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INEQUALITIES FOR WEIGHTED GEOMETRIC MEAN
IN HERMITIAN UNITAL BANACH x-ALGEBRAS
VIA A RESULT OF CARTWRIGHT AND FIELD

S. S. DRAGOMIR

(Communicated by F. Kittaneh)

Abstract. Consider the quadratic weighted geometric mean
2
—11Vv
x®vyi= [y ||
for invertible elements x, y in a Hermitian unital Banach *-algebra and real number v . In this
paper, by utilizing a result of Cartwright and Field, we obtain various upper and lower bounds
for the positive difference
2 2
(L=V) X"+ v ]yI" = 2By,

where v € [0,1], under various assumptions for the elements involved. Applications for the
classical weighted geometric mean

atyb:=a'/? (a’l/zba’l/z) v

of positive elements a, b that satisfy the condition 0 < ka < b < Ka for certain numbers 0 <
k < K, are also given.

1. Introduction

Let A be a unital Banach x-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has real
spectrum o (a), namely o (a) C R.

In what follows we assume that A is a Hermitian unital Banach x-algebra.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00). We say that a is positive and write @ > 0 if @ > 0 and 0 ¢ o (a). Thus
a > 0 implies that its inverse a~! exists. Denote the set of all invertible elements of
A by Inv(A). If a,b € Inv(A), then ab € Inv(A) and (ab)~' = b 'a~'. Also, saying
that @ > b means that a — b > 0 and, similarly a > b means that a —b > 0.

The Shirali-Ford theorem asserts that [14] (see also [2, Theorem 41.5])

a*a>0forevery a € A. (SF)
Based on this fact, Okayasu [13], Tanahashi and Uchiyama [15] proved the following
fundamental properties (see also [7]):
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(1) If a, be A, thena >0, b >0 imply a+b > 0 and o > 0 implies aa > 0;
@) If a, be A, thena >0, b >0 imply a+b > 0;

(iii) If a, b € A, theneithera>b >0 or a > b > 0 imply a > 0;

(iv) If a > 0, then a~! > 0;

(v) If ¢ >0, then 0 < b < a if and only if cbc < cac, also 0 < b < a if and only if
che < cac;,

(vi) f0<a< 1, then 1 <al;

(vii) f 0<b<a,then 0<a ' <b~ ! alsoif 0<b<a,then0<a ! <b L

Okayasu [13] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p€10,1] then @ > b (a > b) implies that a? > b” (a? > bP).

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ 0 (a) and the fact that ¢ (a) is a compact subset of
C implies that inf{z:z€ o (a)} >0 and sup{z:z € 0 (a)} < . Choose ¥ to be close
rectifiable curve in {Rez > 0}, the right half open plane of the complex plane, such
that o (a) Cins(y), the inside of y. Let G be an open subset of C with ¢ (a) C G. If
f:G — C is analytic, we define an element f (a) in A by

fla) = Zim,/yf(z) (z—a) 'dz.

It is well known (see for instance [4, pp. 201-204]) that f (a) does not depend on the
choice of y and the Spectral Mapping Theorem (SMT)

o(f(a))=f(o(a))

holds.
For any oo € R we define for a € A and a > 0, the real power
a” = L/ZO‘ (z—a) 'dz
Co2mil), 7

where z% is the principal o -power of z. Since A is a Banach x-algebra, then a* € A.
Moreover, since z% is analytic in {Rez > 0}, then by (SMT) we have

0(a”)=(0(a)” ={":z€ 0 (a)} C(0,e).
Following [7], we list below some important properties of real powers:

(viii) If 0<a €A and o € R, then a* € A with a®* > 0 and (a2)1/2 =a, [15, Lemma
ol;
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(ix) f0<acAand a, B €R, then a®aP = a**B;
x) f0<acA and a € R, then (a"‘Y1 = (a’l)a =a %
(xi) If0<a, beA, a, B €R and ab = ba, then a®bP = pPa®.
We define the following means for v € [0, 1], see also [7] for different notations:
aVyb:=(1—-vVv)a+vb,a,beA (A)
the weighted arithmetic mean of (a,b),
alvh:=((1-v)a ' +vb )" a4, b>0 (H)

the weighted harmonic mean of positive elements (a,b) and
aftyb = a'l? <a_1/2ba_1/2>va1/2 (G)

the weighted geometric mean of positive elements (a,b). Our notations above are moti-
vated by the classical notations used in operator theory. For simplicity, if v = %, we use
the simpler notations aVb, a!b and afb. The definition of weighted geometric mean
can be extended for any real v.

