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ON NONCOMMUTATIVE JOININGS III
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(Communicated by D. R. Farenick)

Abstract. This paper is a continuation of our investigation on noncommutative joinings, contain-
ing a study of disjointness of induced representations, topology on the space of noncommutative
( relative) joinings, a semitopological semigroup structure on ( relative) self-joinings, and new
examples.

1. Introduction

This paper is a continuation of [2, 3], in which we studied noncommutative join-
ings of W ∗ -dynamical systems, pursuing the theory from a correspondence point of
view, and motivated by its compatibility with the mixing phenomena essential to the
structure theory of von Neumann algebras. We continue to justify further in this paper
that our point of view is appropriate for developing a theory of noncommutative join-
ings parallel to the classical theory. All Hilbert spaces in this paper are separable and all
von Neumann algebras have separable preduals and all embeddings or inclusions of von
Neumann algebras are unital. All groups appearing in this paper are locally compact
and separable.

A W ∗ -dynamical system (or simply a system) is a tuple N = (N,ρ ,α,G) , with
N a von Neumann algebra, ρ a faithful normal state on N and α a strongly continuous
action of a group G on N by ρ -preserving automorphisms. The most commonly stud-
ied dynamical system is the one in which the group is R and the action is via modular
automorphisms (σρ

t ) because of its relations to quantum physics. We suppose that N
is acting in standard form on the GNS space L2(N,ρ) and Ωρ will denote the standard
vacuum vector. The associated inner product and norm on L2(N,ρ) are denoted by
〈·, ·〉ρ and ‖·‖ρ respectively. Further, Jρ ,Δρ will have their standard meanings. For
details on modular theory, we refer the reader to [22, 20].

Throughout the paper, N = (N,ρ ,α,G) , M = (M,ϕ ,β ,G) and B = (B,μ ,γ,G)
will denote W ∗ -dynamical systems. Whenever two or more systems are involved, the
underlying acting group will remain the same.
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DEFINITION 1.1. [2] A joining of the W ∗ -dynamical systems N and M is a
state ω on the algebraic tensor product N�Mop satisfying

ω(x⊗1op
M ) = ρ(x), (1)

ω(1N ⊗ yop) = ϕ(y),

and

ω ◦ (αg⊗β op
g ) = ω , (2)

ω ◦ (σρ
t ⊗ (σϕ

t )op) = ω ,

for all x ∈ N , y ∈ M , g ∈ G and t ∈ R . We denote by Js(N,M) the set of all joinings
of N and M .

A unital completely positive (u.c.p. henceforth) map Φ : N → M that satis-
fies ϕ ◦Φ = ρ and σϕ

t ◦Φ = Φ ◦σρ
t for t ∈ R is called a (ρ ,ϕ)-Markov map. A

(ρ ,ϕ)-Markov map Φ that satisfies βg ◦Φ = Φ ◦αg for all g ∈ G , will be called a
G-equivariant Markov map, or simply an equivariant Markov map. In [2], we proved
that joinings can be alternatively viewed (via a bijective association) as pointed corre-
spondences with extra structure, and as equivariant Markov maps (cf. Theorem 4.6 of
[2]). We denote by Jm(N,M) the collection of all equivariant Markov maps from N
to M . Note that by [2, Corollary 4.5], Jm(N,M) consists of normal maps. Under the
above association Φ ∈ Jm(N,M) corresponds to ωΦ ∈ Js(N,M) , where

ωΦ(x⊗ yop) = 〈xξΦy,ξΦ〉Φ, (3)

= 〈Φ(x)Ωϕy,Ωϕ 〉ϕ , x ∈ N and y ∈ M,

where ξΦ is the distinguished cyclic vector in the N -M Hilbert bimodule HΦ associ-
ated to Φ (see [2, §4] for details) . Note that ωΦ is normal separately in each variable.

The main result of Høegh-Krohn, Landstad and Størmer in [11] was leveraged in
[2] to obtain full characterization of weak mixing with respect to the above notion of
joining (cf. [2, Theorem 6.10, 6.15, 6.16]) , futher motivating our approach to joinings.

In [3], we considered the notion of joining of two systems over a common subsys-
tem from the point of view of correspondences. The modular symmetry appearing in [4]
of the associated u.c.p. (Markov) maps was essential for obtaining full generalizations
of classical results on relative independence of systems over a common subsystem. In
fact, by using the noncommutative analogue of disintegration of measures (bimodules
in our setting) , we demonstrated that the relatively independent joining of two systems
over a common subsystem with respect to fixed embeddings corresponds to an equiv-
ariant Markov map whose L2 -extension is a partial isometry. We also discussed relative
ergodicity and primeness of systems in our framework.

In the present paper, we record further results on noncommutative joinings and
the unitary representations they induce. We also study an appropriate topology on the
space of joinings, as well as a natural semitopological semigroup structure on non-
commutative (relative) joinings that generalizes the classical theory. This leads to a
kind of functional calculus on joinings, which yields new examples of noncommutative
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(relative) joinings. We summarize in the next few paragraphs the results obtained in
this paper.

Much of this paper is concerned with noncommutative joinings over subsystems.
So, in §2 we collect all the necessary ingredients on joinings over subsystems from [3]
that we will need. As state-preserving actions naturally induce unitary representations
of the underlying group, it is natural to try to relate disjointness of these unitary repre-
sentations to disjointness of the original systems. The former notion is the stronger of
the two, as seen in Theorem 3.1. From this, we deduce that a mixing system and a rigid
system admit no nontrivial joining (Corollary 3.4).

The analogue of the topology on the space of joinings in the classical case, defined
by convergence on measurable rectangles, is the BW-topology on completely positive
maps (Proposition 4.2). This shift in point of view reveals that the space of joinings
(when viewed as equivariant Markov maps) is compact and metrizable, which is not
immediately obvious if we work with a set of states on the algebraic tensor product, due
to lack of Banach-Alaoglu type theorem in this context (Theorem 4.4) . Thus, given
systems N,M one can now deduce that Js(N,M) is compact and metrizable in the
topology of pointwise convergence on N �Mop (Theorem 4.5) . Further, all of these
topological statements pass to joinings of two systems over a common subsystem.

The fact that equivariant Markov maps have adjoints and the adjoint operation is
BW-continuous guarantees that the self-joinings of a system (and self-joinings over
a subsystem) form an affine semitopological semigroup with continuous involution,
unique identity and unique zero such that its idempotents are precisely the conditional
expectations onto subsystems (Theorem 5.1, 5.5). We emphasize here that, if we had
not considered states invariant with respect to the doubled modular action in Definition
1.1, these results would remain inaccessible.

In Theorem 6.3, we generalize the notion of joinings over a common subsystem
to provide new examples of joinings of two W ∗ -dynamical systems. We consider an
analytic functional calculus on the semigroup of operators induced by joinings in The-
orem 6.9, which provides a machine for producing many examples of noncommutative
joinings.

2. Preliminaries

We continue to adopt the notations and hypotheses of [2, 3]. A cautious reader can
look at §2 of [2] for detailed notations and conventions, which are repeated in [3]. The
material presented in this section has some overlap with [3].

In this section, we recall facts on joinings over subsystems from [3] and record a
criterion that characterizes joinings of two systems N and M over a common subsys-
tem B as elements of Js(N,M) and Jm(N,M) . Following [3] we have:

DEFINITION 2.1. Let B and N be W ∗ -dynamical systems. We say that B is
a subsystem of N if there is an injective ∗ -homomorphism ι ∈ Jm(B,N) , and call
such a map ι an embedding of the system B into N . If M is another W ∗ -dynamical
system, we say that B is a common subsystem of N and M if there are embeddings
ιN ∈ Jm(B,N) and ιM ∈ Jm(B,M) .



472 J. P. BANNON, J. CAMERON AND K. MUKHERJEE

We note that if N is a system, and B is an α -invariant von Neumann subalgebra of
N which is the image of a normal, ρ -preserving conditional expectation EN

B , then σρ
t ◦

EN
B = EN

B ◦σρ
t for all t ∈R . Since such an expectation is necessarily unique [19], it also

commutes with the automorphisms αg for all g ∈ G. Therefore, D = (B,ρ|B,α|B,G)
defines a subsystem of N via the inclusion map of B into N. On the other hand, if
B is a subsystem of N, then the associated embedding ι : B → N necessarily satisfies
ι ◦σ μ

t = σρ
t ◦ ι for all t ∈ R, and it follows that there is a unique normal, ρ -preserving

conditional expectation EN
ι(B) : N → ι(B) (cf. Theorem 5.4 of [2]) . The uniqueness of

EN
ι(B) implies, furthermore, that αg ◦EN

ι(B) = EN
ι(B) ◦αg for all g ∈ G, so that G acts on

the von Neumann subalgebra ι(B) of N. Finally, by definition ι satisfies μ = ρ ◦ ι ,
so we can without loss of any dynamical information identify B with its image ι(B)
inside N . This identification simplifies arguments in many situations. The proof of the
following result can be found in [3, Proposition 2.5].

