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AN INDEFINITE RANGE INCLUSION THEOREM FOR TRIPLETS

OF BOUNDED LINEAR OPERATORS ON A HILBERT SPACE

MICHIO SETO ∗ AND ATSUSHI UCHIYAMA

(Communicated by V. V. Peller)

Abstract. We study triplets of Hilbert space operators satisfying a certain inequality. A range
inclusion theorem with norm estimate for those triplets is given with the language of Kreı̆n space
geometry and de Branges-Rovnyak space theory.

1. Introduction

In Wu-Seto-Yang [10], we encountered the family of triplets consisting of Toeplitz
operators whose twisted sum

Tϕ1T
∗

ϕ1
+Tϕ2T

∗
ϕ2
−Tϕ3T

∗
ϕ3

is an orthogonal projection. Those triplets are closely related to the Hilbert module
structure of the Hardy space over the bidisk (see Example 2.2). In this paper, we would
like to focus on those triplets with some generalization. More precisely, we consider
bounded linear operators T1 , T2 and T3 on a Hilbert space H , and assume that triplet
(T1,T2,T3) satisfies the following operator inequality:

0 � T1T
∗
1 +T2T

∗
2 −T3T

∗
3 � I. (1.1)

Let T(H ) denote the set of triplets satisfying (1.1) on a Hilbert space H . For any
triplet (T1,T2,T3) in T(H ) , we set

T = (T1T
∗
1 +T2T

∗
2 −T3T

∗
3 )1/2.

In order to study the structure of T , we introduce de Branges-Rovnyak spaces. Let
M (A) denote the de Branges-Rovnyak space induced by a bounded linear operator A ,
that is, M (A) is the Hilbert space consisting of all vectors in ranA with the pull-back
norm

‖Ax‖M (A) = ‖P(kerA)⊥x‖H = min{‖y‖H : Ay = Ax},
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where P(kerA)⊥ is the orthogonal projection from H onto (kerA)⊥ . Then, applying de
Branges-Rovnyak space theory to (1.1), it is immediate that

M (T ) ↪→ M (T )+M (T3) = M (
√

T1T ∗
1 +T2T ∗

2 ) = M (T1)+M (T2).

Thus, M (T ) can be captured as a Hilbert space embedded contractively into M (T1)+
M (T2) . However, in this context, it is rather vague how T3 is involved with M (T ) .
The purpose of this paper is to study the structure of M (T ) from this point of view,
and to explore hidden inner product spaces behind the rather formal identity

M (T ) = M (T1)+M (T2)−M (T3).

As the main theorem of this paper, we will show the following: for any vector u
in M (T ) , there exists some vector zε = (z1(ε),z2(ε),z3(ε))t in H ⊕H ⊕H such
that:

(i) T1z1(ε)+T2z2(ε)−T3z3(ε) → u (ε → 0) in the strong topology of H ,

(ii) 0 � ‖z1(ε)‖2
H +‖z2(ε)‖2

H −‖z3(ε)‖2
H ↑ ‖u‖2

M (T) (ε ↓ 0) ,

where ‖u‖M (T) denotes the norm of u in M (T ) . We would like to emphasize that the
above norm estimate is nontrivial, and this result might be written as follows:

M (T ) ↪→ M (T1)+M (T2)−M (T3).

This paper is organized as follows. In Section 2, by giving examples from operator
theory on Hardy spaces, it is shown that T(H ) is nontrivial. In Section 3, we study
inner product spaces induced by triplets in T(H ) , and prove the main theorem (The-
orem 3.1). In Section 4, we investigate the local structure of range spaces of operators
appearing in Section 3. In Section 5, we consider an indefinite Toeplitz corona problem.

2. Examples

Trivial examples of triplets in T(H ) are easily obtained from Douglas’ range
inclusion theorem. We shall see that T(H ) is nontrivial. Let H2 be the Hardy space
over the open unit disk D in the complex plane, and let H∞ be the Banach algebra
consisting of all bounded analytic functions on D . For any function ϕ in H∞ , Tϕ
denotes the Toeplitz operator with symbol ϕ .

EXAMPLE 2.1. We choose ϕ1 and ϕ2 from H∞ satisfying ‖(
Tϕ1 Tϕ2

)‖ � 1.
Then this norm inequality is equivalent to that 0 � Tϕ1T

∗
ϕ1

+ Tϕ2T
∗

ϕ2
� I . Further, we

choose ψ1 and ψ2 from H∞ satisfying∥∥∥∥
(

Tψ1

Tψ2

)∥∥∥∥ � 1.