In [7], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach x-algebra:

(xii) If 0 <a, b €A, then a!lb=bla and affb = biia;
(xiii) If 0 <a, b€ A and ¢ € Inv(A), then

c*(alb)c = (c*ac)! (c*be) and ¢* (ath) c = (c*ac) t(c*be);
(xiv) f 0< a, b €A and v € [0,1], then

(alvb) ' = (a)Vy (b71) and (a )ty (b71) = (ativb) .

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real num-
bers, B. Q. Feng obtained in [7] the following inequality between the weighted means
introduced above:

aVyb > aftyb > alyb (HGA)

forany 0 <a, be A and v € [0,1].
In [15], Tanahashi and Uchiyama obtained the following identity of interest:

LEMMA 1. If 0 <c, d and A is a real number, then

A-1
(a’cd))L =dc'/? <c1/2d2c1/2> 4. (L.1)
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Using this equality we can prove the following fact [6]:

PROPOSITION 1. Forany 0 < a, b € A we have
bi—va =afyb (1.2)
for any real number v.

In [6] we introduced the quadratic weighted mean of (x,y) with x, y € Inv(A)
and the real weight v € R, as the positive element denoted by x@®),y and defined by

XOyy :=x" ((x*)_ly*y)fl)vx =x" }y)fl }zvx: “yx*1 }Vx‘z. (S)

When v = 1/2, we denote x®); ;v by x®y and we have

@y =x () ) x e = [

We can also introduce the 1/2-quadratic weighted mean of (x,y) with x, y €
Inv(A) and the real weight v € R by

V2= (@) = ‘|yx‘1|vx’. (1/2-S)
Correspondingly, when v = 1/2 we denote x®Y 2y and we have
X®'/2y = )’yx_l’l/zx) '
The following equalities hold [6]:

PROPOSITION 2. Forany x, y € Inv(A) and v € R we have

(®wy) " =) O ()
and
(x_l) ®y (y_l) = (x*®vy*)7l .
If we take in (S) x = «'/? and y= b'/? with a, b > 0 then we get
a1/2©vb1/2 =atiyb

forany v € R that shows that the quadratic weighted mean can be seen as an extension
of the weighted geometric mean for positive elements considered in the introduction.

Let x, y € Inv(A). If we take in the definition of ", the elements a = |x|* > 0
and b = |y]> > 0 we also have for real v

2 2 —1 2 -1} TRl SILE
R e e R T e R [ P

It is then natural to ask how the positive elements x®yy and |x|*#y |y|* do com-
pare, when x, y € Inv(A) and v € R?

In [6] we proved the following lemma that provides a slight generalization of
Lemma 1.
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LEMMA 2. If0<c, d € Inv(A) and A is a real number, then
A 1/2 (121412 .1/2 Al 1/2 5%
(ded®)" =dc <c |d|” ¢ ) c/=d*. (1.3)

REMARK 1. The identity (1.3) was proved by. T. Furuta in [8] for positive opera-
tor ¢ and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc'/2.

The following fundamental fact that connects the quadratic weighted geometric
mean (S, to the weighted geometric mean f, holds [6]:

THEOREM 1. If x, y € Inv(A) and A is a real number, then

Oy =[xty |y (1.4)

Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and for
the interval I C (0,0) assume that f (z) >0 forany z € I. If u € A such that o (1) C I,
then by (SMT) we have

o(f(u)) =f(o@)CfI)C[0,)

meaning that f («#) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A.

LEMMA 3. Let f(z) and g(z) be analytic in the right half open plane {Rez >0}
and for the interval I C (0,00) assume that f(z) > g(z) for any z € I. Then for any
u €A with o (u) C I we have f(u) > g(u) in the order of A.