PROPOSITION 2.2. Let N and M be systems, and let B be a common subsystem
of N and M . Denote by ιN and ιM the respective embeddings of B into N and M ,
and ψ the state on B�Bop defined by

ψ(b1⊗bop
2 ) =

〈
b1Ωμb2,Ωμ

〉
μ , b1,b2 ∈ B.

Let Φ ∈ Jm(N,M) . Then, the following conditions are equivalent:

(i) The restriction of Φ to ιN(B) is the injective ∗ -homomorphism ιN(b) �→ ιM(b) ,
b ∈ B.

(ii) The state ω = ωΦ satisfies ω ◦ (ιN ⊗ ιop
M ) = ψ on the ∗ -algebra B�Bop , where

ιop
M is the natural map Jμb∗Jμ �→ JϕιM(b)∗Jϕ , b ∈ B, from B′ ∩B(L2(B,μ)) →
M′ ∩B(L2(M,ϕ)) .

Let (N,ρ) and (M,ϕ) be as above. Let Φ : N →M be a normal u.c.p. map. Then
there exists a normal u.c.p. map Φ∗ : M → N satisfying

ρ(Φ∗(y)x) = ϕ(yΦ(x)), y ∈ M and x ∈ N, (4)

if and only if ϕ ◦Φ = ρ and Φ◦σρ
t = σϕ

t ◦Φ for all t ∈ R [1]. The u.c.p. map Φ∗ is
said to be the Accardi-Cecchini adjoint of Φ .

DEFINITION 2.3. Let N and M be systems, and let B be a common subsystem
of N and M with embeddings ιN ∈ Jm(B,N) and ιM ∈ Jm(B,M). We say that Φ ∈
Jm(N,M) is a joining of N and M over the common subsystem B if the restriction of
Φ to ιN(B) is the ∗ -isomorphism ιM ◦ ι−1

N of ιN(B) with ιM(B) ( i.e., Φ satisfies the
equivalent conditions of Proposition 2.2) . Denote by JB,m(N,M) the collection of all
joinings of N and M over the common subsystem B .

Note that JB,m(N,M) is nonempty and ιM ◦ ι∗N ∈ JB,m(N,M) . The joining ιM ◦
ι∗N ∈ JB,m(N,M) is called the relatively independent joining of N and M over B .
Though ‘relative disjointness’ will not be studied in this paper, we state its definition
for the sake of completeness.



ON NONCOMMUTATIVE JOININGS III 473

DEFINITION 2.4. Let N and M be systems, and let B be a common subsys-
tem of N and M with embeddings ιN ∈ Jm(B,N) and ιM ∈ Jm(B,M) . We say
that the systems N and M are relatively independent over B (or disjoint over B)
if JB,m(N,M) = {ιM ◦ ι∗N} .

For an algebraic characterization of relatively independent joinings, check [3, The-
orem 3.3].

PROPOSITION 2.5. Let B be a common subsystem of two systems N and M
with respect to embeddings ιN and ιM respectively. Let Φ ∈ JB,m(N,M) . Then, Φ∗ ∈
JB,m(M,N) .

For a proof of Proposition 2.5, see [3, Proposition 2.8].
Thus, we have the following result which generalizes disintegration of measures

to obtain joinings over subsystems and this result will be useful throughout the paper.

THEOREM 2.6. (Disintegration of bimodules) Let N and M be systems, and
let B be a common subsystem of N and M with embeddings ιN ∈ Jm(B,N) and
ιM ∈ Jm(B,M) . Let EN

ιN (B) and EM
ιM(B) respectively denote the ρ and ϕ preserving

faithful normal conditional expectations onto ιN(B) and ιM(B) . Then

JB,m(N,M) = {Φ ∈ Jm(N,M) : ΦE
N
ιN (B) = E

M
ιM(B)ΦE

N
ιN (B) = ιM ◦ ι−1

N ◦ ι∗N ,

Φ∗
E

M
ιM(B) = E

N
ιN (B)Φ

∗
E

M
ιM(B) = ιN ◦ ι−1

M ◦ ι∗M}.

Moreover, the bijective correspondence Jm(N,M) � Φ j�→ ωΦ ∈ Js(N,M) ( in Theo-
rem 4.6 [2]) restricted to JB,m(N,M) establishes a bijective correspondence between
JB,m(N,M) and

JB,s(N,M) = {ω ∈ Js(N,M) : ω j−1ω(ιN(b1)⊗ ιop
M (bop

2 )) = 〈b1Ωμb2,Ωμ〉μ ,

b1,b2 ∈ B}.

Proof. The proof follows easily from Propositions 2.2, 2.5 and Definition 2.3. �

REMARK 2.7. (i) Observe that JB,s generalizes the classical notion of joinings
over subsystems as measures. In the classical case, joinings over subsystems are mea-
sures obtained via disintegration of measures over the common factor [9, pp. 130].
(ii) Note that, when B=C , then JB,m(N,M)=Jm(N,M) and JB,s(N,M)=Js(N,M) .
(iii) We will denote j−1ω for ω ∈ Js(N,M) (appearing in Theorem 2.6) by Φω .
Thus, combining with Eq. (3), it follows that ωΦω = ω .

The following result is a direct consequence of Theorem 2.6 and will be useful in
§5.

THEOREM 2.8. Let B be a subsystem of a system N with embedding ι . Then

JB,m(N,N) = {Φ ∈ Jm(N,N) : ΦE
N
ι(B) = E

N
ι(B)Φ = E

N
ι(B)}.
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3. Associated unitary representations of groups

In this section, we relate the disjointness of representations of groups to the dis-
jointness of W ∗ -dynamical systems. This leads us to consider connections of the repre-
sentation theory of full group C∗ -algebras with our joining theory. Thus, the results of
this section further show that noncommutative joining theory can be approached from
several interconnected viewpoints.

Let (π1,H1) and (π2,H2) be two unitary representations of a group G . Recall
that (π1,H1) is (unitarily) equivalent (resp. subequivalent) to (π2,H2) written π1 ∼
π2 (resp. π1 � π2) , if there exists a unitary (resp. isometry) U : H1 → H2 such
that Uπ1(·)U∗ = π2(·) (resp. Uπ1(·)U∗ = π2(·)UU∗) . They are said to be disjoint,
if no subrepresentation of π1 is equivalent to a subrepresentation of π2 . Note that
disjointness of unitary representations generalizes the notion of singularity of measures.

Recall that any unitary representation of a group G on a Hilbert space induces a
canonical representation of C∗(G) by the universal property. Thus, the study of G-
equivariant quantum channels is naturally tied to the study of intertwiners of pairs of
representations of C∗(G) . For detailed information on quantum channels see [10].

Let N and M be von Neumann algebras equipped with faithful normal states ρ
and ϕ respectively. Let Φ : N → M be a u.c.p. map such that ϕ ◦Φ = ρ . Define the
L2 -extension of Φ as TΦ : L2(N,ρ)→ L2(M,ϕ) by TΦ(xΩρ) = Φ(x)Ωϕ for all x∈ N .
By Kadison-Schwarz inequality TΦ is bounded and ‖TΦ‖ = 1.

Let N and M be systems, and let Φ ∈ Jm(N,M) . Then Φ ◦αg = βg ◦Φ and
Φ ◦σρ

t = σϕ
t ◦Φ for all g ∈ G and t ∈ R . Fix g ∈ G . Since αg ∈ Aut(N,ρ) (resp.

