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ON THE k POINT DENSITY PROBLEM

FOR BAND–DIAGONAL M–BASES

ALEXEY PYSHKIN

(Communicated by T. S. S. R. K. Rao)

Abstract. In the early 1990s the works of Larson, Wogen and Argyros, Lambrou, Longstaff dis-
closed an example of a strong tridiagonal M -basis that was not rank one dense. Later Katavolos,
Lambrou and Papadakis studied k point density property of this example. In this paper we
present new methods for the analysis of k point density and rank one density properties for
band-diagonal M -bases.

1. Introduction

1.1. Density properties

Consider an infinite-dimensional real Hilbert space H . Suppose that H has
an orthonormal basis {e j}∞

j=0 . A sequence F = { fn}∞
n=0 of vectors in H is said

to be complete when it spans the whole space, that is, span{ fk} = H , where span
denotes the closed linear span. The sequence F is called minimal if none of its elements
can be approximated by the linear combinations of the others: fn /∈ span{ fk}k �=n for
any n . The system F∗ = { f ∗l }∞

l=0 is biorthogonal to F if for any k, l � 0 we have
〈 fk, f ∗l 〉 = δkl , where δ is the Kronecker delta. By the Hahn–Banach theorem, F is
complete and minimal when and only when it possesses a unique biorthogonal system
F∗ . We call the minimal system F band-diagonal if there exists L ∈ N such that
〈 ft ,el〉 = 〈 f ∗t ,el〉 = 0 whenever |t − l| > L . We say that F is an M -basis if F is
complete, minimal and F∗ is complete.

Consider the operator algebra A = {T ∈ B(H ) : T fn = λn fn,λn ∈ R} and the al-
gebra R1(A ) generated by rank one operators of A . We are interested in the following
properties of the algebra A .

DEFINITION 1. (k point density property) We say that the algebra R1(A ) is k
point dense in A (or that the algebra A has k point density property) if for any
x1,x2, . . .xk ∈ H and ε > 0 there exists R ∈ R1(A ) such that ||Rxs − xs|| < ε for
any 1 � s � k .
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The definition for k = 1 is equivalent to F being a strong M-basis (see [8]): the system
F is called a strong M-basis if for any x ∈ H we have x ∈ span

{〈x, f ∗n 〉 fn
}∞

n=0 .

DEFINITION 2. (rank one density property) We say that the algebra A has rank
one density property if the unit ball of rank one subalgebra R1(A ) is dense in the unit
ball of A in the strong operator topology.

By abuse of notation, we say that F is k point dense (rank one dense) when the corre-
sponding algebra R1(A ) is k point dense in A (rank one dense).

Notice that rank one density property implies k point density property for any k .

1.2. Motivation

Longstaff in [11] studied abstract subspace lattices and corresponding operator
algebras. In that paper Longstaff raised an important question: does one point density
property always imply rank one density property?

The solution remained unknown until Larson and Wogen showed [9] that the an-
swer is negative. They constructed an example of a vector system F such that it is one
point dense but does not possess rank one density property.

EXAMPLE 1. (Larson–Wogen system FLW parameterized with real an ) For any
j � 0 we define

f2 j+1 = −a2 j+1e2 j + e2 j+1 +a2 j+2e2 j+2, f2 j = e2 j,

f ∗2 j = −a2 je2 j−1 + e2 j +a2 j+1e2 j+1, f ∗2 j+1 = e2 j+1,

where an are nonzero real numbers for any n > 0 and a0 = 0.

The construction presented by Larson and Wogen was remarkably simple and elemen-
tary, — notice that the matrices corresponding to the vectors { f j}∞

j=0 and { f ∗j }∞
j=0 are

both tridiagonal. Afterwards this example was also studied in [1] (see Addendum), by
Azoff and Shehada in [2], in [13]. In 1993 Katavolos, Lambrou and Papadakis in [8]
performed a deep analysis of the density properties of this vector system and deduced
that for FLW one point density does not imply rank one density. Moreover, they showed
that for such system rank one density is equivalent to two point density.

We are going to consider band-diagonal systems similar to the one regarded by
Larson and Wogen and to determine the exact conditions for k point density property
of such vector systems. In this paper we present a few new techniques for the analysis
of k point density and rank one density of band-diagonal vector systems.