We have the following inequalities between means [6]:
THEOREM 2. Forany x, y € Inv(A) and v € [0,1] we have

X2V [y)* = 2@y = 3Pl [y (1.5)

In particular,
X2V > 2@y > x|y (1.6)

We can define the weighted means for v € [0, 1] and the elements x, y € Inv(A)
and v € [0,1] by

1/2 1/2
W2y (WP Y P) = (= )P+ v bP)

and 1/2 1/2
i yi= (WP P) = (A=)l v )
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For v = 1/2 we consider

2y (V) 2 ()

and
a2y = () = VA (2 )

COROLLARY 1. Let A be a Hermitian unital Banach x-algebra with continuous
involution. Then for any x, y € Inv(A) and v € [0,1] we have

VY =20y = (1.7)
In particular, we have
xV1/2y>x®l/2y>x!1/2y. (1.8)

Recall that a C*-algebra A is a Banach x-algebra such that the norm satisfies the
condition

|a*a|| = ||a]|* forany a € A.

If a C*-algebra A has a unit 1, then automatically ||1]| = 1.
It is well know that, if A is a C*-algebra, then (see for instance [12, 2.2.5 Theo-
rem])

b > a > 0 implies that ||b]| > ||a]|.

COROLLARY 2. Let A be a unital C*-algebra. Then for any x, y € Inv(A) and
v € [0,1] we have

2
A=) P+ vyl = | =P +vbP| = [ a9

In particular,

1 1 _1y1/2 |2
5 (I 151 ) > 5 b+ 2| > |l (1.10)

Motivated by the above facts, in this paper we obtain various upper and lower
bounds for the positive difference

(L= V) al® +v P —x®v.

where v € [0, 1], under various assumptions for the elements involved. Applications
for the classical geometric mean aflyb :=a'/? (a='/2ba="/?) Y a!/2 of positive elements
a, b that satisfy the condition 0 < ka < b < Ka for certain numbers 0 < k < K, are
also given.
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2. Refinements and reverses

We have the following inequality that provides a refinement and a reverse for the
celebrated scalar Young’s inequality

2 2
%v(l—v)nffx{;)ﬁ} (1-v)a+vB—al” Vﬁ"<1v(1 v)% (2.1)

forany a, B >0 and v € [0,1].
This result was obtained in 1978 by Cartwright and Field [3] who established a
more general result for n variables and gave an application for a probability measure

supported on a finite interval. For other similar inequalities, see [1], [5] and [9, 10, 1 1].
Assume that x, y € Inv(A) and the constants M > m > 0 are such that

[\

M=yt =m. (2.2)
The inequality (2.2) is equivalent to
) -
M? > |yx l| (x*)” \y\z > m?. 2.3)
If we multiply at left with x* and at right with x we get the equivalent relation

M2 x> = |y = m? 2. (2.4)

For [k,K] C (0,°0) we consider the coefficients

(K—1)?ifK <1,
c(kK) = { 0ifk < T<K, 2.5)
W51 <k
and )
B if g < 1,
C(k,K) = %max{(k—l)z,(l(—l)z} ifk<1<K, (2.6)
(K—1)%if 1 <k.
We have:

THEOREM 3. Assume that x, y € Inv(A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

—v(1=v)c(m?,M2) |x] \5% ( *1|2—1>x’2 2.7)
\\x\ Vy |}’| —x®vy
cLvd-v) <’yx_1’2_1>x)2

2 min{m?2,1}
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1
<Sv(L=v)C(m* M) x[*
forany v €0,1].
In particular, we have
Loy 2« L 1 ‘ -1)2 2
Ze(miM < ( —1) ’ 2.8
SC(m ) 8 max {M?2,1} | * 28)
< X2V Iy =@y
1 1 —112
<3 1)q
8 min {m?2,1} ‘(}yx | .
1
< §C (mz,Mz) |)c|2