βg ∈ Aut(M,ϕ)) , so αg (resp. βg) is implemented on L2(N,ρ) (resp. L2(M,ϕ))
by an unique unitary Ug (resp. Vg) satisfying Ug(xΩρ) = αg(x)Ωρ , x ∈ N (resp.
Vg(yΩϕ) = βg(y)Ωϕ , y ∈ M) . It is easy to check that πU : g �→Ug (resp. πV : g �→Vg)
is a strongly continuous unitary representation of G on L2(N,ρ) (resp. L2(M,ϕ)) .
Similarly, when the action of G is replaced by the action of R by modular auto-
morphisms, the associated unitary representation on L2(N,ρ) (resp. L2(M,ϕ)) is
πΔρ : t �→ Δit

ρ (resp. πΔϕ : t �→ Δit
ϕ) for t ∈ R . Thus, for g ∈ G and t ∈ R , we have

TΦUg = VgTΦ; (5)

TΦΔit
ρ = Δit

ϕTΦ.

We have the following analogue of a classical theorem related to spectral measures.

THEOREM 3.1. Let N and M be two W ∗ -dynamical systems such that the asso-
ciated representations π0

U : g �→Ug|CΩρ⊥ and π0
V : g �→ Vg|CΩϕ⊥ of G on L2(N,ρ)�

CΩρ and L2(M,ϕ)�CΩϕ respectively are disjoint. Then Jm(N,M) is trivial, i.e. the
systems are disjoint.

Proof. Let H0 = L2(N,ρ)�CΩρ and H ′
0 = L2(M,ϕ)�CΩϕ . Then, H0 and

H ′
0 are respectively reducing subspaces of πU and πV . Let PH0 and PH ′

0
denote the

orthogonal projections onto H0 and H ′
0 respectively, and let Φ ∈ Jm(N,M) . Hence,
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from Eq. (5), we have TΦUg = VgTΦ , for all g ∈ G . Thus,

TΦPH0Ug = TΦUgPH0 = VgTΦPH0 , g ∈ G.

With T0 = TΦPH0 , we have T0Ug = VgT0 for all g ∈ G . By a standard result in unitary
representation theory (cf. Proposition A.1.4 [5]) , there exists a partial isometry W
with initial space Ker(T0)⊥ and final space Ran(T0) such that WUg = VgW , for all
g ∈ G . Note that Ker(T0)⊥ and Ran(T0) are both invariant with respect to π0

U and π0
V

respectively. However, the hypothesis forces that Ker(T0) = H0 . Since ϕ ◦Φ = ρ , it
follows that Φ(x) = ρ(x)1M . �

In order to avoid confusion regarding the term “disjoint” arising from two contexts,
in this section we will say that Jm(N,M) is trivial if Jm(N,M) = {ρ(·)1M} .

COROLLARY 3.2. If Jm(N,M) is nontrivial, then πU and πV have nontrivial
equivalent subrepresentations.

REMARK 3.3. We remark that the converse of Corollary 3.2 is false. There exists
a Gaussian automorphism with countable Lebesgue spectrum and zero entropy [15].
Note that K -automorphisms have countable Lebesgue spectrum as well but are of com-
pletely positive entropy (equivalently, they have trivial Pinsker σ -algebra) [17]. How-
ever, it is known that zero entropy systems and K -systems are disjoint [13].

For a countable discrete group G , a W ∗ -dynamical system M is rigid if
{Vg : g ∈ G}s.o.t.

is not a discrete subgroup of U (L2(M,ϕ)) . In the next result (Corol-
lary 3.4), G is assumed to be countable and discrete. Further, M is said to be mixing
if

ϕ(yβg(x)) → ϕ(y)ϕ(x), as g → ∞, for all x,y ∈ M.

COROLLARY 3.4. If N is a mixing system and M is a rigid system, then Jm(N,M)
is trivial.

Proof. By Theorem 3.1, it is enough to show that the representations π0
U and π0

V

are disjoint. Let p ∈
(

πU(C∗(G))
)′

and q ∈
(

πV (C∗(G))
)′

be projections that satisfy

pΩρ = 0, qΩϕ = 0 and πU |p(L2(N,ρ)) ∼ πV |q(L2(M,ϕ)) . By the hypothesis, πU(g)p w.o.t.→ 0

as g→ ∞ , i.e., given ζ1,ζ2 ∈ L2(N,ρ)�CΩρ and ε > 0, there exists a finite set F ⊆G
such that |〈πU(g)pζ1,ζ2〉| < ε for all g ∈ G \ F . On the other hand, there exists a

unitary W ∈ B(L2(M,ϕ)) and a sequence {gn}n in G such that W �= πV (gn)
s.o.t.→ W as

n→ ∞ . Thus, πV (gn)q
s.o.t.→ Wq as n→ ∞ . This contradicts the fact that πU |p(L2(N,ρ)) ∼

πV |q(L2(M,ϕ)) . Thus, p = 0 and q = 0. Consequently, Jm(N,M) is trivial by Theorem
3.1. �

Letting π0
Δρ

and π0
Δϕ

denote the obvious subrepresentations of R on L2(N,ρ)�
CΩρ and L2(M,ϕ)�CΩϕ associated respectively with πΔρ and πΔϕ , the following
result is evident. We leave the proof to the reader.
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THEOREM 3.5. If π0
Δρ

and π0
Δϕ

are disjoint, then Jm(N,M) is trivial.

REMARK 3.6. (i) Eq. (5) directly implies that whenever Φ ∈ Jm(N,M) , it fol-
lows that Φ◦ENρ = EMϕ ◦Φ , i.e., joinings respect the centralizers of the states. Thus,
if ρ is a trace and ϕ is such that Mϕ = C1M (forcing M is a type III1 factor unless
M = C) , then the systems N and M are disjoint regardless of the group and the action.
(ii) The notion of spectral state of an unitary representation of a locally compact sep-
arable group G was defined in [14] to be a state on C∗(G) which encodes the spectral
properties of the representation. It is obvious that two representations of G are disjoint
when the associated states on C∗(G) yield GNS representations which have no non-
zero equivalent sub-representations. Thus, disjointness of representations can also be
discussed under the light of spectral states.
(iii) Other basic disjointness results of systems have been covered in [2]. Note that
the induced representations of G on the orthocomplement of the vacuum vectors corre-
sponding to compact and weakly mixing systems are disjoint, and this can be argued via
spectral states (see for instance Theorem 5.17 [14]) . This provides a different view-
point to the fact that there is no nontrivial joining between compact and weakly mixing
systems.

4. Topology on joinings

In [2, 3] and so far in this paper, we have studied single joining at a time. From
this section onward, we study the collection of all joinings of N and M , viewed either
as states in Js(N,M) or as u.c.p. maps in Jm(N,M) . We will see that the topology
on joinings in the classical case (given by convergence on measurable rectangles) is
recovered via the BW-topology on Jm(N,M) and so the BW-topology is the appropri-
ate generalization of the natural topology on classical joinings. To keep the results as
general as possible, we will topologize the collection of joinings of two systems over a
common subsystem with fixed embeddings.

Let us first recall some basic facts about the BW-topology. Let X be a Banach
space, and let H be a Hilbert space. Then a bounded net {Lλ}λ in B(X ,B(H ))
converges in the BW-topology to L ∈ B(X ,B(H )) if and only if, 〈Lλ (x)ξ ,η〉H con-
verges to 〈L(x)ξ ,η〉H for all ξ ,η ∈ H and x ∈ X (cf. Proposition 7.3 [16]) . The
BW-topology is Hausdorff. If N and M are von Neumann algebras with M ⊆ B(H ) ,
then by Proposition 7.4 of [16], CP(N,M) = {Φ : N → M | Φ is u.c.p.} is compact in
the BW-topology. It is a standard fact that the BW-topology on CP(N,M) is indepen-
dent of the Hilbert space on which M acts faithfully.

PROPOSITION 4.1. Let N and M be von Neumann algebras and let ρ and ϕ be
faithful normal states on N and M respectively. Let

CP(N,M,ρ ,ϕ) = {Φ : N → M | Φ is u.c.p. and ϕ ◦Φ = ρ}.

Then CP(N,M,ρ ,ϕ) is compact and metrizable in the BW-topology.
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Proof. First note that Φ ∈ CP(N,M,ρ ,ϕ) is normal by the proof of Corollary

4.5 of [2]. Let {Φλ}λ be a net in CP(N,M,ρ ,ϕ) such that Φλ
BW→ Φ ∈ CP(N,M) .

