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EIGENVALUES OF DISCRETE STURM–LIOUVILLE PROBLEMS WITH

SIGN–CHANGING WEIGHT AND COUPLED BOUNDARY CONDITIONS

CHENGHUA GAO, FEI ZHANG AND MAOJUN RAN

(Communicated by F. Gesztesy)

Abstract. In this paper, we study the eigenvalues of discrete Sturm-Liouville problems with sign-
changing weight and coupled boundary conditions. The exact number (including multiplicity)
of the real eigenvalues is obtained. The number of positive eigenvalues is equal to the number
of positive elements in the weight function, and the number of negative eigenvalues is equal to
the number of negative elements in the weight function. Meanwhile, the interlacing properties
of these eigenvalues are also obtained as the parameter varies. These results extend the relevant
existing results of discrete left-definite and right-definite Sturm-Liouville problems with coupled
boundary conditions.

1. Introduction

Let [a,b]Z = {a,a+ 1, · · · ,b} , where a , b are two integers with a < b . In this
paper, we consider the spectrum of the following second-order difference equation

−∇[p(t)Δy(t)]+q(t)y(t) = λ ω(t)y(t), t ∈ [0,N−1]Z (1.1)

with the coupled boundary condition(
y(N−1)

Δy(N−1)

)
= eiαK

(
y(−1)

Δy(−1)

)
. (1.2)

Here, N � 3 is an integer, Δ is the forward difference operator with Δy(t) = y(t +
1)− y(t) , ∇ is the backward difference operator with ∇y(t) = y(t)− y(t−1) and λ is
the spectral parameter; p : [−1,N−1]Z → (0,∞) with p(−1) = p(N−1) , q : [0,N −
1]Z → [0,∞) and ω(t) �= 0 changes its signs on [0,N−1]Z ; the parameter α satisfies:
−π < α � π and i2 = −1. Moreover,

K =
(

k1 0
k2 k3

)
,k j ∈ R, j = 1,2,3; k1k3 = 1.

The study of the spectrum of the Sturm-Liouville problems has been discussed
more than 100 years before the time of Sturm and Liouville. Until now, these kind of
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problems have been studied in a variety of contexts. In 1914, Bôcher [1] studied the
spectrum of the left-definite Sturm-Liouville problem

d
dt

(ku′)+ (λm− l)u = 0, t ∈ [0,1], (1.3)

αu(0)−βu′(0) = 0, γu(1)+ δu′(1) = 0, (1.4)

where l � 0 and m changes its sign on [0,1] . He obtained the eigenvalue problem
(1.3), (1.4) has two sequences of real eigenvalues, λ±

k , with

0 < λ +
1 < λ +

2 < · · · < λ +
k < · · · → +∞

and
0 > λ−

1 > λ−
2 > · · · > λ−

k > · · · → −∞.

This results could also be found in the book of Ince [2] and Zettl [3]. After this classical
result, a variety of rich and excellent spectral results have been obtained by several
authors, see, for instance, [4, 5, 6, 7, 8, 9, 10, 11] and the references therein.

For the discrete eigenvalue problem, several excellent spectral results for the clas-
sical discrete Sturm-Liouville problems have also been obtained by several authors,
see, for instance, [12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 31, 30, 29, 15, 17, 18, 19, 21, 20,
16, 32, 33, 34, 35, 36, 37, 38] and the references therein. In 1964, when the weight func-
tion ω(t) > 0, Atkinson [12] studied a kind of discrete right-definite Sturm-Liouville
problem

c(t)y(t +1) = (ω(t)λ +b(t))y(t)− c(t−1)y(t−1), n ∈ [0,m−1]Z, (1.5)

y(−1) = 0, y(m)+hy(m−1) = 0. (1.6)