In the next section we will gather some basic facts and outline the main idea of the
paper. In Section 3 we perform the analysis for the Larson–Wogen example, providing
a simpler proof of Theorems 2.1 and 2.2 in [8]. In Section 4 we prove a similar theorem
for a pentadiagonal system.
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2. Preliminaries

Suppose that F = { fn}∞
n=0 is an arbitrary band-diagonal M -basis and F∗ = { f ∗n }∞

n=0
is its biorthogonal sequence. In this section we establish several facts about F .

PROPOSITION 2.1. The system F is rank one dense if and only if any trace class
operator T , such that 〈T fn, f ∗n 〉 = 0 for any n � 0 , has zero trace.

Proof. It is well known that rank one density property is equivalent to R1(A )
being dense in A in the ultraweak (or σ -weak) topology (see [8], Theorem 2.2).
But the annihilator of R1(A ) consists precisely of the trace class operators satisfying
〈T fn, f ∗n 〉 = 0 for all n � 0.

PROPOSITION 2.2. The system F is k point dense if and only if any k -dimensional
operator T , such that 〈T fn, f ∗n 〉 = 0 for any n � 0 , has zero trace.

Proof. In the paper [8] authors proved the proposition for k = 2. For larger k ’s
the same reasoning works.
For an arbitrary linear operator T we will be interested in the differences between the
partial sums of the Fourier series using the system F and partial sums of the canonical
Fourier series (using the orthonormal basis {en}∞

n=0 ):

Ξn =
n

∑
m=0

〈T fm, f ∗m〉−
n

∑
m=0

〈Tem,em〉, (2.1)

where 〈·, ·〉 denotes the scalar product in H . It appears that Ξn takes a concise and
compact form for the finite-band system F , and it is much easier to study Ξn than, for
example, 〈T fm, f ∗m〉 .

PROPOSITION 2.3. The operator T is a trace class operator annihilating the sub-
algebra R1(A ) if and only if for any n � 0 one has

Ξn +
n

∑
m=0

〈Tem,em〉 = 0. (2.2)

We will use this formulation in the following sections.
Now consider an operator T which has a finite rank. In this case we write T as a

finite sum T = ∑k
s=1 ys⊗xs , where xs,ys ∈ H and y⊗x denotes the rank one operator

sending a vector v ∈ H to 〈v,y〉x .
Let us define vectors vn and un in R

k as follows:

vn = (x1
n,x

2
n, . . . ,x

k
n) un = (y1

n,y
2
n, . . . ,y

k
n),

where xs
n = 〈xs,en〉 and ys

n = 〈ys,en〉 . Since 〈Tem,el〉 = 〈um,vl〉 for any m and l , we
can rewrite Ξn in terms of the scalar products of {un}∞

n=0 and {vn}∞
n=0 . In turn it means

that (2.2) can be rewritten in terms of the scalar products of {un}∞
n=0 and {vn}∞

n=0 .
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Hence, the existence of T would be reduced to the existence of the vectors un , vn

in R
k such that the sequences {|un|}∞

n=0 , {|vn|}∞
n=0 are both square summable and (2.2)

is satisfied. Thus, instead of looking for k vectors xs and ys in H , we would look for
an infinite sequence of k -dimensional vectors vn and un such that {vn}∞

n=0 , {un}∞
n=0

belong to �2(Rk) . This is one of the key ideas in our method of analysing k point
density property for F .

Thus, we have just found the following reformulation for k point density property.

PROPOSITION 2.4. The following two statements are equivalent:

1. there exists a k -dimensional operator T which annihilates R1(A ) such that
TrT �= 0 ,

2. there exist vectors {un}∞
n=0 , {vn}∞

n=0 in �2(Rk) such that for the operator T̂ =
∞

∑
t,l=0

〈ut ,vl〉et ⊗ el we have

Ξn +
n

∑
m=0

〈T̂ em,em〉 = 0 (2.3)

for any n � 0 .

As we already mentioned, the equation (2.3) can be expressed via un and vn . Moreover,
we can also write the trace of T in terms of un , vn :

TrT =
k

∑
s=1

〈ys,xs〉 =
k

∑
s=1

∞

∑
n=0

ys
nx

s
n =

∞

∑
n=0

k

∑
s=1

ys
nx

s
n =

∞

∑
n=0

〈un,vn〉. (2.4)

Essentially, the k point density property can be viewed as a possibility of placing the se-
quence of vectors in R

k which are constrained with a series of relations (2.3) and (2.4).