Then, setting

ϕ3 = ϕ1ψ1 + ϕ2ψ2 =
(
ϕ1 ϕ2

)(
ψ1

ψ2

)
,
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by the generalized Toeplitz-corona theorem (see Theorem 8.57 in Agler-McCarthy [1]),
we have that

0 � Tϕ1T
∗

ϕ1
+Tϕ2T

∗
ϕ2
−Tϕ3T

∗
ϕ3

� Tϕ1T
∗

ϕ1
+Tϕ2T

∗
ϕ2

� I.

Our study has been motivated by the next example.

EXAMPLE 2.2. (Wu-Seto-Yang [10]) We consider the tensor product Hilbert space
H2⊗H2 , which is isomorphic to the Hardy space over the bidisk D2 . Let z and w de-
note coordinate functions, and let Tz and Tw be Toeplitz operators with symbols z and
w , respectively. We note that Tz and Tw are doubly commuting isometries on H2⊗H2 .
In fact, Tz and Tw are identified with Tz ⊗ I and I ⊗Tw , respectively. Now, since or-
thogonal projections TzT ∗

z and Tw(I−TzT ∗
z )T ∗

w are commuting,

TzT
∗
z +TwT ∗

w −TzwT ∗
zw = TzT

∗
z +Tw(I−TzT

∗
z )T ∗

w ,

is the orthogonal projection onto (H2⊗H2)
C . Hence (Tz,Tw,Tzw) belongs to T(H2⊗
H2) . Further nontrivial examples can be obtained from the module structure of H2 ⊗
H2 . Let M be a closed subspace of H2 ⊗H2 . Then M is called a submodule if M
is invariant for Tz and Tw . For many examples of submodules in H2 ⊗H2 , there exist
bounded analytic functions ϕ1 , ϕ2 and ϕ3 on D2 such that

Tϕ1T
∗

ϕ1
+Tϕ2T

∗
ϕ2
−Tϕ3T

∗
ϕ3

= PM ,

where PM denotes the orthogonal projection onto M , and

T ∗
ϕ1

Tϕ1 +T∗
ϕ2

Tϕ2 −T ∗
ϕ3

Tϕ3 = I.

3. Indefinite range inclusion

Setting

H+ = H ⊕H , H− = H and J =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ ,

we consider the Kreı̆n space K = (H+⊕H−,J) , that is, for any vectors x = (x1,x2,x3)t

and y = (y1,y2,y3)t in H ⊕H ⊕H , the inner product of x and y in K is defined
to be

〈x,y〉K = 〈Jx,y〉H ⊕H ⊕H = 〈x1,y1〉H + 〈x2,y2〉H −〈x3,y3〉H .

For basic Kreı̆n space geometry, see Dritschel-Rovnyak [7].
Let (T1,T2,T3) be a triplet in T(H ) . Then we define a linear operator T as

follows:

T : K → H ,

⎛
⎝x1

x2

x3

⎞
⎠ 
→ T1x1 +T2x2−T3x3.
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The adjoint operator T� of T with respect to inner products of H and K is obtained
as follows:

〈x,T(x1,x2,x3)t〉H =〈x,T1x1+T2x2−T3x3〉H =〈T ∗
1 x,x1〉H +〈T ∗

2 x,x2〉H −〈T ∗
3 x,x3〉H

= 〈(T ∗
1 x,T ∗

2 x,T ∗
3 x)t ,(x1,x2,x3)t〉K ,

that is, we have that

T
� : H → K , x 
→

⎛
⎝T ∗

1 x
T ∗
2 x

T ∗
3 x

⎞
⎠ .

In particular, we have that

TT
�x = T1T

∗
1 x+T2T

∗
2 x−T3T

∗
3 x.

For any (T1,T2,T3) in T(H ) , we set

T = (T1T
∗
1 +T2T

∗
2 −T3T

∗
3 )1/2.

Note that T is positive and contractive. Consider the operator V : ranT → T�(kerT )⊥
defined by

VTx =

⎛
⎝T ∗

1 x
T ∗
2 x

T ∗
3 x

⎞
⎠ (x ∈ (kerT )⊥).