He obtained that (1.5), (1.6) has m real eigenvalues, which can be ordered as λ1 <
λ2 < · · · < λm. Later, a series of excellent spectral results, including the existence,
simplicity, interlacing and dependency properties of the eigenvalues and the oscilla-
tion properties of the eigenfunctions, were obtained for the discrete eigenvalue prob-
lems with positive weight function ω(t) > 0, see, [13, 14, 20, 16, 15, 17, 18, 19]. In
particular, based on the properties of the characteristic polynomials and the spectral
properties, constructed by Shi and Chen [17], of a discrete difference operator with
coupled boundary condition, Sun and Shi [19] discussed the reality and the interlac-
ing properties of the eigenvalue problems (1.1), (1.2) under the case that ω(t) > 0
on [0,N − 1]Z . According to the assumption that N is an odd number or an even
number, Sun and Shi obtained some beautiful interlacing results for this kind of prob-
lems. Moreover, for the more general case, i.e., the discrete linear Hamiltonian systems,
there are also several excellent spectral results on this kind of problems, see, for in-
stance, [21,22,23,24,25,26,27,28,31,30,29] and the references therein. More precisely,
the essential spectrum for the linear disrcete Hamilton system has been discussed by
Sun [21], the oscillation properties of the eigenfunctions for the difference systems with
separated conditions have been discussed by Bohner et al. [22, 23], Kratz [25], Došlý
and Kratz [26,27], S̆epitka and S̆imon Hilscher [29], Elyseeva and S̆imon Hilscher [30]
and Šimon Hilscher [31]. Meanwhile, the Sturmian type comparison theorems are also
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obtained for some kinds of difference system, see, for instance, Bohner et.al [24] and
Dos̆lý and Kratz [28].

For the case that the weight function ω(t) changes its sign on [0,N−1]Z , Ji and
Yang [32] gave some comparison results of the eigenvalues of the discrete Neumann
eigenvalue problems. Meanwhile, they also gave some comparison results of the eigen-
values of (1.1) with the periodic boundary condition in [33]. Later, the existence of real
eigenvalues, the simplicity of the real eigenvalues and the oscillation properties of the
corresponding eigenfunctions for the discrete Sturm-Liouville problems with Neumann
and Dirichlet BCs were also obtained by [34, 35, 36]. Moreover, based on the spectral
results in [34], the interlacing properties for the discrete Sturm-Liouville problems with
periodic and antiperiodic boundary conditions were obtained by [37].

Now, the questions are: (i) Could we obtain the existence of the real eigenvalues
of (1.1) with the coupled boundary condition (1.2)? (ii) How do the real eigenvalues
of (1.1), (1.2) distribute? Based on the spectral results of the discrete Sturm-Liouville
problems in [35], including the simplicity of the eigenvalues and the oscillation prop-
erties of the corresponding eigenfunctions, we try to answer the above two questions
for the eigenvalue problem (1.1), (1.2). Actually, by discussing the properties of the
corresponding characteristic polynomial of (1.1), (1.2), we obtain the existence, the dis-
tribution and the interlacing properties of the real eigenvalues as the parameter varies.
Finally, it is worth to note that the boundary condition (1.2) will reduce to the periodic
boundary condition if we take α = 0 and K = I and will reduce to the antiperiodic
boundary condition if we take α = 0 and K = −I . Moreover, the problems we discuss
in this paper is more general than the left-definite problems, see Remark 4.11. Further-
more, if ω(t) > 0 on [0,N−1]Z , then our problem becomes a right-definite problem,
and our results will reduce to the results of [18] and [19].

2. Preliminaries

In the rest of this paper, we shall make the following assumptions:
(H1) p(t) > 0 on [0,N−1]Z and q(t) � 0 for t ∈ [0,N−1]Z ;
(H2) ω(t) changes its sign on [0,N − 1]Z , i.e.,there are n points in [0,N − 1]Z

such that ω(t) > 0 while ω(t) < 0 on other N−n points;

DEFINITION 2.1. Let y : Z → R be a real function. If y(t0) = 0 and y(t0 −
1)y(t0 +1) < 0, then t0 is a simple zero of y(t) . If y(t0)y(t0 +1) < 0, then

s =
t0y(t0 +1)− (t0 +1)y(t0)

y(t0 +1)− y(t0)
∈ (t0,t0 +1)

is called a nodal point of y(t) . The simple zero and the nodal point are called the simple
generalized zero of y(t) .