Proof. If we write the inequality (2.1) for ¢ =1 and B = T we get

(1—1)°

min{7,1}

(r—1)°

— 2 _L1l-v+vr—1'<
max {7,1} ~ + h

%v(l—v) v(l—v) (2.9)

N —

forany 7 > 0 and for any v € [0,1].
If 7€ [k,K] C (0,00), then max{7,1} < max{K,1} and min{k,1} < min{7,1}
and by (2.9) we get

. 2 2
1 min ey g (T—1) 1 (z—1)
—v(l- : <=v(l-v)——2 2.1
V(=) — Xk 3V V) TR T 2.10)
<l—-v+vr—1¥
1 (t—1)*
< = ) =7
S VUV e
< lv(l— )maxre[k,K] (T—l)2
=2 min {k, 1}

forany 7 € [k,K] and forany v € [0,1].
Observe that
(K—1)?ifK<1,
min (1—1)?={ 0ifk < 1<K,

velik] (k—1)%if 1 <k
and
(k=1 ifK <1,
max (7—1)% = max{(k—l)z,(l(—l)z} ifk<1<K,
te(k,K] 5.
(K—1)ifl <k.
Then

minge g (7— 1)2
max{K,1}

=c(k,K)
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and )
maxce k) (T—1)
=C(k,K
min{k, 1} (k,K)
as defined by (2.5) and (2.6).
Using the inequality (2.10) we have
1 1 (z—1)?
—v(l- kM) < zv(l—v) ————— 2.11
V=Vl M) < v =v) o T @10
<l—-v+4vz—7"
1 (z—1)°
< = N VA D
h 2v( V) min {k, 1}
1
<§v(1—v)C(k,M)

for any real z € [k, K] C (0,°0) and for any v € [0,1].

Let u € A with spectrum o (1) C [k,K] C (0,°). Then by applying Lemma 3 for
the corresponding analytic functions in the right half open plane {Rez > 0} involved
in the inequality (2.11) we conclude that we have in the order of A that

%v(l—v)c(k,K)é%%
<l—v+vu—uY
Lv(l—v)
2 min{k,1}

1v(l—v)C(ng)

(u—1)> (2.12)

N

(u—1y

N
)

forany v € [0,1].

If x, y € Inv (A) satisfy the condition (2.2) then, by (2.3), the element 1 = [yx ™" ’2 €
Inv(A) and o (1) C [m*,M?] C (0,c).

By (2.12) we then have

1 s o 1L v(l—v) 12 2

<l—-v+v }yxil}z— ny,l}z)"

L v(l—v) ) 2
gEmin{sz} (’yx L _1>

< sv(1—V)C (m*,M?)

N —

forany v € [0,1].
If we multiply this inequality at left with x* and at right with x we get

v(l—v) *<|yx_1’2_1>2x 2.14)

1 1
“v(l—v)e(mE M) P s e Y
3V (1= V)e(m’, M%) I 2 max (M2,1}
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<(1=v)[x* 4+ vx* ’yx_llzx—x* <|yx_1’2>vx

<17v(1 —V) x* (|y)c_1|2 — l)zx

“2min{m?2,1}

%v(l —v)C (m*,M?) |x]?
forany v € [0,1].
Since
X |y)c_l |2x =x* ((x*)fly*yx_l) x=y'y= |y|2 ,
X (lyx‘llz)vx:x@)vy
and

x* (}yxil}2 — 1>2x= ’<|yx71|2 — 1>x’2

for x, y € Inv(A), then by (2.14) we get the desired result (2.7).

COROLLARY 3. Let A be a unital C*-algebra. Assume that x, y € Inv(A) and
the constants M > m > 0 are such that (2.2) holds, then we have

~v(1—v)e(m*M?) |x|* < ZWH( 71|2_1>tz

<H‘x‘ Vv|y| —x®vy

s ;m:nin_ﬂ 1} H( 71}2_1>XH2

v(1—v)C (m* M?)[|x|?