3. Classification for the Larson–Wogen M -basis

In this section we study Larson–Wogen vector system FLW (Example 1). Namely,
we prove a theorem similar to Theorem 2.2 of [8]. Up until now there existed two
different techniques in studying k point density, one for k = 1 (strong M -bases) and a
different one for k � 2. Here we demonstrate a universal method for the analysis of k
point density property.

THEOREM 3.1. ([8], Theorem 2.2) The sequences FLW and F∗
LW are biorthogo-

nal and both are complete in H . Moreover, the following is true:

1. the system FLW is one point dense (a strong M-basis) if and only if the sequence

μn =
an−1an−3 . . .

anan−2 . . .
(3.1)

does not belong to �2 .
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2. the system FLW is k point dense (k > 1 ) if and only if the sequence {1/an}∞
n=1

does not belong to �1 .

Proof. Due to Proposition 2.4 we know that k point density of the system F is
equivalent to the existence of k -dimensional vectors un , vn such that (2.3) holds for
the corresponding operator T . For the given M -basis F = FLW we can calculate Ξn

precisely:

Ξ2n−1 = a2nT2n−1,2n,

Ξ2n = a2n+1T2n+1,2n,

where Ti j = 〈Te j,ei〉 .
Since Ti j = 〈u j,vi〉 , we have

Ξ2n−1 = a2n〈u2n,v2n−1〉,
Ξ2n = a2n+1〈u2n,v2n+1〉,

where 〈·, ·〉 denotes the scalar product in R
k .

For the convenience of the reader we will introduce the sequences of vectors wn

and w∗
n .

w2n = u2n, w∗
2n = v2n,

w2n+1 = v2n+1, w∗
2n+1 = u2n+1.

In view of this notation Ξn = an+1〈wn,wn+1〉 and due to Equation (2.4) TrT =
∑∞

m=0〈wm,w∗
m〉 .

Thus, we get that F is not k point dense if and only if there exist k -dimensional
vectors {wn}∞

n=0 , {w∗
n}∞

n=0 lying in �2(Rk) such that

an+1〈wn,wn+1〉 = −
n

∑
m=0

〈wm,w∗
m〉, (3.2)

for any n � 0, and ∑∞
m=0〈wm,w∗

m〉 �= 0.
In what follows we show that the latter can be simplified even more.

PROPOSITION 3.1. The system F is not k point dense if and only if there exists a
sequence of vectors {rn}∞

n=0 in �2(Rk) such that

an+1〈rn,rn+1〉 = 1, (3.3)

for any n � 0 .

Proof. Suppose we found such rn . Then we solve (3.2) by putting w∗
n to zero, wn

to rn for any n > 0 and choosing the vector w∗
0 so that 〈w0,w∗

0〉 = −1.
Now we prove the converse. Suppose we found such wn that (3.2) holds. Given

that the vectors wn lie in R
k , we rewrite the scalar product as the product of the vector
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lengths and the cosine of the angle between the vectors. Namely, we define Wn = |wn|
and real θn that 〈wn,wn+1〉 = WnWn+1 cosθn.

The sequence Ξn = −∑n
0〈wm,w∗

m〉 has a non-zero limit, so let us find the largest
N > 0 such that ΞN = 0. Then we can modify the original sequence by setting wn , w∗

n
to zero for any 0 � n � N so that (3.2) still holds. Therefore, without loss of generality
we can assume that Ξn �= 0 for any n � 0. Setting a′n = an cosθn we see that the
sequence

Wn =
Ξn−1/a′n

Ξn−2/a′n−1
· Ξn−3/a′n−2

Ξn−4/a′n−3
· · ·

belongs to �2 . Now since Ξn = −∑n
0〈wm,w∗

m〉 , we discover that

Ξn

Ξn−1
= 1+ ηn,

where {ηn}∞
n=1 ∈ �1 . Thus the product of such (1+ ηm) fractions is bounded by some

constant above. It follows that the sequence

W #
n =

1/a′n
1/a′n−1

· 1/a′n−2

1/a′n−3
· · ·

belongs to �2 . Now we set rn to W #
n

Wn
wn , and then (3.2) holds since

an+1〈rn,rn+1〉 = an+1
1/a′n+1

Ξn/a′n+1
〈wn,wn+1〉 = 1.