Then for each x ∈ N , the net {Φλ (x)}λ in M is bounded and converges to Φ(x) in

the weak operator topology (w.o.t. in the sequel) , and consequently Φλ (x) w∗→ Φ(x) .
Since ϕ is normal, ϕ(Φ(x)) = ϕ(lim

λ
Φλ (x)) = lim

λ
ϕ(Φλ (x)) = ρ(x) . This proves that

CP(N,M,ρ ,ϕ) is a closed subset of a compact Hausdorff space and is thus compact.
Since N and M have separable preduals, CP(N,M,ρ ,ϕ) is metrizable in the BW-

topology. In fact, note that N contains a w∗ -dense norm separable C∗ -subalgebra B
(Lemma 14.1.17, KRII) . Given any dense sequence {ξn} in the unit ball of L2(M,ϕ)
and any w∗ -dense sequence {xn} in the unit ball of B (by Kaplansky density theorem) ,
define a metric d on CP(N,M,ρ ,ϕ) by

d(Φ,Ψ) = ∑
n,k,l∈N

1
2n+k+l

∣∣〈Φ(xn)ξk,ξl〉ϕ −〈Ψ(xn)ξk,ξl〉ϕ
∣∣ ,

for all Φ,Ψ ∈CP(N,M,ρ ,ϕ) . The identity map i : (CP(N,M,ρ ,ϕ),BW ) →
(CP(N,M,ρ ,ϕ),d) is a continuous and bijective map from a compact space to a metriz-
able space, and is therefore a homeomorphism. �

Therefore, in view of Proposition 4.1, we will work with sequences of u.c.p. maps
while dealing with convergence in the BW-topology.

We will now justify that the BW-topology generalizes the topology on joinings
in the classical case. If N and M are abelian with faithful normal states ρ and ϕ
respectively, then there are Borel probability spaces (X ,μ) and (Y,ν) , with X and Y
being compact and metrizable spaces such that N ∼= L∞(X ,μ) , M ∼= L∞(Y,ν) , ρ =∫
X · dμ and ϕ =

∫
Y · dν . If Φ : L∞(X ,μ) → L∞(Y,ν) is unital and positive, then it is

u.c.p., and thus there exists a unique Borel probability measure ηΦ on X ×Y such that

(πX )∗ηΦ � μ , (6)∫
Y

gΦ( f )dν =
∫

X×Y
( f ⊗g)dηΦ, f ∈ L∞(X ,μ),g ∈ L∞(Y,ν).

Note that in this case, it is automatic that (πY )∗ηΦ = ν and (πX)∗ηΦ = ν ◦Φ .

PROPOSITION 4.2. If Φn,Φ∈CP(L∞(X ,μ),L∞(Y,ν),μ ,ν) , for n � 1 , then Φn →
Φ in the BW-topology if and only if ηΦn(A×B) → ηΦ(A×B) for all measurable sub-
sets A ⊆ X and B ⊆ Y .

Proof. If A ⊆ X and B ⊆ Y are measurable, then Φn → Φ in the BW-topology

implies Φn(χA) w∗→ Φ(χA) and therefore ν(χBΦn(χA)) → ν(χBΦ(χA)) . By Eq. (6), it
follows that ηΦn(A×B)→ ηΦ(A×B) .

For the converse, fix a measurable set B ⊆ Y and f ∈ L∞(X ,μ) . Given ε > 0,
there exists a simple function s ∈ L∞(X ,μ) such that ‖ f − s‖∞ < ε . By the hypothesis
and Eq. (6) choose n0 such that

|ν(χBΦn(s))−ν(χBΦ(s))| < ε
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for all n � n0 . Then Eq. (6) yields that for all n � n0 ,

|ν(χBΦn( f ))−ν(χBΦ( f ))|
� |ν(χBΦn( f − s))|+ |ν(χB(Φn(s)−Φ(s)))|+ |ν(χBΦ(s− f ))|
< 3ε.

Thus, ν(χBΦn( f )) → ν(χBΦ( f )) for all f ∈ L∞(X ,μ) and for all measurable subsets
B ⊆ Y . Using the fact that {Φn( f )} is norm-bounded in L∞(Y,ν) and that simple
functions are dense in L1(Y,ν) , a similar triangle inequality argument as the above
shows that ν(gΦn( f )) → ν(gΦ( f )) for all f ∈ L∞(X ,μ) and g ∈ L1(Y,ν) . Thus,
Φn → Φ in the BW-topology. �

Thus, in view of Proposition 4.2 and Theorem 6.2 of Chap. 6 [9], the BW-topology
generalizes the topology on joinings in the classical case.

The following proposition is an interesting fact in its own right and will be of use
in this section.

PROPOSITION 4.3. Let M(N,M,ρ ,ϕ) denote the collection of all (ρ ,ϕ)-Markov
maps from N to M . If Φn ∈ M(N,M,ρ ,ϕ) and Φn → Φ ∈CP(N,M,ρ ,ϕ) in the BW-
topology, then Φ∈M(N,M,ρ ,ϕ) and Φ∗

n →Φ∗ in the BW-topology of CP(M,N,ϕ ,ρ) .

Proof. First, let Ψn ∈ CP(N,M,ρ ,ϕ) be such that Ψn → Ψ ∈ CP(N,M,ρ ,ϕ)

in the BW-topology. Then, Ψn(x)
w∗→ Ψ(x) for each x ∈ N . So, 〈Ψn(x)ξ ,η〉ϕ →

〈Ψ(x)ξ ,η〉ϕ for all ξ ,η ∈ L2(M,ϕ) . Consider the L2 -extension of u.c.p. maps defined
in §3. Consequently,

〈TΨn(xΩρ),η〉ϕ = 〈Ψn(x)Ωϕ ,η〉ϕ → 〈Ψ(x)Ωϕ ,η〉ϕ = 〈TΨ(xΩρ),η〉ϕ ,

for all x ∈ N and η ∈ L2(M,ϕ) . Since supn ‖TΨn‖ < ∞ , it follows that TΨn → TΨ in
the w.o.t .

It is routine to check that Φ ∈ M(N,M,ρ ,ϕ) . Note that by Eq. (4) and the discus-
sion following it, Φ∗

n and Φ∗ exist and they are (ϕ ,ρ)-Markov maps from M to N .
Further, from Eq. (4) it follows that

T ∗
Φ = TΦ∗ . (7)

Fix x,z ∈ N and y ∈ M . Therefore,

〈Φ∗
n(y)Ωρx,Ωρz〉ρ = 〈Ωρx,Φ∗

n(y
∗)Ωρz〉ρ

= 〈Ωρx,Φ∗
n(y

∗)Jρz∗Jρ Ωρ〉ρ

= 〈Ωρxz∗,Φ∗
n(y

∗)Ωρ〉ρ

= 〈Ωρxz∗,TΦ∗
n
(y∗Ωϕ)〉ρ

= 〈TΦn(Ωρxz∗),y∗Ωϕ〉ϕ (by Eq. (7))
→ 〈TΦ(Ωρxz∗),y∗Ωϕ〉ϕ

= 〈Ωρxz∗,TΦ∗(y∗Ωϕ)〉ρ (by Eq. (7))
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= 〈JρzJρ Ωρx,Φ∗(y∗)Ωρ〉ρ

= 〈Φ∗(y)Ωρx,Ωρz〉ρ .

Since supn ‖Φ∗
n(y)‖ < ∞ , conclude that Φ∗

n(y) → Φ∗(y) in w.o.t. and hence in the
w∗ -topology. Thus, Φ∗

n → Φ∗ in the BW-topology. �

THEOREM 4.4. Let N and M be systems, and let B be a common subsystem of
N and M with embeddings ιN ∈ Jm(B,N) and ιM ∈ Jm(B,M) . Then JB,m(N,M) is
a compact metrizable space in the BW-topology.

Proof. Note that by Theorem 2.6 and Proposition 4.3, it follows that the subset
JB,m(N,M) of CP(N,M,ρ ,ϕ) is BW-closed, and the latter is compact and metrizable
in the BW-topology by Proposition 4.1. �

The BW-topology on Jm(N,M) induces a topology on the space Js(N,M) . We
explicitly describe a basis for this topology which will be of use in this paper. Let
ω ∈ Js(N,M) . By Eq. (3), for all x ∈ N,y ∈ M ,

ω(x⊗ yop) = 〈Φω (x)Ωϕy,Ωϕ〉ϕ . (8)

We see that Eq. (8) generalizes Eq. (6) using [2, Eq. (5)]. Thus for ω0 ∈ Js(N,M)
and finite subsets E ⊆ N and F ⊆ M and ε > 0, define a basic open neighborhood
N(ω0,E,F,ε) of ω0 by N(ω0,E,F,ε) = {ω ∈ Js(N,M) : |ω(x⊗ yop)−ω0(x⊗ yop)|<
ε,∀x∈E, ∀ y∈F} . Generate a topology T on Js(N,M) with this family of basic open
neighborhoods. It is evident that T is Hausdorff. The convergence of elements with
respect to T is clear.

