1
2

ν (1−ν)d (k,K) � 1
2

ν (1−ν)min{k,1}(
z+ z−1−2

)
(3.8)

� 1−ν + νz− zν

� 1
2

ν (1−ν)max{K,1}(
z+ z−1−2

)
� 1

2
ν (1−ν)D(k,K)

for any z ∈ [k,K] and for any ν ∈ [0,1] .
Let u ∈ A with spectrum σ (u) ⊂ [k,K] ⊂ (0,∞) . Then by applying Lemma 3 for

the corresponding analytic functions in the right half open plane {Rez > 0} involved
in the inequality (3.8) we conclude that we have in the order of A that

1
2

ν (1−ν)d (k,K) � 1
2

ν (1−ν)min{k,1}(
u+u−1−2

)
(3.9)

� 1−ν + νu−uν

� 1
2

ν (1−ν)max{K,1}(
u+u−1−2

)
� 1

2
ν (1−ν)D(k,K)

for any ν ∈ [0,1] .
If x, y∈ Inv(A) satisfy the condition (2.2) then, by (2.3), the element u =

∣∣yx−1
∣∣2 ∈

Inv(A) and σ (u) ⊂ [
m2,M2

] ⊂ (0,∞) .
By (3.9) we then have

1
2

ν (1−ν)d
(
m2,M2) (3.10)

�1
2

ν (1−ν)min
{
m2,1

}(∣∣yx−1
∣∣2 +

(∣∣yx−1
∣∣2)−1−2

)

�1−ν + ν
∣∣yx−1

∣∣2−(∣∣yx−1
∣∣2)ν

�1
2

ν (1−ν)max
{
M2,1

}(∣∣yx−1
∣∣2 +

(∣∣yx−1
∣∣2)−1−2

)

�1
2

ν (1−ν)D
(
m2,M2)

for any ν ∈ [0,1] .
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If we multiply this inequality at left with x∗ and at right with x we get

1
2

ν (1−ν)d
(
m2,M2) |x|2 (3.11)

�1
2

ν (1−ν)min
{
m2,1

}(
x∗

∣∣yx−1
∣∣2 x+ x∗

(∣∣yx−1
∣∣2)−1

x−2 |x|2
)

�(1−ν) |x|2 + νx∗
∣∣yx−1

∣∣2 x− x∗
(∣∣yx−1

∣∣2)ν
x

�1
2

ν (1−ν)max
{
M2,1

}(
x∗

∣∣yx−1
∣∣2 x+ x∗

(∣∣yx−1
∣∣2)−1

x−2 |x|2
)

�1
2

ν (1−ν)D
(
m2,M2) |x|2

for any ν ∈ [0,1] .
Since

x∗
∣∣yx−1

∣∣2 x = |y|2 , x∗
(∣∣yx−1

∣∣2)ν
x = x�νy

and

x∗
(∣∣yx−1

∣∣2)−1
x = x∗

(
(x∗)−1 y∗yx−1

)−1
x = x∗

(
xy−1 (y∗)−1 x∗

)
x

= x∗xy−1 (y∗)−1 x∗x = |x|2 |y|−2 |x|2 ,

then by (3.11) we get

1
2

ν (1−ν)d
(
m2,M2) |x|2 (3.12)

�1
2

ν (1−ν)min
{
m2,1

}(
|y|2 + |x|2 |y|−2 |x|2−2 |x|2

)
� |x|2 ∇ν |y|2 − x�νy

�1
2

ν (1−ν)max
{
M2,1

}(
|y|2 + |x|2 |y|−2 |x|2 −2 |x|2

)
�1

2
ν (1−ν)D

(
m2,M2) |x|2 .

Observe that

|y|2 + |x|2 |y|−2 |x|2 −2 |x|2 =
(
|y|2 −|x|2

)(
1−|y|−2 |x|2

)
=

(
|y|2 −|x|2

)
|y|−2

(
|y|2−|x|2

)
=

∣∣∣|y|−1
(
|y|2−|x|2

)∣∣∣2
and by (3.12) we get the desired result (3.4).
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COROLLARY 5. Let A be a unital C∗ -algebra. Assume that x, y ∈ Inv(A) and
the constants M > m > 0 are such that (2.2) holds, then we have

1
2

ν (1−ν)d
(
m2,M2)‖x‖2 (3.13)

�1
2

ν (1−ν)min
{
m2,1

}∥∥∥|y|−1
(
|y|2−|x|2

)∥∥∥2

�
∥∥∥|x|2 ∇ν |y|2− x�νy

∥∥∥
�1

2
ν (1−ν)max

{
M2,1

}∥∥∥|y|−1
(
|y|2−|x|2

)∥∥∥2

�1
2

ν (1−ν)D
(
m2,M2)‖x‖2

for any ν ∈ [0,1] .
In particular, we have

1
8
d

(
m2,M2)‖x‖2 � 1

8
min

{
m2,1

}∥∥∥|y|−1
(
|y|2−|x|2

)∥∥∥2
(3.14)

�
∥∥∥|x|2 ∇ |y|2− x�y

∥∥∥
� 1

8
max

{
M2,1

}∥∥∥|y|−1
(
|y|2 −|x|2

)∥∥∥2

� 1
8
D

(
m2,M2)‖x‖2 .