Since |rn| = |W #
n | and the sequence

{|W #
n |
}∞

n=1 belongs to �2 , the sequence {rn}∞
n=1

belongs to �2(Rk) as well.
Now we are ready to prove the theorem for the case k = 1.

PROPOSITION 3.2. The system FLW is one point dense if and only if {μn}∞
n=1

does not belong to �2 .

Proof. It follows from Proposition 3.1.
The case k = 1 has all the vectors rn , r∗n lying on the same line (R1 ). Since all rn

are collinear, the lengths of the vectors rn are precisely μn . Hence, Equation (3.3) can
be satisfied if and only if {μn}∞

n=1 is square summable.
After this we consider the case k > 1.

PROPOSITION 3.3. The system FLW is k point dense (k > 1) if and only if the
sequence {1/an}∞

n=1 does not belong to �1 .

Proof. According to Proposition 3.1, the system FLW is k point dense if and only
if there is no such sequence {rn}∞

n=0 in �2(Rk) which satisfy an〈rn,rn−1〉 = 1. Obvi-
ously, if there are such vectors rn , then {1/an}∞

n=1 belongs to �1 .
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Conversely, suppose {1/an}∞
n=1 belongs to �1 . Then the sequence Rn =

max(|an|− 1
2 , |an+1|− 1

2 ) is square summable. Observe that RnRn−1 � 1/|an| , and so it
is always possible to choose the angle θn so that

an〈rn,rn−1〉 = anRnRn−1 cosθn = 1.

Now we have defined the lengths for rn and the angles between each two consecutive
vectors rn−1 , rn . Obviously, for any k � 2 we are able to place the vectors rn in R

k .
The last two propositions prove Theorem 3.1.

4. Pentadiagonal example

In this section we explore another vector system F and its biorthogonal system F∗
defined as follows:

f4j = e4 j, f∗4j = e4 j +d2 j−1e4 j−2−b2 j−1e4 j−1 +a2 je4 j+1 + c2 je4 j+2

f4j+1 = −a2 je4 j + e4 j+1, f∗4j+1 = e4 j+1 +b2 je4 j+2,

f4j+2 = e4 j+2 +d2 je4 j −b2 je4 j+1 +a2 j+1e4 j+3 + c2 j+1e4 j+4, f∗4j+2 = e4 j+2,

f4j+3 = e4 j+3 +b2 j+1e4 j+4, f∗4j+3 = −a2 j+1e4 j+2 + e4 j+3,

where the real coefficients an , bn , cn , dn are equal to zero whenever n < 0, and satisfy
the equality cn +dn = anbn for any n � 0.

PROPOSITION 4.1. The given system is an M-basis.

Proof. The equality cn +dn = anbn guarantees the biorthogonality, while the com-
pleteness of F and F∗ is easy to check.

We prove a theorem similar to Theorem 3.1, though we do not investigate the case
k = 1 in this section.

THEOREM 4.1. The following statements are equivalent:

1. the given system is rank one dense,

2. the given system is k point dense for some (equivalently any) k > 1 ,

3. the sequence

μn = min

(
1
|an| +

1
|bn| ,

1+ |bn|
|dn| ,

1+ |an|
|cn|

)
does not belong to �1 .

Proof. In order to investigate the density properties we repeat the reasoning from
Section 2. Presume that Ξn are defined by (2.1).
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Thus, for any j � 0 we have

Ξ4 j = a2 jT4 j+1,4 j + c2 jT4 j+2,4 j,

Ξ4 j+1 = −d2 jT4 j+2,4 j +b2 jT4 j+2,4 j+1,

Ξ4 j+2 = a2 j+1T4 j+2,4 j+3 + c2 j+1T4 j+2,4 j+4,

Ξ4 j+3 = −d2 j+1T4 j+2,4 j+4 +b2 j+1T4 j+3,4 j+4,

(4.1)

where Ti j stands for 〈Te j,ei〉 .
First of all we investigate the conditions of rank one density property for F .

PROPOSITION 4.2. The following statements are equivalent:

1. the system F is not rank one dense,

2. there exists an operator T such that TrT = −1 and for any n � 0 one has

Ξn +
n

∑
m=0

〈Tem,em〉 = 0,

3. the sequence {μn}∞
n=1 belongs to �1 .