THEOREM 4.5. Let N and M be systems, and let B be a common subsys-
tem of N and M with embeddings ιN ∈ Jm(B,N) and ιM ∈ Jm(B,M) . The map
Λ : (Jm(N,M),BW ) → (Js(N,M),T) defined by Λ(Φ) = ωΦ (cf. Eq. (3)) is an
affine homeomorphism, i.e., a homeomorphism that preserves convex combinations.
Consequently, (Js(N,M),T) is compact and metrizable with a T -compatible metric d̃
defined for ω1,ω2 ∈ Js(N,M) , by d̃(ω1,ω2) = d(Λ−1(ω1),Λ−1(ω2)) , where d is the
metric defined in Proposition 4.1. Further, Λ restricted to JB,m(N,M) is a homeomor-
phism between (JB,m(N,M),BW ) and (JB,s(N,M),T) . Consequently, JB,m(N,M)
and JB,s(N,M) are also respectively compact and metrizable in the BW -topology and
T .

Proof. Note that both Jm(N,M) and Js(N,M) are convex sets. That Λ is bijec-
tive follows from [2, Theorem 4.6].

We now proceed to show that Λ is continuous. Indeed, let Jm(N,M)� Φn
BW→ Φ ∈

Jm(N,M) and let x ∈ N and y ∈ M . Then,

ωΦn(x⊗ yop) = 〈Φn(x)Ωϕy,Ωϕ 〉ϕ → 〈Φ(x)Ωϕy,Ωϕ 〉ϕ = ωΦ(x⊗ yop),

i.e., ωΦn → ωΦ in T . Thus, Λ is continuous. As Jm(N,M) is compact (see Theorem
4.4) and T is Hausdorff, it follows that Λ is a homeomorphism. This homeomorphism
is clearly an affine map.
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The statements regarding JB,m(N,M) and JB,s(N,M) are direct consequences
of Theorem 2.6 and Theorem 4.4. We omit the details. �

5. Semigroup structure on joinings

In this section, we study algebraic and topological structures on Jm(N,M) and
Js(N,M) and their relative counterparts. From the operator algebra point of view, it is
natural to take advantage of the rich theory of u.c.p. maps. To simplify notations, we
use CP(N,ρ),M(N,ρ) to denote CP(N,N,ρ ,ρ) and M(N,N,ρ ,ρ) , respectively.

A compact semitopological semigroup is a compact Hausdorff space S equipped
with a semigroup structure, i.e., an associative multiplication S× S � (t,s) �→ ts ∈ S ,
such that the left and right multiplications on S are separately 1 continuous. Then, S
has idempotents, i.e., E(S) = {s ∈ S : s2 = s} �= /0 and has a minimal ideal M(S) which
is a paragroup (cf. pp. 46 [6] for definitions) . If S has a unique zero (both right and
left) , then M(S) is unique and is the zero element, thus the paragroup above collapses
to a point.

An affine semigroup is a semigroup structure on a convex set S such that the
maps t �→ ts and t �→ st from S to itself are affine for all s ∈ S . If S is a compact
semitopological affine semigroup, then every unit (invertible element) is an extreme
point of S . For a gentle introduction to affine semigroups see Chapter II [6].

THEOREM 5.1. Let B be a subsystem of N . There is a BW-continuous invo-
lution ∗ : M(N,ρ) → M(N,ρ) which leaves JB,m(N,N) invariant such that - (i)
(ΦΨ)∗ = Ψ∗Φ∗ , (ii) (Φ∗)∗ = Φ for Φ,Ψ ∈ M(N,ρ) , (iii) ∗ distributes over con-
vex combinations. Regarding the composition of u.c.p. maps as multiplication, the sets
CP(N,ρ) (resp. M(N,ρ) and JB,m(N,N)) are BW-compact semitopological affine
(resp. BW-compact semitopological affine continuously involutive) semigroups with
unique identity and unique zero.

Proof. First note that CP(N,ρ),M(N,ρ) and JB,m(N,N) are convex sets (use
Theorem 2.6) . The Accardi-Cecchini adjoint is an involution on M(N,ρ) (see Eq.
(4)) . From Theorem 4.7 of [2], it follows that the involution leaves Jm(N,N) invariant.
Thus, Jm(N,N) inherits the involution from M(N,ρ) . The continuity of ∗ follows
from Proposition 4.3.

Let Φ,Ψ ∈ M(N,ρ) . To establish (i) , note that Eq. (4) yields

ρ((ΦΨ)∗(y)x) = ρ(y(ΦΨ)(x)) = ρ(yΦ(Ψ(x))) = ρ(Φ∗(y)Ψ(x))
= ρ(Ψ∗(Φ∗(y))x) = ρ((Ψ∗Φ∗)(y)x), x,y ∈ N.

Thus (i) follows. Similar arguments prove (ii) and (iii) .
Let ι be the embedding associated to the subsystem B of N and let E

N
ι(B) de-

note the ρ -preserving conditional expectation from N onto ι(B) . By Theorem 2.6, it

1Note: We use the term ‘semitopological semigroup’ to indicate a semigroup in which the multiplication
is separately continuous, rather than being jointly continuous. Semigroups satisfying the latter condition are
often called ‘topological semigroups’. There are occasions when separate continuity implies joint continuity,
but as far as we know, it is an open problem to characterize this phenomenon.
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follows that EN
ι(B) ∈ JB,m(N,N) and by Theorem 2.8, it follows that JB,m(N,N) is

closed with respect to ∗ .
Clearly, CP(N,ρ) and M(N,ρ) are closed with respect to multiplication. Let

Φ,Ψ ∈ JB,m(N,N) . Then,

ΦΨE
N
ι(B) = ΦE

N
ι(B)Ψ = E

N
ι(B)ΦΨ = E

N
ι(B).

This proves that JB,m(N,N) is closed with respect to the multiplication. The associa-
tivity of the multiplication is obvious. The fact that the left and right multiplications are
affine are straightforward observations.

It is obvious that M(N,ρ) is a closed subset of CP(N,ρ) . Thus, compactness of
the convex sets in the statement follow from Propositions 4.1 and 4.4.

The identity map on N is clearly the identity in each case. Again, the map Φ :
N → N defined by Φ(x) = ρ(x)1N is a two-sided zero of both CP(N,ρ) and M(N,ρ) .
Further, note that EN

ι(B) is a two-sided zero of JB,m(N,N) . Uniqueness of the zero and
identity are routine checks.

We now establish separate continuity of multiplication. By Proposition 4.1, it is
enough to work with sequences. Let CP(N,ρ) � Φn → Φ ∈ CP(N,ρ) in the BW -

topology. Fix x ∈ N . Then, Φn(x)
w∗→ Φ(x) . Since Ψ ∈CP(N,ρ) is normal [2, Corol-

lary 4.5], Ψ(Φn(x))
w∗→ Ψ(Φ(x)) , i.e., ΨnΦ → ΨΦ in the BW-topology. The continuity

of the right multiplication follows similarly. This completes the proof. �

REMARK 5.2. The semigroup structure on Jm(N,N) induces a semigroup struc-
ture on Js(N,N) and

Jh(N,N) = {NHΦN is cyclic bimodule arising from Φ : Φ ∈ Jm(N,N)},
which may be regarded as some sort of convolution of states or bimodules as the case
may be. Under this association, the product state given for all x,y ∈ N by ω(x⊗yop) =
ρ(x)ρ(y) (whose bimodule is the coarse correspondence) is the zero and the identity
is given by id(x⊗ yop) = 〈xJρy∗Jρ Ωρ ,Ωρ〉ρ for all x,y ∈ N (whose bimodule is the
trivial correspondence) . Also note that the Accardi-Cecchini adjoint in Eq. (4) enables
one to define an adjoint operation on the associated state spaces using Theorems 4.3,
4.4 and 4.7 of [2], which will be denoted by ∗ as well (a slight abuse of notation) .

For ω ∈ Js(N,N) , to establish a formula for ω∗ , we need elements of modular
theory.