Now, as a direct consequence of [35, Theorem 1], we could get the following
lemma.
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LEMMA 2.2. Suppose that (H1) and (H2) hold. Then the following eigenvalue
problem

−∇[p(t)Δy(t)]+q(t)y(t) = λ ω(t)y(t), t ∈ [0,N−2]Z, (2.1)

y(−1) = y(N−1) = 0 (2.2)

has exactly N−1 real eigenvalues μk,± with

μN−n,− < μN−n−1,− < · · · < μ1,− < 0 < μ1,+ < · · · < μn−1,+, if ω(N−1) > 0,
(2.3)

or

μN−n−1,− < · · ·< μ1,− < 0 < μ1,+ < · · ·< μn−1,+ < μn,+, if ω(N−1) < 0. (2.4)

Moreover, the eigenfunction y(n,μk,ν) , corresponding to the eigenvalue μk,ν , has ex-
actly k−1 simple generalized zeros in [0,N−2] .

Proof. If ω(N −1) > 0, then by (H2), there exist exactly n−1 points in [0,N −
2]Z such that ω(t) > 0 and N−n points in [0,N−2]Z such that ω(t) < 0. Therefore,
the similar discussion of [35, Theorem 1] guarantees that (2.3) holds. If ω(N−1) < 0,
then by (H2), there are exactly n points in [0,N−2]Z such that ω(t) > 0 and N−n−1
points in [0,N−2]Z such that ω(t) < 0. Therefore, (2.4) holds. �

3. Characteristic polynomial and its properties

In this section, we try to look for the characteristic polynomial of the eigenvalue
problem (1.1), (1.2) and also discuss its properties which are essential to our main
results.

Let ϕ(t,λ ) be the solution of the initial value problem

−∇[p(t)Δϕ(t)]+q(t)ϕ(t)−λ ω(t)ϕ(t)= 0, t ∈ [0,N−1]Z, (3.1)

ϕ(−1,λ ) = 1, ϕ(0,λ ) = 1 (3.2)

and ψ(t,λ ) the solution of the initial value problem

−∇[p(t)Δψ(t)]+q(t)ψ(t)−λ ω(t)ψ(t)= 0, t ∈ [0,N−1]Z, (3.3)

ψ(−1,λ ) = 0, ψ(0,λ ) = 1. (3.4)

Then ϕ(t,λ ) and ψ(t,λ ) are two independent solutions of (1.1) . Now, multiplying
both sides of (3.1) by ψ(t,λ ) and multiplying both sides of (3.3) by ϕ(t,λ ) , and
summing from t = 0 to t = N−1, then subtracting these two equations, we get

ψ(N,λ )ϕ(N−1,λ )−ψ(N−1,λ )ϕ(N,λ ) = 1. (3.5)

Let y(t,λ ) = C1ϕ(t,λ )+C2ψ(t,λ ) . Then y(t,λ ) is the general solutions of Eq
(1.1) . By the boundary condition (1.2) , we get{

C1[ϕ(N−1,λ )− eiαk1]+C2ψ(N−1,λ ) = 0,
C1[Δϕ(N−1,λ )− k2eiα ]+C2[Δψ(N−1,λ )− eiαk3] = 0.
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It is well-known that y(t,λ ) is a nontrivial solutions of (1.1) , (1.2) if and only if∣∣∣∣ ϕ(N−1,λ )− eiαk1 ψ(N−1,λ )
Δϕ(N−1,λ )− k2eiα Δψ(N−1,λ )− k3eiα

∣∣∣∣= 0. (3.6)

Setting
f (λ ) = k3ϕ(N−1,λ )+ k1Δψ(N−1,λ )− k2ψ(N−1,λ ). (3.7)

Then, by virtue of (3.5), (3.6) and (3.7), we get

1+ e2iα − eiα f (λ ) = 0.

Therefore, we get the characteristic polynomial of (1.1) and (1.2) as follows,

F(λ ) = f (λ )−2cosα = 0. (3.8)

For the sake of convenience, in the rest of this paper, we always suppose that if λ∗
is a double zero of F(λ ) , then we count λ∗ twice. Now, let us discuss some properties
of the characteristic polynomial F(λ ) .

LEMMA 3.1. Suppose that k3 > 0 . Then:

(i) if k is an even number and α = π , then F(μk,ν ) > 0 ;

(ii) if k is an even number and α �= 0,π , then F(μk,ν) > 0 ;

(iii) if k is an even number, α = 0 and ψ(N,μk,ν ) �= k3 , then F(μk,ν) > 0 ;

(iv) if k is an odd number and α = 0, then F(μk,ν ) < 0 ;

(v) if k is an odd number and α �= 0,π , then F(μk,ν ) < 0 ;

(vi) if k is an odd number, α = π and ψ(N,μk,ν ) �= −k3 , then F(μk,ν) < 0 ;

(vii) if k is an even number, α = 0 and ψ(N,μk,ν ) = k3, then F(μk,ν ) = 0 ;

(viii) if k is an odd number, α = π and ψ(N,μk,ν ) = −k3, then F(μk,ν ) = 0 .