Proof. The equivalence of the first two statements is due to Proposition 2.3. We
are going to prove the equivalence between the last two statements.

Assume that {μn}∞
n=1 ∈ �1 ; our purpose is to construct the required operator T .

Let T00 be equal to −1, and Tj j be equal to zero for any j > 0. Next we consider three
cases for each n � 0.
Case 1. Suppose μn = 1/|an|+1/|bn| . For n = 2 j we set

T4 j+1,4 j = 1/an, T4 j+2,4 j = 0, T4 j+2,4 j+1 = 1/bn.

That guarantees the equality Ξ2n = Ξ2n+1 = 1. For n = 2 j +1 we set

T4 j+2,4 j+3 = 1/an, T4 j+2,4 j+4 = 0, T4 j+3,4 j+4 = 1/bn,

which provides the equality Ξ2n = Ξ2n+1 = 1.
Case 2. Assume μn = (1+ |bn|)/|dn| . For n = 2 j we set

T4 j+1,4 j = b2 j/d2 j, T4 j+2,4 j = −1/d2 j, T4 j+2,4 j+1 = 0.

Again, we have Ξ2n = Ξ2n+1 = 1. For n = 2 j +1 we set

T4 j+2,4 j+3 = b2 j+1/d2 j+1, T4 j+2,4 j+4 = −1/d2 j+1, T4 j+3,4 j+4 = 0,

The third case μn = (1+ |an|)/|cn| is left to the reader.
All the other entries Ti j we set to zero. These equalities ensure that

Ξn = −
n

∑
s=0

Tss = 1
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for any n � 0.
The constructed operator T belongs to the trace class since the non-zero operator

matrix entries are summable due to the assumption that {μn}∞
n=1 ∈ �1 . Since the trace

of T is equal to −1, the sufficiency is proved.
Conversely, assume that there exists a trace class operator T in the annihilator of

R1(A ) with the trace equal to −1.
First of all, we prove that {μ2 j}∞

j=1 is a summable sequence. Since T is in the

trace class, the sequence of vectors νn = |Tnn|+ |Tn,n+1|+ |Tn,n+2| belongs to �1 . Ob-
viously, {Ξn}∞

n=1 belongs �1 as well. As a consequence, we have |Ξn| � 0.5 for all n
large enough; we will assume that it holds for any n > 0.

It can be easily checked that if for some n one of the numbers an,bn,cn,dn is
equal to zero, then νn � μn/2. From this point we will suppose that the coefficients are
nonzero for any n > 0.

For any even n = 2 j consider the linear function

gn(x) =
∣∣∣Ξ2n− cnx

an

∣∣∣+ |x|+
∣∣∣Ξ2n+1 +dnx

bn

∣∣∣.
Obviously, we have νn = gn(T2n+2,2n) . The function gn is piecewise linear, so its
minimum is attained at the breakpoints. The breakpoints are zero, yn = Ξ2n/cn and
zn = −Ξ2n+1/dn . We have gn(0) � μn/2. Consider the set N1 ⊆ Neven , such that for
any n ∈ N1 the function gn attains its minimum at the point Ξ2n/cn . Thus, for any
n ∈ N1 we have νn � gn(yn) . We have

gn(yn) =
∣∣∣Ξ2n/cn

∣∣∣+ ∣∣∣Ξ2n+1 +dnΞ2n/cn

bn

∣∣∣.
Since νn is summable and νn � gn(yn) � 0.5/|cn| for any n ∈ N1 we deduce that
∑n∈N1

|cn|−1 < ∞ .

Clearly, Gn = gn(yn)−
∣∣∣Ξ2n/cn

∣∣∣ is summable. Let Δn stand for the difference

(Ξ2n+1−Ξ2n) . Then

Gn =
∣∣∣cnΞ2n+1 +dnΞ2n

cnbn

∣∣∣= ∣∣∣cnΔn +(cn +dn)Ξ2n

cnbn

∣∣∣= ∣∣∣cnΔn +anbnΞ2n

cnbn

∣∣∣.
Hence,

∣∣Gn −Ξ2n|an/cn|
∣∣� |Δn/bn| .

Consider the sets
N2 = {n ∈ N1 | 0.5 � |bn|}

and
N3 = N1 \N2.