Thus, for ω ∈ Js(N,N) using [2, Theorem 4.1] and following Eq. (3) one has

ω∗(x⊗ yop) = 〈Φ∗
ω (x)Ωρy,Ωρ〉ρ

= ρ(Φ∗
ω (x)σρ

− i
2
(y)) [8, Eq. (6)]

= ρ(xΦω (σρ
− i

2
(y))) (by Eq. (4))

= ρ(xσρ
− i

2
(Φω (y))) (by Lemma 2.2 [3])

= 〈Δ
1
2
ρ Φω (y)Ωρ ,x∗Ωρ〉ρ
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= 〈Φω (y)Ωρ ,Δ
1
2
ρ x∗Ωρ〉ρ

= 〈Φω (y)Ωρ ,JρxΩρ〉ρ

= 〈Φω (y)Ωρx,Ωρ 〉ρ

= ω(y⊗ xop), for all x ∈ N, y ∈ ∩z∈CD(σρ
z ).

By density of ∩z∈CD(σρ
z ) (see [23, §9.24]) in N and the fact that ω and ω∗ are

normal in each variable, it follows that

ω∗(x⊗ yop) = ω(y⊗ xop), for all x,y ∈ N. (9)

The following result may be known to experts, but we include it for completeness,
since it exposes a fundamental link with the origin of the theory of joinings. Namely,
the result asserts that idempotent elements of CP(N,ρ) correspond to subsystems with
the canonical embedding. Particularly this asserts that, in some sense, the difference
between disjointness and lack of common subsystem is encoded in the failure of agree-
ment of the Choi-Effros product and the product in N . We also remark that this result
asserts that the essential hypothesis of state-preservation for a self-joining forces one
to consider modular invariant u.c.p. maps, and not simply stationary couplings as con-
sidered by Sauvageot and Thouvenot [18]. Analogues of the following result using
generalized conditional expectations appear to be inaccessible.

THEOREM 5.3. Let N be a von Neumann algebra with a faithful normal state
ρ . Let Φ ∈ CP(N,ρ) be such that Φ = Φ2 . Then Φ is the ρ -preserving conditional
expectation onto Φ(N) = N∩{TΦ}′ . Consequently, Φ◦σρ

t = σρ
t ◦Φ for all t ∈ R and

Φ = Φ∗ .

Proof. Note that by Lemma 6.4 of [2], the algebra of harmonic elements (cf. [12])

B = {x ∈ N : Φ(x) = x} (10)

= {x ∈ N : Φ(xy) = xΦ(y), Φ(yx) = Φ(y)x ∀y ∈ N}

is a von Neumann subalgebra of N . Moreover, Φ2 = Φ implies that Φ(N) = B . So
Φ : N → N is a projection of norm one whose image is B and Φ is also a B-bimodule
map. By a well known theorem of Tomiyama [21], Φ is a conditional expectation onto
B . But since ρ ◦Φ = ρ , by [19] it follows that Φ = EB , where EB is the unique normal
ρ -preserving conditional expectation onto B . Note that xTΦ = TΦx for all x ∈ B , and
hence B ⊆ {TΦ}′ ∩N . Conversely, {TΦ}′ ∩N ⊆ B follows from Eq. (10).

By [19], it follows that EB commutes with σρ
t for all t ∈ R . Finally, it is clear

that EB = E∗
B . �

REMARK 5.4. Note that by Proposition 2.5, we have JB,m(M,N) = {Φ∗ : Φ ∈
JB,m(N,M)} . The ∗ operation between Jm(N,M) and Jm(M,N) induces (as above)
a ∗ operation between Js(N,M) and Js(M,N) , namely, for ω ∈ Js(N,M) , define

ω∗(y⊗ xop) = 〈Φ∗
ω (y)Ωρx,Ωρ〉ρ , x ∈ N,y ∈ M. (11)
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Like Eq. (9), it can be shown that

ω∗(y⊗ xop) = ω(x⊗ yop), x ∈ N,y ∈ M. (12)

Consequently, there is a topology T∗ on Js(M,N) analogous to T on Js(N,M)
which is compatible with the BW-convergence on Jm(M,N) .

Further, if B is a common subsystem of N and M , it is routine to check that
the map Λ : JB,m(N,M) → JB,s(N,M) defined in Theorem 4.5 preserves ∗ and by
Theorem 4.3 and Eq. (11), Eq. (12) it is obvious that ∗ : JB,s(N,M) → JB,s(M,N) is
(T,T∗) continuous.

The following result, along with those in §4 and Theorem 5.1, generalize Theorem
6.13 of [9]. This together with other results in this section and those in [2, 3] reinforces
that our way of defining joinings is appropriate. The reader should notice that because
of Theorem 5.3, we can safely drop the term ‘self-adjoint’ in statement 2 of Theorem
6.13 of [9].

THEOREM 5.5. Let B be a subsystem of N with embedding ι . The map Λ :
(JB,m(N,N),BW ) → (JB,s(N,N),T) defined by Φ �→ ωΦ is a ∗ -preserving homeo-
morphism of compact semitopological affine continuously involutive semigroups with
unique identity and zero. If Φ ∈ JB,m(N,N) is an idempotent, then there exists a
unique von Neumann subalgebra BΦ ⊆ N such that:

• ι(B) ⊆ BΦ;

• αg(BΦ) = BΦ , for all g ∈ G;

• there exists a faithful normal ρ -preserving conditional expectation Φ = EN
BΦ

:
N → BΦ .

Further, every α and (σρ
t ) invariant subalgebra of N containing ι(B) corresponds to

a unique idempotent of JB,m(N,N) . Every idempotent in JB,m(N,N) is self-adjoint.
When G = {1} or the actions are trivial, there are analgous statements for the

space of cyclic N -N correspondences and associated states.

Proof. By Theorem 5.1, it follows that JB,m(N,N) is ∗ -closed. Fix
Φ ∈ JB,m(N,N) . Thus, by Remark 5.4 one has,

(Λ(Φ))∗(y⊗ xop) = (ωΦ)∗(y⊗ xop)
= 〈Φ∗(y)Ωρx,Ωρ〉ρ

= ωΦ∗(y⊗ xop)
= Λ(Φ∗)(y⊗ xop), x,y ∈ N.

Thus, Λ is ∗ -preserving. Thus, the first part of the statement follows from Theorems
4.5 and 5.1.

Note that the collection of idempotents in JB,m(N,N) is not empty as id and EN
ι(B)

are idempotents. Let Φ∈ JB,m(N,N) be such that Φ = Φ2 . By Theorem 5.3, it follows
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that Φ = EN
{TΦ}′∩N . Note that EN

{TΦ}′∩N commutes with α and (σρ
t ) , and therefore

Φ corresponds to the subsystem ({TΦ}′ ∩N,ρ|{TΦ}′∩N ,α|{TΦ}′∩N ,G) with the obvious
embedding. Put BΦ = {TΦ}′ ∩N . Note that Φ is identity on ι(B) , thus ι(B) ⊆ BΦ .
Then, BΦ satisfies all the desired properties.

Conversely, let D ⊆ N be a α and (σρ
t ) invariant subalgebra of N containing

ι(B) . Clearly, EN
D ∈ JB,m(N,N) is idempotent. Uniqueness is obvious.

The remaining statements are routine, and we leave the details to the reader. �
A face of a convex set A is a non-empty subset F of A with the property that if

p,q ∈ A and θ ∈ (0,1) , and θ p+(1−θ )q∈ F , then p,q ∈ F .

COROLLARY 5.6. Let B be a subsystem of N with embedding ι . Then
J+
B,m(N,N) is a face of J+

m (N,N) , where J+
m (N,N) = {Φ ∈ Jm(N,N) : TΦ � 0} and

J+
B,m(N,N) = J+

m (N,N)∩ JB,m(N,N) .

Proof. Note that J+
B,m(N,N) �= /0 , as EN

ι(B) ∈ J+
B,m(N,N) . By Theorem 5.1,

both J+
m (N,N) and J+

B,m(N,N) are compact convex sets and we know J+
B,m(N,N) ⊆

J+
m (N,N) .