Proof. Obviously, ψ(N−1,μk,ν) = 0. Then (3.5) converts to

ψ(N,μk,ν )ϕ(N−1,μk,ν) = 1. (3.9)

Then, by (3.8) and (3.9) , we get

F(μk,ν ) = f (μk,ν )−2cosα

=
k3

ψ(N,μk,ν )
+ k1ψ(N,μk,ν )−2cosα

=
k1ψ2(N,μk,ν )−2ψ(N,μk,ν)cosα + k3

ψ(N,μk,ν )

=
k3[k1ψ(N,μk,ν )− cosα]2 + k3(1− cos2 α)

ψ(N,μk,ν )
.

(3.10)
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Then, in virtue of k3 > 0 and k1k3 = 1, we have

F(μk,ν ) > 0, if ψ(N,μk,ν ) > 0 and α �= 0,π ;

F(μk,ν ) > 0, if ψ(N,μk,ν ) > 0 and α = π ;

F(μk,ν ) > 0, if ψ(N,μk,ν ) > 0,ψ(N,μk,ν ) �= k3 and α = 0;

F(μk,ν ) < 0, if ψ(N,μk,ν ) < 0 and α �= 0,π ;

F(μk,ν ) < 0, if ψ(N,μk,ν ) < 0 and α = 0;

F(μk,ν ) < 0, if ψ(N,μk,ν ) < 0,ψ(N,μk,ν ) �= −k3 and α = π ;

F(μk,ν ) = 0, if ψ(N,μk,ν ) = k3 and α = 0;

F(μk,ν ) = 0, if ψ(N,μk,ν ) = −k3 and α = π .

Since ψ(0,μk,ν) = 1 and ψ(−1,μk,ν) = ψ(N−1,μk,ν) = 0, ψ(N,μk,ν ) is posi-
tive or negative according to whether ψ(t,μk,ν) has an even or an odd number of sim-
ple generalized zeros in the interval [0,N − 1) . Therefore, when k is an odd number,
F(μk,ν ) � 0, and when k is an even number, F(μk,ν ) � 0. �

REMARK 3.2. Since similar results can be obtained by substituting K for −K
under the case that k3 < 0, in the rest of this paper, we always suppose that

(H3) k3 > 0.
In fact, eiαK = ei(π+α)(−K) for α ∈ (−π ,0) and eiαK = ei(−π+α)(−K) for α ∈

(0,π) . Hence, the boundary condition (1.2) in the case of k3 < 0 and α �= 0,−π < α <
π , can be written as condition (1.2) , where α is replaced by π + α for α ∈ (−π ,0)
and −π + α for α ∈ (0,π) , and K is replaced by −K .

LEMMA 3.3. Suppose that q(t) ≡ 0 and (H1)-(H3) hold. Then:

(i) F(0) > 0 if and only if

k3 + k1−2cosα > k2

N−1

∑
s=0

p(−1)
p(s)

;

(ii) F(0) = 0 if and only if

k3 + k1−2cosα = k2

N−1

∑
s=0

p(−1)
p(s)

;

(iii) F(0) < 0 if and only if

k3 + k1−2cosα < k2

N−1

∑
s=0

p(−1)
p(s)

.
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Proof. Let q(t) ≡ 0. By (3.1)− (3.4) , ϕ(N − 1,0) = Δψ(N − 1,0) = 1 and

ψ(N−1,0) = ∑N−1
s=0

p(−1)
p(s) . This implies that

F(0) = k3 + k1−2cosα − k2

N−1

∑
s=0

p(−1)
p(s)

.

Therefore, the assertions (i)-(iii) hold. �

LEMMA 3.4. Suppose that (H1)-(H3) hold. If q(t) � 0 and q(t) �≡ 0 on [0,N −
1]Z , then for each k2 � 0 , F(0) > 0 .