Since Ξn has a finite limit, we have ∑n∈N2
|an/cn| < ∞ . Hence, {μn}n∈N2 ∈ �1 .

Assume that ∑n∈N3
|an/cn| = ∞ .

We have
∣∣|bn|Gn −Ξ2n|(cn + dn)/cn|

∣∣ � |Δn| . Since the sequences {bnGn}n∈N3

and {Δn}n∈N3 are absolutely summable, the sequence {(cn +dn)/cn}n∈N3 is absolutely
summable as well. Consequently, |dn/cn| � 0.5 when n is large enough. We get
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{1/cn}n∈N3 ∈ �1 , and thus {1/dn}n∈N3 ∈ �1 . Since for n ∈ N3 one has |bn| � 0.5, we
have

∑
n∈N3

μn � ∑
n∈N3

1+ |bn|
|dn| < ∞.

Repeating the reasoning for odd n , we get that {μn}∞
n=1 is a summable sequence.

Now consider the case of the k -dimensional operator T = ∑k
s=1 ys ⊗ xs , where xs,ys ∈

H . This time we define the vectors {vn}∞
n=0 and {un}∞

n=0 in R
k as follows:

v2 j = (y1
4 j,y

2
4 j, . . . ,y

k
4 j) v∗2 j = (x1

4 j,x
2
4 j, . . . ,x

k
4 j)

v2 j+1 = (x1
4 j+2,x

2
4 j+2, . . . ,x

k
4 j+2) v∗2 j+1 = (y1

4 j+2,y
2
4 j+2, . . . ,y

k
4 j+2)

u2 j = (x1
4 j+1,x

2
4 j+1, . . . ,x

k
4 j+1) u∗2 j = (y1

4 j+1,y
2
4 j+1, . . . ,y

k
4 j+1)

u2 j+1 = (y1
4 j+3,y

2
4 j+3, . . . ,y

k
4 j+3) u∗2 j+1 = (x1

4 j+3,x
2
4 j+3, . . . ,x

k
4 j+3)

Note that the sequences {vn}∞
n=0 , {un}∞

n=0 belong to �2(Rk) .
Now we can rewrite the equations (4.1) using the introduced vectors:

Ξ4 j = a2 j〈u2 j,v2 j〉+ c2 j〈v2 j+1,v2 j〉,
Ξ4 j+1 = −d2 j〈v2 j+1,v2 j〉+b2 j〈v2 j+1,u2 j〉,
Ξ4 j+2 = a2 j+1〈v2 j+1,u2 j+1〉+ c2 j+1〈v2 j+1,v2 j+2〉,
Ξ4 j+3 = −d2 j+1〈v2 j+1,v2 j+2〉+b2 j+1〈u2 j+1,v2 j+2〉,

where 〈·, ·〉 denotes the scalar product in R
k . These equations simplify to

Ξ2 j = a j〈u j,v j〉+ c j〈v j+1,v j〉,
Ξ2 j+1 = −d j〈v j+1,v j〉+b j〈v j+1,u j〉.

(4.2)

Next we are going to analyze the necessary condition of k point density property
for F .

PROPOSITION 4.3. If {μn}∞
n=1 belongs to �1 then it is possible to construct the

vector sequences {un}∞
n=0,{vn}∞

n=0 ∈ �2(R2) such that for any n � 0 we have Ξn = 1 .

COROLLARY 4.1. If F is k point dense for any k � 2 then ∑∞
n=1|μn| = ∞ .

Proof of the Corollary. Assume the converse: {μn}∞
n=1 ∈ �1 .

We apply the proposition and get the vectors un and vn . Now without loss of
generality we can assume that u0 �= 0. Then consider u∗0 so that 〈u0,u∗0〉 = −1 and
set all u∗n (n > 0), v∗n to zero. Since the trace of the resulting operator T is equal to
∑∞

n=0 (〈un,u∗n〉+ 〈vn,v∗n〉) �= 0, Proposition 2.4 implies that F is not two point dense.
Trivially, when F is not two point dense, it is also not k point dense for any k � 2.