Let Φ,Ψ ∈ J+
m (N,N) be such that λ Φ +(1−λ )Ψ ∈ J+

B,m(N,N) for some 0 <

λ < 1. Since projections are extreme points of the ball of positives in B(L2(N,ρ)) , by
Theorems 2.8 and 5.3, it follows that Φ,Ψ ∈ J+

B,m(N,N) . �

6. Examples

In this section, we provide examples of noncommutative joinings of W ∗ -dynamical
systems, which expand on the examples from [2], and incorporate the bimodule ma-
chinery of [3]. Classically, in the ‘state’ or ‘measure’ point of view, joinings over sub-
systems are usually viewed as a kind of ‘amalgamation’ of two Hilbert spaces over a
common subspace. The next result shows that the Hilbert space picture is not the com-
plete story; rather, a joining of two W ∗ -dynamical systems over a common subsystem
may be thought of as an ‘amalgamation’ of two bimodules over a common subbimod-
ule arising out of the common subsystem. In this sense, Theorem 6.2 generalizes the
notion of joinings over subsystems. The following lemma is a necessary first step.

LEMMA 6.1. Let M and B be von Neumann algebras with faithful normal states
ϕ and μ respectively. Let ιM : B → M be a unital injective ∗ -homomorphism such
that ιM is (μ ,ϕ)-Markov map. Then for all x ∈ ∩z∈C D(σ μ

z ) , the map ιM satisfies
σϕ

z ◦ ιM(x) = ιM ◦σ μ
z (x) for every z ∈ C , and also

〈b1Ωμb2,Ωμ〉μ = 〈ιM(b1)ΩϕιM(b2),Ωϕ〉ϕ

for all b1,b2 ∈ B.

Proof. By the hypothesis σϕ
t ◦ ιM = ιM ◦σ μ

t for all t ∈ R . Let Bμ
∞ =∩z∈C D(σ μ

z )
(see [23, §9.24]) . Then by uniqueness of analytic extension it follows that for all
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x ∈ Bμ
∞ , the map ιM satisfies σϕ

z ◦ ιM(x) = ιM ◦σ μ
z (x) for every z ∈ C . Consequently,

for all b1 ∈ B and b2 ∈ Bμ
∞ we have,

〈b1Ωμb2,Ωμ〉μ = 〈b1σ μ
−i/2(b2)Ωμ ,Ωμ〉μ

= μ(b1σ μ
−i/2(b2))

= ϕ
(

ιM(b1)ιM(σ μ
−i/2(b2))

)

= ϕ
(

ιM(b1)σ
ϕ
−i/2(ιM(b2))

)

= 〈ιM(b1)σ
ϕ
−i/2(ιM(b2))Ωϕ ,Ωϕ 〉ϕ

= 〈ιM(b1)Ωϕ ιM(b2),Ωϕ 〉ϕ

The rest follows by density of the Tomita algebra associated to μ . �
We now prove a “disintegration theorem” for joinings. The proof of this theorem

makes extensive use of the theory of bimodules, for which we refer the reader to §3 and
§4 of [2]. Note that the next result extends Proposition 2.2 in the case G is trivial.

THEOREM 6.2. (Disintegration of joinings) Let N,M and B be von Neumann
algebras with respective faithful normal states ρ ,ϕ and μ , and let ιN and ιM be
injective ∗ -homomorphisms of B into N and M respectively. Further, suppose that ιN
and ιM are respectively (μ ,ρ)-Markov and (μ ,ϕ)-Markov maps. Let Ψ : B → B be
a (μ ,μ)-Markov map, and ψ : B�Bop → C be the associated state satisfying ψ(b1⊗
bop

2 ) = 〈Ψ(b1)Ωμb2,Ωμ〉μ for all b1,b2 ∈B. Then for a (σρ
t ⊗(σϕ

t )op)-invariant state
ω : N�Mop → C , the following are equivalent:

(i) ω ◦ (ιN ⊗ (ιM)op) = ψ , where ιop
M is the natural map Jμb∗Jμ �→ JϕιM(b)∗Jϕ ,

b ∈ B, from B′ ∩B(L2(B,μ)) → M′ ∩B(L2(M,ϕ)) .

(ii) (Φω )|ιN(B) = (ιM ◦Ψ◦ ι∗N)|ιN(B) , where Φω : N →M is the unique (ρ ,ϕ)-Markov
map such that ω(x⊗ yop) = 〈Φω (x)Ωϕy,Ωϕ〉ϕ , for all x ∈ N and y ∈ M.

Proof. First we prove (i) =⇒ (ii) . Let ω be the state as above and let Hω
be the associated GNS Hilbert space with cyclic vector ξω . Then, by Theorem 3.3 and
Theorem 4.1 of [2], the map R(Ωϕz) = ξω z defined for z∈M extends to a right Hilbert
M -module isomorphism of L2(M,ϕ) onto ξωM , and Φω(x) = R∗πN(x)R for all x∈N ,
where πN here denotes the left action of N on Hω . Then for all b1,b2,b3 ∈B , we have

〈Φω (ιN(b1))ΩϕιM(b2),ΩϕιM(b3)〉ϕ = 〈R∗πN(ιN(b1))R ΩϕιM(b2),Ωϕ ιM(b3)〉ϕ

= 〈ιN(b1)ξω ιM(b2),ξω ιM(b3)〉ω

= 〈ιN(b1)ξω ιM(b2b
∗
3),ξω 〉ω

= ω(ιN(b1)⊗ (ιM(b2b
∗
3))

op) (13)

= ω ◦ (ιN ⊗ ιop
M )(b1⊗ (b2b

∗
3)

op)
= ψ(b1⊗ (b2b

∗
3)

op)
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= 〈Ψ(b1)Ωμb2,Ωμb3〉μ

= 〈ιM(Ψ(b1))Ωϕ ιM(b2),ΩϕιM(b3)〉ϕ ,

where the last equality is obtained via Lemma 6.1.
The fact that Φω(ιN(b1)) = ιM(Ψ(b1)) for all b1 ∈ B follows by density.
We now establish (ii) =⇒ (i) . For b1,b2 ∈ B , we compute

(ω ◦ (ιN ⊗ ιop
M ))(b1⊗bop

2 ) = ω(ιN(b1)⊗ (ιM(b2))op)
= 〈ιN(b1)ξωιM(b2),ξω 〉ω

= 〈ιN(b1)ξΦω ιM(b2),ξΦω 〉ω

= 〈Φω (ιN(b1))ΩϕιM(b2),Ωϕ〉ϕ

= 〈ιM(Ψ(b1))ΩϕιM(b2),Ωϕ 〉ϕ

= 〈Ψ(b1)Ωμb2,Ωμ〉μ

= ψ(b1⊗bop
2 ).

The third equality above was established in the proof of Theorem 4.4 of [2], and the
penultimate equality holds by Lemma 6.1. �

Thus, we have the following theorem which provides a new class of examples of
joinings.

THEOREM 6.3. Let B be a common subsystem of two W ∗ -dynamical systems N
and M with respect to embeddings ιN and ιM respectively. For Ψ ∈ Jm(B,B) , let

JB,Ψ,m(N,M) = {Φ ∈ Jm(N,M) : Φ|ιN (B) = (ιM ◦Ψ◦ ι∗N)|ιN (B)}.

Then, JB,Ψ,m(N,M) is a nonempty convex set which is compact in the BW-topology.

Proof. Note that ιM ◦Ψ◦ ι∗N ∈ JB,Ψ,m(N,M) (cf. Theorem 6.2) . Consequently,
JB,Ψ,m(N,M) �= /0 . The rest follows from Theorem 4.4. �

REMARK 6.4. Elements of JB,Ψ,m(N,M) are joinings of N and M extending
Ψ ∈ Jm(B,B) and such joinings generalize the notion of joinings over subsystems.

REMARK 6.5. To emphasize the relevance of Theorem 6.2, consider the follow-
ing example. Following [9, §6], let X = (X ,X ,μ ,G) and Y = (Y,Y ,ν,G) be classical
ergodic systems with a common factor Z = (Z,Z ,η ,G) . Let π : X→Z and σ : Y→Z
be the factor maps, which are homomorphisms of ergodic systems. These factor maps
induce obvious unital embeddings of L∞(Z,η) ↪→ L∞(X ,μ) and L∞(Z,η) ↪→ L∞(Y,ν)
which we denote with π and σ respectively with slight abuse of notation.

Let τ ∈ J(Z) , where J(Z) denotes the collection of self-joinings of Z . Then, τ is
a probability measure on Z×Z invariant under the diagonal action of G on Z×Z such
that L2(Z ×Z,τ) is a L∞(Z,η)-L∞(Z,η) bimodule with the obvious G-equivariance
structure.
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Following the setup of Theorem 6.2, if ω ∈ J(X,Y) is such that ω ◦(π⊗σop) = τ ,
then ω admits a (π ×σ ,τ)-disintegration Z×Z � (z,z′) �→ ωz,z′ ∈ M(X ×Y ) . There-
fore,

ω =
∫

Z×Z
ωz,z′dτ(z,z′).