Proof. First, let us prove that ϕ(N−1,0)> 1. We claim Δϕ(t)� 0, t ∈{−1,0, · · · ,
N−1} . Suppose on the contrary, then there exists t0 such that

t0 = min{t|Δϕ(t) < 0}.
Obviously, Δϕ(t0) < 0. On the other hand, by (3.1) ,

ϕ(t0 +1) =
(

1+
p(t0−1)+q(t0)

p(t0)

)
ϕ(t0)− p(t0−1)

p(t0)
ϕ(t0−1)

�
(

1+
p(t0−1)+q(t0)

p(t0)

)
ϕ(t0)− p(t0−1)

p(t0)
ϕ(t0)

=
(

1+
q(t0)
p(t0)

)
ϕ(t0).

Since q(t0) � 0 and p(t0) > 0, we get that Δϕ(t0) � 0, which is a contradiction.
Now, we prove that ϕ(N−1,0) > 1. In fact, by the conditions q(t0) > 0, Δϕ(t) �

0 and (3.2) , we get that there exists at least one point t∗ ∈ {0,1, · · · ,N −1} such that
Δϕ(t∗) > 0. Furthermore, by ϕ(−1,0) = 1, we get ϕ(N−1,0) > 1.

Second, let us prove that Δψ(N−1,0) � 1. In fact, by (3.4) , ψ(−1,0) = 0 and
Δψ(−1,0) = 1, we obtain

Δψ(0,0) =
p(−1)
p(0)

Δψ(−1,0)+
q(0)
p(0)

ψ(0,0) � p(−1)
p(0)

.

This implies that

Δψ(1,0) =
p(0)
p(1)

Δψ(0,0)+
q(1)
p(1)

ψ(1,0) � p(−1)
p(1)

.

Similar, we get

Δψ(N−1,0) � p(−1)
p(N−1)

.

Since p(−1) = p(N−1) , Δψ(N−1,0) � 1.
Thus,

F(0) = k1ϕ(N−1,0)+ k3Δψ(N−1,0)−2cosα − k2ψ(N−1,0) > 0. �
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REMARK 3.5. Actually, under the assumptions of Lemma 3.4, we know from the
proof of Lemma 3.4 that even if k2 > 0, F(0) may also be greater than 0 as long as

k1ϕ(N−1,0)+ k3Δψ(N−1,0)−2cosα − k2ψ(N−1,0) > 0.

Moreover, for any k2 ∈ R , it could be concluded that the following conclusions hold
for q(t) � 0 and q(t) �≡ 0 and k3 > 0.

(i) F(0) > 0 ⇔ k1ϕ(N−1,0)+ k3Δψ(N−1,0)−2cosα − k2ψ(N−1,0) > 0;

(ii) F(0) = 0 ⇔ k1ϕ(N−1,0)+ k3Δψ(N−1,0)−2cosα − k2ψ(N−1,0) = 0;

(iii) F(0) < 0 ⇔ k1ϕ(N−1,0)+ k3Δψ(N−1,0)−2cosα − k2ψ(N−1,0) < 0.

However, these conditions on k1 , k2 and k3 are more difficult to verify. So, we use a
simple condition k2 < 0 in Lemma 3.4 to guarantee F(0) > 0. It is worth to note that
the results of the existence of the eigenvalue are the same. On the other hand, since
the case that q(t) ≡ 0 is more difficult than the case that q(t) �≡ 0, we always suppose
that q(t) ≡ 0 in the rest of this paper. More precisely, we suppose that the following
assumption holds for the rest context,

(H4) q(t) ≡ 0.
From Lemma 3.3, we know that λ = 0 will always be a zero of F(λ ) if and only

if
(H5) k3 + k1−2cosα = k2 ∑N−1

s=0
p(−1)
p(s)

holds. So, we will discuss that whether λ = 0 is a simple zero or a multiple zero in this
case.