Proof of Proposition 4.3. First we are going to present the vector lengths Vn = |vn|
for each n � 0.
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For this purpose we are going to define an auxiliary sequence {Mn}∞
n=1 ∈ �2 such

that Vn � Mn for any n . On each step n we will define Vn and Mn+1 .
We start by setting V0 = M1 = 1.
For any n > 0 we have three choices for μn :

1. if μn = 1/|an|+1/|bn| , we set

Mn+1 =
1√|bn|

, Vn = max

(
Mn,

1√|an|

)
,

2. whenever μn = (1+ |an|)/|cn| , we set

Mn+1 = max

(√|an|√|cn|
,

1√
|cn|

)
, Vn = max

(
Mn,

2√
|cn|

)
,

3. if μn = (1+ |bn|)/|dn| , we set

Mn+1 = max

(√|bn|√|dn|
,

1√|dn|

)
, Vn = max

(
Mn,

2+
√|bn|√|dn|

)
.

Now all Vn , Mn are set, and obviously Vn � Mn for any n > 0.
Next we are going to present the vector lengths Un = |un| , for each n � 0. Set U0

to zero and for any n > 0 we have three cases again:

1. when μn = 1/|an|+1/|bn| , we set Un =

√
1

a2
nV 2

n
+

1

b2
nV

2
n+1

,

2. whenever μn = (1+ |an|)/|cn| , we set Un =
anVn√

c2
nV

2
n+1V

2
n −1

,

3. if μn = (1+ |bn|)/|dn| , we set Un =
bnVn+1√

d2
nV

2
n+1V

2
n −1

.

Due to our choice of Vn , Mn the values Un are well-defined for each n > 0.

LEMMA 4.1. If for some nonzero real A, B, X , Y , Z we have (AX)−2+(BY )−2=
Z2 , there exist such vectors x , y , z with lengths X , Y , Z correspondingly such that

〈x,y〉 = 0,

〈x,z〉 = 1/A,

〈y,z〉 = 1/B.

(4.3)

Proof. Take α such that cosα = 1/(AXZ) and sinα = 1/(BYZ) . Consider three
vectors x , y , z in R

2 with lengths X , Y , Z such that ∠(y,z) = π/2−α and ∠(x,z) =
α . Clearly, the vectors x and y must be orthogonal now. The equations (4.3) are trivial
to check.
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PROPOSITION 4.4. For any n � 0 there are vectors un , vn with lengths Un , Vn

in R
2 such that (4.2) are satisfied.

Proof. We argue by induction. We start with v0 = (0,1) and u0 = 0. Suppose that
we have constructed a sequence of vectors vm,um for all m < n and vn . We are going
to build un and vn+1 . We consider three cases for μn .

In the first case the chosen Un , 1/|anVn| and 1/|bnVn+1| form a right triangle with
hypotenuse Un , and so here Lemma 4.1 can be applied. It follows that there are vectors
u′n , v′n , v′n+1 in R

2 with lengths Un , Vn , Vn+1 correspondingly such that

〈u′n,v′n〉 = 1/an,

〈u′n,v′n+1〉 = 1/bn,

〈v′n,v′n+1〉 = 0,

(4.4)

which in turn yields the equations (4.2). Now we can simply rotate the triple (u′n,v′n,v′n+1)
so that v′n coincides with vn . We will set un and vn+1 to the rotated u′n and v′n+1
accordingly. Since the rotation preserves the scalar product inside the triple, the equa-
tions (4.4) hold for un , vn , vn+1 as well.

In the second case the chosen Vn+1 , an/(cnUn) and 1/(cnVn) also form a right
triangle and Lemma 4.1 applies here as well. It implies that there are vectors u′n , v′n ,
v′n+1 in R

2 with lengths Un , Vn , Vn+1 correspondingly such that

〈u′n,v′n〉 = 0,

〈u′n,v′n+1〉 = an/cn,

〈v′n,v′n+1〉 = 1/cn,

(4.5)

and the equations (4.2) follow from that. Using rotation again, we receive un , vn , vn+1 .
In the third case the chosen Vn , bn/(dnUn) and 1/(dnVn+1) also form a right

triangle and Lemma 4.1 applies here as well. It implies that there are vectors u′n , v′n ,
v′n+1 in R

2 with lengths Un , Vn , Vn+1 correspondingly such that

〈u′n,v′n〉 = bn/dn,

〈u′n,v′n+1〉 = 0,

〈v′n,v′n+1〉 = −1/dn,

(4.6)

and the equations (4.2) are also true. One more time we do the rotation, and we get un ,
vn , vn+1 .