Then it follows from the identity

‖Tx‖2
H = ‖T ∗

1 x‖2
H +‖T∗

2 x‖2
H −‖T∗

3 x‖2
H = 〈T�x,T�x〉K (3.1)

that V is an isometry and T
�(kerT )⊥ is a pre-Hilbert space. Let K0 be the completion

of T�(kerT )⊥ with the norm induced by (3.1), and let Ṽ : ranT → K0 denote the iso-
metric extension of V , in fact, Ṽ is unitary. Then T� = ṼT on (kerT )⊥ gives the polar
decomposition of T

� , that is, the following diagram is commutative. Further, it follows

L K0

L

T
�

T
Ṽ

(L := (kerT )⊥ = ranT )

(3.2)

from (3.1) that T� is bounded in (3.2). Hence, we can take the Hilbert space adjoint T̃

of T� in (3.2). We summarize basic properties of T̃ in the following proposition:

PROPOSITION 3.1. Let T̃ : K0 → L be the Hilbert space adjoint of T� in the
sense of (3.2). Then:

(i) T̃ is injective,
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(ii) T̃ is the extension of T|
T�L ,

(iii) ran T̃ is dense in L .

Proof. Suppose that T̃x = 0 for some x in K0 . Then there exists a sequence
{wn}n in L = (kerT )⊥ such that ‖x−T�wn‖K0 → 0 as n tends to infinity. Hence we
have that

‖x‖2
K0

= 〈x,x〉K0 = lim
n→∞

〈x,T�wn〉K0 = lim
n→∞

〈T̃x,wn〉H = 0.

Thus we have (i). Further, since

〈TT
�x,y〉H = 〈T�x,T�y〉K = 〈T�x,T�y〉K0 = 〈T̃T

�x,y〉H (x,y ∈ L ),

we have (ii). It follows from (ii) that

L ⊃ T̃K0 ⊃ TT
�L = ranT 2.

This concludes (iii). �
Let M (T ) denote the de Branges-Rovnyak space induced by T , that is, M (T )

is the Hilbert space consisting of all vectors in ranT with the pull-back norm

‖Tx‖M (T) = ‖P(kerT )⊥x‖H = min{‖y‖H : Ty = Tx},

where P(kerT)⊥ is the orthogonal projection from H onto (kerT )⊥ .

THEOREM 3.1. Let H be a Hilbert space. For any triplet (T1,T2,T3) in T(H ) ,
we set

T = (T1T
∗
1 +T2T

∗
2 −T3T

∗
3 )1/2.

If u belongs to M (T ) , then, for any ε > 0 , there exists some vector zε =
(z1(ε),z2(ε),z3(ε))t in T�(kerT )⊥ such that:

(i) T1z1(ε)+T2z2(ε)−T3z3(ε) → u (ε → 0) in the strong topology of H ,

(ii) 0 � ‖z1(ε)‖2
H +‖z2(ε)‖2

H −‖z3(ε)‖2
H ↑ ‖u‖2

M (T) (ε ↓ 0) ,

(iii) zε converges to some vector z in the strong topology of K0 and u = T̃z .

Proof. Let {Eλ}λ∈R be the spectral family of T , and we set

E⊥
λ = IH −Eλ = E((λ ,∞)).

Suppose that u = Tx where x is in L = (kerT )⊥ . Then, for arbitrary ε > 0, put

xε = E⊥
ε x, yε =

(∫ ∞

ε

1
λ

dEλ

)
xε and zε = T

�yε .
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We note that yε and zε belong to L and K0 , respectively. Then we have that

Tzε = TT
�yε = T 2yε = T 2

(∫ ∞

ε

1
λ

dEλ

)
xε = Txε .

Hence we have that

‖u−Tzε‖H = ‖Tx−Txε‖H � ‖x− xε‖H → 0 (ε → 0).

Thus we have (i). Further, it follows from Tyε = xε that

‖z1(ε)‖2
H +‖z2(ε)‖2

H −‖z3(ε)‖2
H = ‖T ∗

1 yε‖2
H +‖T∗

2 yε‖2
H −‖T∗

3 yε‖2
H = ‖Tyε‖2

H

= ‖xε‖2
H � ‖x‖2

H .

This concludes (ii). Finally, since

‖zε − zδ‖2
K0

= ‖T
�yε −T

�yδ‖K0

= ‖T ∗
1 (yε − yδ )‖2

H +‖T ∗
2 (yε − yδ )‖2

H −‖T ∗
3 (yε − yδ )‖2

H

= ‖T (yε − yδ )‖2
H = ‖xε − xδ‖2

H → 0 (ε,δ → 0),

zε converges to some vector z in K0 , and

u = lim
ε→0

Tzε = lim
ε→0

T̃zε = T̃z.

Thus we have (iii). �

COROLLARY 3.1. Suppose that T is of finite rank. If u belongs to M (T ) , then
there exists some z = (z1,z2,z3)t in T�(kerT )⊥ such that:

T1z1 +T2z2 −T3z3 = u

and
‖z1‖2

H +‖z2‖2
H −‖z3‖2

H = ‖u‖2
M (T).