LEMMA 3.6. Suppose (H1)-(H5) hold. Then:

(i) if

k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+k1

N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

+k2

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

s−1

∑
t=−1

p(−1)
p(t)

> 0,

(3.11)
then F ′(0) < 0;

(ii) if

k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+k1

N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

+k2

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

s−1

∑
t=−1

p(−1)
p(t)

< 0,

(3.12)
then F ′(0) > 0;

(iii) if

k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+k1

N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

+k2

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

s−1

∑
t=−1

p(−1)
p(t)

= 0,

(3.13)
then F ′(0) = 0.
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Proof. Firstly, we claim that

ϕ(n,λ ) = Qn(λ )−λ
n−1

∑
s=0

ω(s)
n−1

∑
t=s

1
p(t)

+1, (3.14)

where, Qn(λ ) satisfies: for 0 � n � 1, Qn(λ ) = 0 and for n > 1 , Qn(λ ) is a n degree
polynomial of λ and its lowest degree is 2.

Now, we use the induction method to prove (3.14) .
Step 1. Let n = 1. Then by (3.1) and (3.2) , we obtain that

ϕ(1,λ ) = −λ
ω(0)
p(0)

+1,

this implies (3.14) holds for n = 1.
Step 2. Let n = 2. Then by (3.2) , we get that

ϕ(2,λ ) =
ω(0)ω(1)λ 2

p(0)p(1)
−λ

1

∑
s=0

ω(s)
1

∑
t=s

1
p(t)

+1,

this implies (3.14) holds for n = 2.
Step 3. Suppose (3.14) holds for 2 < n � k . Then by (3.1) and (3.2), we get that

ϕ(k+1,λ )

=
(

1+
p(k−1)

p(k)
−λ

ω(k)
p(k)

)
ϕ(k,λ )− p(k−1)

p(k)
ϕ(k−1,λ )

=
(

1+
p(k−1)

p(k)
−λ

ω(k)
p(k)

)(
Qn(λ )−λ

k−1

∑
s=0

ω(s)
k−1

∑
t=s

1
p(t)

+1

)

− p(k−1)
p(k)

(
Qk−1(λ )−λ

k−2

∑
s=0

ω(s)
k−2

∑
t=s

1
p(t)

+1

)

=Qk+1(λ )−λ
(

1+
p(k−1)

p(k)

) k−1

∑
s=0

ω(s)
k−1

∑
t=s

1
p(t)

−λ
ω(k)
p(k)

+ λ
p(k−1)

p(k)

k−2

∑
s=0

ω(s)
k−2

∑
t=s

1
p(t)

+1

=Qk+1(λ )−λ
k

∑
s=0

ω(s)
k

∑
t=s

1
p(t)

+1.

Here, Qk+1(λ ) is a k+1 degree polynomial of λ whose lowest degree is 2. Therefore,
(3.14) holds.

Secondly, similar to the above proof, we get for

ψ(n,λ )=Pn(λ )−λ
n−1

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+· · ·+ ω(s)

p(n−1)

)(
1+

p(−1)
p(0)

+· · ·+ p(−1)
p(s−1)

)

+ p(−1)
(

1
p(0)

+ · · ·+ 1
p(n−1)

)
+1, n ∈ {1,2, · · ·},

(3.15)
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where, Pn(λ ) satisfies: for 0 � n � 1, Qn(λ ) = 0 and for n > 1 , Pn(λ ) is a n degree
polynomial of λ and its lowest degree is 2.

Now, we use the induction method to prove (3.15) .
Step 1. Let n = 1. Then by (3.3) and (3.4), we obtain that

ψ(1,λ ) = −λ
ω(0)
p(0)

+1+
p(−1)
p(0)

,

this implies (3.15) holds for n = 1.
Step 2. Let n = 2. Then by (3.4) , we get

ψ(2,λ ) =
ω(0)ω(1)λ 2

p(0)p(1)
−λ

(
ω(0)
p(0)

+
ω(0)
p(1)

+
ω(1)
p(1)

+
ω(1)p(−1)
p(1)p(0)

)

+ p(−1)
(

1
p(0)

+
1

p(1)

)
+1

=
ω(0)ω(1)λ 2

p(0)p(1)

−λ
1

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+ · · ·+ ω(s)

p(1)

)(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)

+ p(−1)
(

1
p(0)

+
1

p(1)

)
+1.