<

D =

forany v €0,1].
In particular,

¢ (m? M%) x| < x|

8 max{M2 1} H(
S ERLIEEC

cl_ 1
S 8 min{m?, 1} H(’y’“

1
< gc(m2,M2) )12

REMARK 2. Using the triangle inequality we have

0.< |12 Vy || - I@uyl < ||V b2 — 2@y

=0
)

(2.15)

(2.16)
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and by (2.15) we get the following reverse of the second inequality in (1.9)
(= vyl v 2.17)

<H|yx71}va2 ;m‘:n{m2 1}”( 71} _1)

2
<[l 4 Sy vic w2y a2

2

provided that x, y and v are as in Corollary 3.
In particular,

1 2 21 1 12 2
i1 R B R Iyl [l RO E I
2
< b2+ g o a2 P

COROLLARY 4. If0<a, b€ A and 0 <k <K are such that

ka < b < Ka, (2.19)

then

“v(l—v)e(k,K)a lM’(‘bl/za_l/zr—l)al/z ’ (2.20)

= 2max{K, 1}
2
(‘b1/2 71/2| >a1/2

<aVyb—atyb
1
<zv(l—=Vv)C(k,K)a

1 v(l—v)
= 2min{k, 1}
2

forany v €(0,1], where ¢ (k,K) and C (k,K) are given by (2.5) and (2.6).
In particular, we have

<1 1 12 172 1/22
(k K)a gmax{K l}’(‘b “ ) —1>a

< aVb—atb

11 1241/ pf
<l 1/2,-1/2 1/2
= 8 min {k, l}'(‘b ’ )a

2.21)

The proof follows by Theorem 3 applied for x = a'/2, y = b'/2, M = /K and
m=+k.
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3. Some related results

We observe that since
max {o, B} min{o,B} =off for o, >0,
then the inequality (2.1) can be written in an equivalent form as

(B—o)’

o <(A=vya+vB—oal~vBY (3.1)

(B o)
op

—v(1—=v)min{o, B} ———

v(l—v)max{a,p} ———

NI'—‘

forany o, >0 and v €[0,1].
We define the following coefficients associated with the interval [k, K] C (0,e0) :

MK ik <1,
d(k,K):={ 0ifk< 1<K, (3.2)
W1 < i
and
1k <,
D(kK) 1= § max KIS (k—172} itk < 1<K, (3.3)
(K—1)%if 1 <k

THEOREM 4. Assume that x, y € Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

Ly = v)d (M) i < %v(l —v)min {n?, 1} |lp1 ™" (191> = ) ‘2 (3.4)

2
< |x|2Vv ‘y‘z —x®vy
2
v (1= vymax (M2, 1} ™ (b = )|

v(1—v)D (m* M?) |x,

N N
N = N =

Sfor any v € [0,1], where the coefficients d (-,-) and D(-,-) are defined by (3.2) and
(3.3).
In particular, we have

l 2 g2\ 2 1 . 2 -1 2 2 2
5 (2 M2) | < gmin {1 117 (0 = 12)| (3.5)

<KPVP—2©y
2
max (M2, 1}y (b = ) |

D(mz,Mz) x|

<

N
0| — 00| —
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Proof. If we write the inequality (3.1) for ¢ =1 and B = T we get

(r-1)°
T

<l-v+vr—1Y (3.6)

(1-1)?
T

%v(l —v)min{7,1}

< zv(l—v)max{r,1}

N =

forany 7 >0 and for any v € [0,1].
If 7€ [k,K] C (0,00), then max{7,1} < max{K,1} and min{k,1} < min{7,1}
and by (3.6) we get

2
%v(l — V)min{k 1} min &=V 3.7)

T€(k,K] T

2
g%v(l_v)min{m}@

<l—-v+vr—1¥

1 (1—1)
<zv(l—v K1

5V (1= v)max{K,1} ~—

1 (t—1)*
<zv(l—v K, 1 .
V(1 - vma (K1} e T

(==1)
T

— — J— 2 —
6’(1’):2(T 1)1;-2 (t—1) :(T 1i§T+1)~

Consider the function 6 : (0,00) — (0,00), §(7) = . Then

This shows that the function § is strictly decreasing on (0, 1), strictly increasing on
(1,00), 6(1) =0 and
11—1>I(I)1+6 ()= 1151305 (1) = co.
By taking into account all possible locations of the interval [k, K] and the number 1 we
have
KA i < 1,
min 8(7) =< 0if k<1 <K,