Proof. If ε > 0 is sufficiently small, then E⊥
ε = P(kerT )⊥ . �

REMARK 3.1. It is easy to see that Theorem 3.1 can be generalized to any finite
operator tuple (T1, . . . ,Tm,Tm+1, . . . ,Tn) satisfying

m

∑
j=1

TjT
∗
j −

n

∑
k=m+1

TkT
∗
k � 0.

In the proof of Theorem 3.1, we essentially showed that M (T ) is contractively
embedded into M (T̃) . Moreover, applying the same method in the proof of Theorem
4.3 stated in the next section, we can conclude that the converse is also true, that is,
M (T ) = M (T̃) as Hilbert spaces. However, K0 and T̃ seem to be rather elusive
objects. Thus, in the next section, we will investigate the local structure of range spaces
of T and T .
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4. Local structure of range spaces

In this section, we need some facts from de Branges-Rovnyak space theory and
Kreı̆n space geometry. Let H and G be Hilbert spaces, and let A be any bounded
linear operator from H to G . The following theorem seems to be well known to
specialists in Hilbert space operator theory.

THEOREM 4.1. Let A be a bounded linear operator from H to G and let u be
a vector in G . Then u belongs to ranA if and only if

γ := sup
A∗y�=0

|〈y,u〉G |
‖A∗y‖H

is finite. Further, then ‖u‖M (A) = γ .

The first half of Theorem 4.1 is known as Shmuly’an’s theorem (see Corollary 2
of Theorem 2.1 in Fillmore-Williams [8]). For the second half (norm identity) and also
the proof, we referred to Ando [2].

DEFINITION 4.1. Let K be a Kreı̆n space. A subspace M of K is said to be
uniformly positive with lower bound δ > 0 if

〈x,x〉K � δ 〈Jx,x〉K (x ∈ M).

In particular, for the Kreı̆n space defined in Section 3, if M is uniformly positive with
lower bound δ > 0, then

‖x1‖2
H +‖x2‖2

H −‖x3‖2
H � δ (‖x1‖2

H +‖x2‖2
H +‖x3‖2

H ) ((x1,x2,x3)t ∈ M).

THEOREM 4.2. Let K be a Kreı̆n space. Every uniformly positive subspace of
K with lower bound δ > 0 is contained in a maximal uniformly positive subspace
with lower bound δ > 0 , and every maximal uniformly positive subspace is a Hilbert
space with the inner product of K .

For the details of Definition 4.1 and Theorem 4.2, see Dritschel-Rovnyak [7].

LEMMA 4.1. Let (T1,T2,T3) be any triplet in T(H ) . Then, for any ε > 0 , Mε =
{(T ∗

1 x,T ∗
2 x,T ∗

3 x)t : x ∈ E⊥
ε H } is uniformly positive.

Proof. For any ε > 0 and any vector x in E⊥
ε H ,

‖T ∗
1 x‖2

H +‖T∗
2 x‖2

H −‖T∗
3 x‖2

H = ‖Tx‖2
H =

∫ ∞

ε
|λ |2 d‖Eλ x‖2

H � ε2‖x‖2
H

� ε2

3max1� j�3‖T ∗
j ‖2 (‖T ∗

1 x‖2
H +‖T∗

2 x‖2
H +‖T∗

3 x‖2
H ).

Hence Mε is uniformly positive. �
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Let M̃ε be a maximal uniformly positive subspace containing Mε . Then, M̃ε is
a Hilbert space with the inner product of K by Theorem 4.2, and hence so is Mε ,
the closure of Mε in M̃ε . We note that Mε is uniformly positive, that is, there exists
some δ > 0 such that the following inequality holds:

‖x‖2
H +‖y‖2

H −‖z‖2
H � δ (‖x‖2

H +‖y‖2
H +‖z‖2

H ) ((x,y,z)t ∈ Mε). (4.1)

LEMMA 4.2. Let (T1,T2,T3) be any triplet in T(H ) . Then, for any ε > 0 ,
T|Mε

: Mε → H is bounded as a Hilbert space operator.

Proof. Since T|Mε
is defined everywhere in Mε , by the closed graph theorem, it

suffices to show that T|Mε
is closed. Suppose that

‖xn− x‖2
H +‖yn− y‖2

H −‖zn− z‖2
H → 0 (n → ∞)

and
‖T1xn +T2yn−T3zn −u‖2

H → 0 (n → ∞).

Then it follows from (4.1) that xn , yn and zn converge to x , y and z in H , respectively.
Hence we have that u = T1x+T2y−T3z . This concludes that T|Mε

is closed. �
We will deal with T|Mε

as a Hilbert space operator from Mε to H .