REMARK 3. We also have the following reverse of the second inequality in (1.9)∥∥∥(1−ν) |x|2 + ν |y|2
∥∥∥ (3.15)

�
∥∥∥∣∣yx−1

∣∣ν
x
∥∥∥2

+
1
2

ν (1−ν)max
{
M2,1

}∥∥∥|y|−1
(
|y|2−|x|2

)∥∥∥2

�
∥∥∥∣∣yx−1

∣∣ν
x
∥∥∥2

+
1
2

ν (1−ν)D
(
m2,M2)‖x‖2

provided that x, y and ν are as in Corollary 3.
In particular,

1
2

∥∥∥|x|2 + |y|2
∥∥∥ �

∥∥∥∣∣yx−1
∣∣1/2

x
∥∥∥2

+
1
8

max
{
M2,1

}∥∥∥|y|−1
(
|y|2−|x|2

)∥∥∥2
(3.16)

�
∥∥∥∣∣yx−1

∣∣1/2
x
∥∥∥2

+
1
8
D

(
m2,M2)‖x‖2 .

COROLLARY 6. With the assumptions of Corollary 4 we have

1
2

ν (1−ν)d (k,K)a � 1
2

ν (1−ν)min{k,1}
∣∣∣b−1/2 (b−a)

∣∣∣2 (3.17)

� a∇νb−a�νb
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� 1
2

ν (1−ν)max{K,1}
∣∣∣b−1/2 (b−a)

∣∣∣2
� 1

2
ν (1−ν)D(k,K)a

for any ν ∈ [0,1] , where d (k,K) and D(k,K) are given by (3.2) and (3.3).
In particular,

1
8
d (k,K)a � 1

8
min{k,1}

∣∣∣b−1/2 (b−a)
∣∣∣2 (3.18)

� a∇b−a�b � 1
8

max{K,1}
∣∣∣b−1/2 (b−a)

∣∣∣2
� 1

8
D(k,K)a.

For an interval [k,K] , define the coefficients

f (k,K) :=

⎧⎪⎨
⎪⎩

(K−1)2 if K < 1,
0 if k � 1 � K,
(k−1)2

k if 1 < k

(3.19)

and

F (k,K) :=

⎧⎪⎪⎨
⎪⎪⎩

(k−1)2

k if K < 1,

max
{

(k−1)2

k ,(K−1)2
}

if k � 1 � K,

(K−1)2 if 1 < k.

(3.20)

THEOREM 5. Assume that x, y ∈ Inv(A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

1
2

ν (1−ν) f
(
m2,M2) |x|2 � |x|2 ∇ν |y|2 − x�νy (3.21)

� 1
2

ν (1−ν)F
(
m2,M2) |x|2

for any ν ∈ [0,1] , where f (·, ·) and F (·, ·) are defined in (3.19) and (3.20).
In particular, we have

1
8

f
(
m2,M2) |x|2 � |x|2 ∇ |y|2 − x�y � 1

8
F

(
m2,M2) |x|2 . (3.22)

Proof. From (2.9) we get

1
2

ν (1−ν)ψ (τ) � 1−ν + ντ − τν � 1
2

ν (1−ν)Ψ(τ) (3.23)

for any τ > 0 and for any ν ∈ [0,1] , where ψ (τ) := (τ−1)2

max{τ,1} and Ψ(τ) := (τ−1)2

min{τ,1} .
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Observe that

ψ (τ) =

⎧⎪⎨
⎪⎩

(τ −1)2 if τ ∈ (0,1) ,

(τ−1)2

τ if τ ∈ [1,∞)

and

Ψ(τ) =

⎧⎪⎨
⎪⎩

(τ−1)2

τ if τ ∈ (0,1) ,

(τ −1)2 if τ ∈ [1,∞).

We observe that the functions ψ and Ψ are strictly decreasing on (0,1) and strictly
increasing on [1,∞) with ψ (1) = Ψ(1) = 0.

If we consider all possible locations of the interval [k,K] and the number 1 then
we get

min
τ∈[k,K]

ψ (τ) =

⎧⎨
⎩

ψ (K) if K < 1,
0 if k � 1 � K,
ψ (k) if 1 < k

= f (k,K)

and

max
τ∈[k,K]

Ψ(τ) =

⎧⎨
⎩

Ψ(k) if K < 1,
max{Ψ(k) ,Ψ(K)} if k � 1 � K,
Ψ(K) if 1 < k

= F (k,K) ,

then by (3.23) we get

1
2

ν (1−ν) f (k,K) � 1−ν + ντ − τν � 1
2

ν (1−ν)F (k,K) (3.24)

for any τ ∈ [k,K] and for any ν ∈ [0,1] .
By making use of a similar argument as in the proof of Theorem 4 we deduce the

desired result (3.21).

REMARK 4. For 0 < k � 1 � K we have from (2.6), (3.3) and (3.20) that

C (k,K) =
1
k

max
{
(k−1)2 ,(K−1)2

}
,

D(k,K) = max

{
K (k−1)2

k
,(K−1)2

}

and

F (k,K) = max

{
(k−1)2

k
,(K−1)2

}
.

We observe that
F (k,K) � C (k,K) , D(k,K)

for 0 < k � 1 � K , which means that the upper bound for the difference |x|2 ∇ν |y|2 −
x�νy provided by (3.21) is better than the corresponding upper bounds from (2.7) and
(3.4).
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COROLLARY 7. With the assumptions of Corollary 5 we have

1
2

ν (1−ν) f
(
m2,M2)‖x‖2 �

∥∥∥|x|2 ∇ν |y|2 − x�νy
∥∥∥ (3.25)

� 1
2

ν (1−ν)F
(
m2,M2)‖x‖2

for any ν ∈ [0,1] .
In particular, we have

1
8

f
(
m2,M2)‖x‖2 �

∥∥∥|x|2 ∇ |y|2 − x�y
∥∥∥ � 1

8
F

(
m2,M2)‖x‖2 . (3.26)
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