Telk,K] 2
BT 5p 1 <k
and )
Uik < 1,
max 0 (7) = { max (k71)27 (Kfl)z} ifk<1<K,
re[k.K] ) ." K
—x—if L <k
Since ,
(r- 17 ME ik <1,
min{k, 1} IIE]:III{] = 0ifk <1<K,
ek,

2
E7 i1 <k
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and

2
, k<1,

7—1 2
max{K,l}Trél[g)Ii(]( . L _ max{@,m—l)z} ifk<1<K,
(K—1)%if 1 <k,

then by (3.7) we have

1 1
SV(=v)d(kK) < 5v(1—v)min{k,l}(erz*l—2) (3.8)
<l—-v+vz—7"
1
< Ev(l—v)max{K7l}(z+z71—2)
1
< Ev(l—v)D(ng)

for any z € [k,K] and for any v € [0,1].

Let u € A with spectrum o (u) C [k,K] C (0,e0). Then by applying Lemma 3 for
the corresponding analytic functions in the right half open plane {Rez > 0} involved
in the inequality (3.8) we conclude that we have in the order of A that

1 1
SV(=v)d (kK) < Ev(1—v)min{k,l}(u+u—1—2) (3.9)
<l—-v+vu—uY
1
< Ev(l—v)max{K,l}(u—Fu*l—Z)
1
< Ev(l—v)D(k,K)

forany v € [0,1].

If x, y € Inv(A) satisfy the condition (2.2) then, by (2.3), the element u = | yx~ ! }2 €
Inv(A) and o () C [m*,M?] C (0,e).

By (3.9) we then have

L) (b (3.10)
v(1—v)min {m?,1} <|yxl|2+ (}yx*l|2)_1 —2)
<I—vv - <|y’“—1|2>v

v (1= v)max {M2, 1} <|yx_1|2+ (Iyx‘1|2)_1 —2)

v(1—Vv)D(m* M?)

<

= N =

<

<

N = N =

forany v € [0,1].
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If we multiply this inequality at left with x* and at right with x we get

%v(l —v)d (m*,M?) |x* (3.11)
<%v(1 — v)min {m? 1} (x* |yx_1|2x+x* (}yx_1}2>_1x—2|x|2>
<(1=v) |xf + vx* ! |2x—x* (’yx”’z)vx
<%v(1 —v)max {M*1} (x* |yx_1|2x+x* (’yx_1|2>lx—2|x|2)
1o 2 112 142
<2v(1 v)D (m*,M?) |x|

forany v € [0,1].
Since
12 12\
w ! Pr= P (| ') 3 =x®u

and

-1

X (lyx_llz)_lx —x () ) x=x (07 07 )

= x'xy () =l ] 7 P
then by (3.11) we get
1
V(- v)d (m*,M?) |x|? (3.12)

1 . 2 2001-2 12 2
<3V =v)min {1} (I + P [y] 7 e — 2P
<|X|2Vv|y|2_)€<@vy

2 2000212 2
<5v (1= vymax {M2 1} (I + [ [y] 2 > =2 o)

N ==

<zv(l-v)D (mz,M2) x|

Observe that
o e ]2 ol = 20 = (= ) (1= b2 0?)
= (I = 1) 172 (o1 = vP?)
= 7 (P~ )|

and by (3.12) we get the desired result (3.4).
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COROLLARY 5. Let A be a unital C*-algebra. Assume that x, y € Inv(A) and
the constants M > m > 0 are such that (2.2) holds, then we have

SV (L= v)d (2, 12) [P (3.13)

<%v(1 —vymin {m?, 1} [y (IvP? = +/?) Hz

<H|X|2Vv > — x®vy

<%v(l —vymax M2, 1} [ 17! (b = ) |

<3v - VID (2 o

forany v € [0,1].
In particular, we have
(3.14)

1 | -
g (" M%) []* < g min {m?, 1} Hlyl (= ) H
<[PV -y
1 _ 2
< gmax {2 1} o) (b - 1) |

1
< 3D (. 22%) .