LEMMA 4.3. Let (T1,T2,T3) be any triplet in T(H ) . Then, for any ε > 0 ,
M (T |E⊥

ε H ) is contractively embedded into M (T|Mε
) .

Proof. Suppose that u = Txε where xε is in E⊥
ε H . In the proof of Theorem 3.1,

we showed that

zε = T
�yε =

⎛
⎝T ∗

1 yε
T ∗
2 yε

T ∗
3 yε

⎞
⎠

satisfies Tzε = Txε = u and

0 � 〈zε ,zε〉K = ‖z1(ε)‖2
H +‖z2(ε)‖2

H −‖z3(ε)‖2
H = ‖xε‖2

H = ‖u‖2
M (T |

E⊥ε H
).

Moreover, this zε belongs to Mε . �
The next theorem is a generalization of Corollary 3.1.

THEOREM 4.3. Let (T1,T2,T3) be any triplet in T(H ) . Then, for any ε > 0,

M (T |E⊥
ε H ) = M (T|Mε

)

as Hilbert spaces.
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Proof. By Lemma 4.3, it suffices to show that M (T|Mε
) is contractively embed-

ded into M (T |E⊥
ε H ) . For any Tx where x = (x1,x2,x3)t in Mε and any x in E⊥

ε H ,
we have that

|〈x,Tx〉H |2 = |〈T�x,x〉K |2
� (‖T ∗

1 x‖2
H +‖T∗

2 x‖2
H −‖T∗

3 x‖2
H )(‖x1‖2

H +‖x2‖2
H −‖x3‖2

H )

because T �x = (T ∗
1 x,T ∗

2 x,T ∗
3 x)t and (x1,x2,x3)t belong to Mε . Hence

sup
x∈E⊥

ε H \{0}

|〈x,Tx〉H |2
‖T ∗

1 x‖2
H +‖T∗

2 x‖2
H −‖T∗

3 x‖2
H

= sup
x∈E⊥

ε H \{0}

|〈x,Tx〉H |2
‖Tx‖2

H

is finite. By Theorem 4.1, Tx belongs to ranT |E⊥
ε H and

‖Tx‖2
M (T |

E⊥ε H )
� ‖x1‖2

H +‖x2‖2
H −‖x3‖2

H .

Thus we have that ‖Tx‖2
M (T |

E⊥ε H )
� ‖Tx‖2

M (T|Mε ). �

5. Application

We shall consider a Hilbert space H consisting of analytic functions on D . Fur-
ther, we assume that constant function 1 is in H and multiplication operators induced
by functions in H∞ are bounded on H . For example, the Hardy space and the Bergman
space belong to this class. Tϕ will denote the multiplication operator on H induced
by ϕ in H∞ . Now, we shall consider an indefinite Toeplitz corona problem. Let δ be
a positive real number. Suppose

Tϕ1T
∗

ϕ1
+Tϕ2T

∗
ϕ2
−Tϕ3T

∗
ϕ3

� δ IH .

Then
T = (Tϕ1T

∗
ϕ1

+Tϕ2T
∗

ϕ2
−Tϕ3T

∗
ϕ3

)1/2

is invertible and ‖T−1‖ � 1/
√

δ . Hence there exists a function F in H such that

1 = T 2F = ϕ1ψ1 + ϕ2ψ2−ϕ3ψ3 (ψ j := T ∗
ϕ j

F)

and trivially

‖ψ j‖2
H �

‖T ∗
ϕ j
‖2

δ
‖1‖2

H .

It will be nontrivial problem to improve this norm estimate. On the other hand, applying
Theorem 3.1 to this setting, since M (T ) = H as vector spaces and

‖1‖M (T) = ‖T−11‖H � 1√
δ
‖1‖H ,

there exist functions ψ1,n , ψ2,n and ψ3,n in H such that:
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(i) lim
n→∞

(ϕ1ψ1,n + ϕ2ψ2,n−ϕ3ψ3,n) = 1,

(ii) 0 � lim
n→∞

(‖ψ1,n‖2
H +‖ψ2,n‖2

H −‖ψ3,n‖2
H ) � 1

δ
‖1‖2

H .

Thus, we obtain a norm estimate of the approximate solution, and we note that estimate
(ii) depends only on δ and H .

REMARK 5.1. It is well known that Toeplitz corona theorem is based on the com-
plete Pick property of the Szegö kernel. We should note that the Bergman kernel does
not have the property, but our method can be applied. For indefinite operator theory on
the Hardy space, see Ball-Helton [3, 4, 5, 6] and Helton-Ball-Johnson-Palmer [9].
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