PROPOSITION 4.5. The following inequalities are true.

Mn+1 � √
μn,

Vn � max(2
√

μn,Mn),
Un � 2

√
μn.
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Proof. First two statements are trivial. For the last statement we consider the same
three cases.

In the first case we have |anVn| �
√|an| and |bnVn+1| � |bnMn+1| =

√|bn| . It
follows that Un � √μn .

In the second case we have cnVn+1Vn � cnMn+1Vn � 2 and so

Un � |an|Vn√
3
4c2

nV
2
n+1V

2
n

� 2
|an|

|cn|Vn+1
� 2

|an|
|cn|Mn+1

� 2

√
|an|
|cn| < 2

√
μn.

In the third case we have dnVn+1Vn � 2 and hence

Un � |bn|Vn+1√
3
4d2

nV
2
n+1V

2
n

� 2
|bn|
|dn|Vn

� 2

√
|bn|
|dn| < 2

√
μn.

The last proposition implies that Vn is bounded up to some constant by
max(

√μn−1,
√μn) , and Un � √μn for any n > 0. Hence, the constructed sequences

Vn and Un belong to �2 . That finishes the proof of Proposition 4.3.

Now due to Corollary 4.1 we get that two point density of F implies the diver-
gence of ∑∞

n=1|μn| , which in turn is equivalent to rank one density property of F (see
Proposition 4.2). Since rank one density implies k point density for any k , Theorem 4.1
is proved.

Acknowledgement. The author gratefully acknowledges the many helpful sugges-
tions of Anton Baranov during the preparation of the paper.

RE F ER EN C ES

[1] S. ARGYROS, M. LAMBROU AND W.E. LONGSTAFF, Atomic Boolean Subspace Lattices and Appli-
cations to the Theory of Bases, Memoirs. Amer. Math. Soc., No. 445 (1991).

[2] E. AZOFF, H. SHEHADA, Algebras generated by mutually orthogonal idempotent operators, J. Oper.
Theory, 29 (1993), 2, 249–267.

[3] A. BARANOV, Y. BELOV AND A. BORICHEV, Hereditary completeness for systems of exponentials
and reproducing kernels, Adv. Math., 235 (2013), 1, 525–554.

[4] A. BARANOV, Y. BELOV AND A. BORICHEV, Spectral synthesis in de Branges spaces, Geom. Funct.
Anal. (GAFA), 25 (2015), 2, 417–452.

[5] A.D. BARANOV, D.V. YAKUBOVICH, Completeness and spectral synthesis of nonselfadjoint one-
dimensional perturbations of selfadjoint operators, Advances in Mathematics, 302 (2016), 740–798.

[6] J.A. ERDOS, Operators of finite rank in nest algebras, J. London Math. Soc., 43 (1968), 391–397.
[7] J.A. ERDOS, Basis theory and operator algebras, In: A. Katavolos (ed.), Operator Algebras and

Application, Kluwer Academic Publishers, 1997, pp. 209–223.
[8] A. KATAVOLOS, M. LAMBROU AND M. PAPADAKIS, On some algebras diagonalized by M -bases

of �2 , Integr. Equat. Oper. Theory, 17 (1993), 1, 68–94.
[9] D. LARSON, W. WOGEN, Reflexivity properties of T

⊕
0 , J. Funct. Anal., 92 (1990), 448–467.

[10] C. LAURIE, W. LONGSTAFF, A note on rank one operators in reflexive algebras, Proc. Amer. Math.
Soc., 89 (1983), 293–297.

[11] W.E. LONGSTAFF, Operators of rank one in reflexive algebras, Canadian J. Math., 27 (1976), 19–23.



468 A. PYSHKIN

[12] G.N. RANEY, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677–680.
[13] A. PYSHKIN, Summation methods for Fourier series with respect to the Azoff-Shehada system, Inves-

tigations on linear operators and function theory. Part 43, Zap. Nauchn. Sem. POMI, 434, POMI, St.
Petersburg, 2015, 116–125; J. Math. Sci. (N. Y.), 215:5 (2016), 617–623.

(Received July 14, 2019) Alexey Pyshkin
Chebyshev Laboratory

St. Petersburg State University
14th Line V.O., 29, Saint Petersburg 199178, Russia

e-mail: aapyshkin@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