REMARK 3. We also have the following reverse of the second inequality in (1.9)
2 2
|a= vy +vivp (3.15)
1|V 2 1 2 -1 2 2 B
<l v @ = vymax a2, 1)t (=
Y 21 2 a2 2
< |yx | X +§v(l—v)D(m M )||x||

provided that x, y and v are as in Corollary 3.
In particular,

] < o2 g a1y i (b))
< [l 2 g2 ) .

COROLLARY 6. With the assumptions of Corollary 4 we have

%v(l “V)d(kK)a< %v(l ~V)min{k,1} )b—l/z (b—a)) (3.17)

<aVyb—atyb
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2
% (1— v)max {K, 1})19—1/2 b a)‘
< % v(l—=v)D(k,K)a
forany v €(0,1], where d (k,K) and D (k,K) are given by (3.2) and (3.3).
In particular,
1 2 2
d(k K)a < g min{k, 1}‘1) V2 (p - a)‘ (3.18)

2
<aVb—atb < gmax{K,l} ‘b*1/2 (b—a)‘

1

For an interval [k,K], define the coefficients

(K—1)?ifK <1,
fkK) = q 0ifk<ISK, (3.19)
CL 1 <k

and

2
Uik < 1,
2
F (k,K) = max{ﬁ” ,(K_1>2} ifk<1<K, (3.20)
(K—1)?if 1 <k.

THEOREM 5. Assume that x, y € Inv (A) and the constants M > m > 0 are such
that (2.2) is true. Then we have the inequalities

V(1 =) f(m*M?) x* < [xPVy [y — 2@y (3.21)

< sv(1—V)F (m*,M?) |x?

1
2
forany v €[0,1], where f(-,-) and F (-,-) are defined in (3.19) and (3.20).

In particular, we have

1 1
of (2 M2) |32 < 82V pI* —x®y < g F (m?,M?) x]*. (3.22)

Proof. From (2.9) we get

v(l—v)¥(1) (3.23)

I\JI'—‘

v(l-viy(r)<1—-v+vr—1"

o (12 (=12
forany 7> 0 and forany v € [0,1], where y(7) := ——~= and ¥ (1) := AV

max{7,1}
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Observe that
(t—1)?ifr€(0,1),
y(7)= ,
L if 7 € [1,00)
and ,
itz (0,1),
Y(7)=

(t—1)% if T € [1,00).

We observe that the functions y and W are strictly decreasing on (0, 1) and strictly
increasing on [1,e0) with y(1) =¥ (1) =0.

If we consider all possible locations of the interval [k, K| and the number 1 then
we get

v (K)ifK <1,
min (1) =4 0ifk<1<K, =f(kK)
relkk] w(k) if 1 <k
and
W (k) ifK <1,
max ¥ (7) =< max{¥(k),¥(K)} ifk<1<K, =F(kK),
relkk] Y(K)if 1 <k

then by (3.23) we get

v(1=V)F (k,K) (3.24)

N =

1
Ev(l —V)f(,K)<1—v+vT—1"<
forany 7 € [k,K] and forany v € [0,1].
By making use of a similar argument as in the proof of Theorem 4 we deduce the

desired result (3.21).

REMARK 4. For 0 < k <1 < K we have from (2.6), (3.3) and (3.20) that

C(k,K) = %max{(k— 12, (K — 1)2},

D(k,K) = maX{K(kT_l)z,(K— 1)2}

and

F(kK) = max{ (k_kl)27(K— 1)2}.

We observe that
F (k,K) <C(k,K), D(k.K)

for 0 < k < 1 < K, which means that the upper bound for the difference |x|>Vy, [y|* —
x®yy provided by (3.21) is better than the corresponding upper bounds from (2.7) and
(3.4).
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COROLLARY 7. With the assumptions of Corollary 5 we have

V=V £ (2 12) [l < [PV b~ x| (3.25)
< %v(l V) F (M)
Sforany v €[0,1].
In particular, we have
& (202 [P < PO x| < gF (P m2) [P, 326)
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