By uniqueness of the disintegration, it follows that ωz,z′ is invariant under the di-
agonal action of G for τ almost every (z,z′) . Consequently, we are disintegrating
the G-equivariant L∞(X ,μ)-L∞(Y,ν) bimodule L2(X ×Y,ω) over the G-equivariant
L∞(Z,η)-L∞(Z,η) bimodule L2(Z×Z,τ) .

In this picture, a joining of X and Y over the subsystem Z corresponds to the case,
when τ = D∗η , where D : Z → Z×Z is the map D(z) = (z,z) , which corresponds to
the trivial L∞(Z,η)-L∞(Z,η) bimodule L2(Z,η) .

In [2, 3] and so far in this paper, we have studied joinings of two systems N and
M from three points of view: first, as certain invariant states on the algebraic tensor
product of one von Neumann algebra with the opposite of the other; second as pointed
correspondences with extra structure, and third, as equivariant Markov maps between
the von Neumann algebras involved. A fourth point of view is also available, which
seems to carry abundant analytical information.

As before, let N be a system. For each Φ ∈ Jm(N,N) its L2 -extension TΦ is
bounded (cf. §6 of [2] or §3) and ‖TΦ‖ = 1. Also if B ⊂ N is a von Neumann
subalgebra with a ρ -preserving conditional expectation, then TΦ ∈ B′ ∩(JρBJρ)′ if and
only if Φ is B-bimodular. Clearly, {TΦ : Φ ∈CP(N,ρ)} and {TΦ : Φ ∈ Jm(N,N)} are
convex subsets of the unit sphere of B(L2(N,ρ)) . Also as seen in §4 and §5, note that if
{Φn}n is a sequence in CP(N,ρ) such that Φn → Φ ∈CP(N,ρ) in the BW-topology,
then TΦn → TΦ in w.o.t. and hence in the w∗ -topology.

THEOREM 6.6. The map Φ → TΦ from M(N,ρ) to A(T ) = {TΦ : Φ ∈ M(N,ρ)}
(resp. from Jm(N,N) to A(T,G) = {TΦ : Φ ∈ Jm(N,N)} is (BW, w∗)-continuous;
thus is a homeomorphism and consequently an isomorphism between two compact
semitopological involutive affine semigroups.

Proof. Note that A(T ) (resp. A(T,G)) is w.o.t. compact, as it is the continuous
image of a compact space. The rest is routine. �

COROLLARY 6.7. Let Φ ∈ M(N,ρ) . Then,

(i) TΦ is normal (resp. unitary) if and only if Φ∗Φ = ΦΦ∗ (resp. if Φ is an
automorphism);2

(ii) TΦ is self-adjoint if and only if Φ∗ = Φ;

(iii) TΦ is projection if and only if Φ = Φ2 = EN
N∩{TΦ}′ ;

3

2This is a classical result of Wigner when N = B(H ).
3 The assumption that TΦ is self-adjoint is redundant.
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(iv) TΦ∗Φ is positive ;

(v) TΦ is a partial isometry if and only if Φ = ΦΦ∗Φ and there exists a von Neumann
algebra B equipped with a faithful normal state μ and embeddings ι1, ι2 : B→N
with ι1, ι2 being both (μ ,ρ)-Markov maps such that Φ∗Φ = EN

ι1(B) and ΦΦ∗ =
EN

ι2(B);

(vi) 1 is an eigenvalue of TΦ . If Φ is B-bimodular where B is infinite dimensional,
then the eigenspace corresponding to 1 is infinite dimensional and thus TΦ is
not compact.

Proof. (i) The statement relating to TΦ being normal is obvious. If Φ is an
automorphism, then Φ∗ = Φ−1 . Thus, Φ∗Φ = ΦΦ∗ = idN and therefore TΦ is unitary.
Conversely, if T ∗

ΦTΦ = TΦT ∗
Φ = 1 then Φ∗Φ = ΦΦ∗ = idN . Thus for x ∈ N , Eq. (4)

and Kadison-Schwarz inequality yields

ρ(x∗x) = ρ((Φ∗Φ)(x∗)x) = ρ(Φ(x)∗Φ(x)) � ρ(Φ(x∗x)) = ρ(x∗x).

Thus, Φ(x∗x) = Φ(x)∗Φ(x) as ρ is faithful. By Theorem 3.1 [7], it follows that N is
contained in the multiplicative domain of Φ , which forces Φ to be an automorphism.
(iii) The statement follows directly from Theorem 5.3.
(v) This is a direct consequence of [3, Theorem 3.3].
(ii),(iv) and (vi) are obvious. �

Note that if Φ ∈ M(N,ρ) is such that TΦ � 0, then TΦ is the unique square
root of TΦ∗Φ . In this case, we can write

√
Φ∗Φ := Φ . Also, we define Φ0 = id .

Via the homeomorphism established in Theorem 5.5 and Corollary 6.7, one can make
analogous definitions on the associated state space. While it is not possible to define
the square root of every element in M(N,ρ) as an element of M(N,ρ) , some elements
in M(N,ρ) do have square roots in the prior sense.

The following lemma is classical and well known, so we omit its proof.

LEMMA 6.8. For n > 0 define gn : [0,1]→ [0,1] by gn(x) = xn and hn : [−1,1]→
[−1,1] by hn(x) = xn . Also let g0 = 1 on [0,1] and h0 = 1 on [−1,1] . Then,

R+ = co‖·‖∞{gn : n � 0} = { f ∈C[0,1] : f real analytic,

f (n)(0) � 0 ∀n,
∞

∑
n=0

f (n)(0)
n!

= 1}.

Rs.a = co‖·‖∞{hn : n � 0} = { f ∈C[−1,1] : f real analytic,

f (n)(0) � 0 ∀n,
∞

∑
n=0

f (n)(0)
n!

= 1}.

Note that for f ∈ R+ (resp. f ∈ Rs.a) as defined in Lemma 6.8 above, f (1) = 1.
Thus, the functions in R+ and Rs.a are of norm one. In general, it is difficult to
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measure the size of Jm(N,N) ( it may collapse to a set with just two extreme points) .
The result below measures the size of Jm(N,N) . It is not immediate that the self-
joinings obtained via the functional calculus below might be obtained by analogy with
classical constructions as above. In the following result, let

W = { f ∈C(T) : f (z) = ∑
n∈Z

λnz
n, 0 � λn � 1 ∀ n, ∑

n∈Z

λn = 1}.

The following theorem is immediate.

THEOREM 6.9. (Analytic fuctional calculus) Let Φ ∈ M(N,ρ) be such that TΦ
is positive (resp. self-adjoint, unitary) . Then, there exists a map R+ � f → f (Φ) ∈
M(N,ρ) (resp. Rs.a � f → f (Φ) ∈ M(N,ρ), W � f → f (Φ) ∈ M(N,ρ)) such that

ρ(y∗ f (Φ)(x)) =
∫

[0,1],(resp. [−1,1],T)
f (t)dμx,y(t), x,y ∈ N,

where μx,y denotes the elementary spectral measure of TΦ associated to x,y. Moreover,
if Φ ∈ Jm(N,N) then f (Φ) ∈ Jm(N,N) . For f ,g ∈ R+ (resp. Rs.a, W) , f (Φ) =
g(Φ) if and only if f = g on σ(TΦ) .
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[13] M. LEMAŃCZYK, F. PARREAU AND J. P. THOUVENOT, Gaussian automorphisms whose ergodic

self–joinings are Gaussian, Fund. Math., 164, (2000), 253–293.
[14] K. MUKHERJEE AND I. PATRI, Automorphisms of Compact Quantum Groups, Proc. Lond. Math. Soc.

(3), 116, (2017), 330–377.
[15] D. NEWTON AND W. PARRY, On a factor automorphism of normal dynamical system, Ann. Math.

Statist., 37, (1966), 1528–1533.



490 J. P. BANNON, J. CAMERON AND K. MUKHERJEE

[16] V. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2003.
[17] V. A. ROKHLIN AND Y. SINAI, Constructions and properties of invariant measureable partitions,

Dokl. Akad. Nauk. SSSR,. 141, (1966), 1038–1041.
[18] J. L. SAUVAGEOT AND J. P. THOUVENOT, Une nouvelle définition de l’entropie dynamique des
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