This implies (3.15) holds for n = 2.
Step 3. Suppose (3.15) holds for 2 < n � k . Then by (3.3) and (3.4), we get that

ψ(k+1,λ )

=
(

1+
p(k−1)

p(k)
−λ

ω(k)
p(k)

)
ψ(k,λ )− p(k−1)

p(k)
ψ(k−1,λ )

=
(

1+
p(k−1)

p(k)
−λ

ω(k)
p(k)

){
Pk(λ )+ p(−1)

(
1

p(0)
+ · · ·+ 1

p(k−1)

)
+1

−λ
k−1

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+ · · ·+ ω(s)

p(k−1)

)(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)}

− p(k−1)
p(k)

{
Pk−1(λ )+ p(−1)

(
1

p(0)
+ · · ·+ 1

p(k−2)

)
+1

−λ
k−2

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+ · · ·+ ω(s)

p(k−2)

)(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)}

=Pk+1(λ )−λ
k

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+ · · ·+ ω(s)

p(k)

)(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)

+ p(−1)
(

1
p(0)

+ · · ·+ 1
p(k)

)
+1,

where Pk+1(λ ) is a polynomial of λ and its lowest degree is 2. Therefore, (3.15)
holds.
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Finally, similar to the proof of (3.14) and (3.15), we could obtain the following
equation:

Δψ(k,λ ) =Hk(λ )−λ
k

∑
s=0

ω(s)
p(k)

(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)
+

p(−1)
p(k)

. (3.16)

Here, Hk(λ ) satisfies: for k < 1, Hk(λ ) = 0 and for k � 1, Hk(λ ) is a k degree
polynomial of λ and its lowest degree is 2.

Then, by (3.14) , (3.15) and (3.16) , it can be seen that

F(λ ) =k3ϕ(N−1,λ )+ k1Δψ(N−1,λ )− k2ψ(N−1,λ )−2cosα

=KN−1(λ )−λk3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

−λk1

N−1

∑
s=0

ω(s)
p(N−1)

(
1+

p(−1)
p(0)

+· · ·+ p(−1)
p(s−1)

)

−λk2

N−2

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+· · ·+ ω(s)

p(N−2)

)(
1+

p(−1)
p(0)

+· · ·+ p(−1)
p(s−1)

)
.

(3.17)
Here, KN−1(λ ) is a N − 1 degree polynomial of λ and its lowest degree is 2. Now,
(3.17) implies that

F ′(0) =− k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

− k1

N−1

∑
s=0

ω(s)
p(N−1)

(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)

− k2

N−2

∑
s=0

(
ω(s)
p(s)

+
ω(s)

p(s+1)
+ · · ·+ ω(s)

p(N−2)

)(
1+

p(−1)
p(0)

+ · · ·+ p(−1)
p(s−1)

)

=−
(

k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+k1

N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

+k2

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

s−1

∑
t=−1

p(−1)
p(t)

)
.

Thus, if (3.11) holds, then F ′(0) < 0; if (3.12) holds, then F ′(0) > 0 and if (3.13)
holds, then F ′(0) = 0. �

REMARK 3.7. Let k2 = 0 in (3.11)-(3.13), then the left sides of these three in-
equalities or equations reduce to

M := k3

N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+ k1

N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

. (3.18)

Furthermore, if k3 = k1 = 1, then by the assumption p(−1) = p(N−1) , we have

M =
N−2

∑
s=0

ω(s)
N−2

∑
t=s

1
p(t)

+
N−1

∑
s=0

ω(s)
s−1

∑
t=−1

1
p(t)

=
N−1

∑
s=0

ω(s)
N−1

∑
t=0

1
p(t)

. (3.19)

Combining this with the fact that p(t) > 0 on [−1,N−1]Z , we easily get three asser-
tions under the assumptions k3 = k1 = 1 and k2 = 0:
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(i) if ∑N−2
s=0 ω(s) > 0, then F ′(0) < 0;

(ii) if ∑N−2
s=0 ω(s) < 0, then F ′(0) > 0;

(iii) if ∑N−2
s=0 ω(s) = 0, then F ′(0) = 0.

These above three conclusions also have been obtained by Gao and Ma [37] (Lemma
2.1) for α = 0. Therefore, Lemma 3.6 is more general than Lemma 2.1 of Gao and
Ma [37].

4. Main results

In this section, we demonstrate and prove our main results. From Lemma 2.2, we
know that ω(N−1) is greater or less than 0 will influence the number of the positive
and negative eigenvalues of the problem (2.1), (2.2), which in turn will influence the
number of the positive and negative eigenvalues of the problem (1.1), (1.2). Therefore,
we will demonstrate our main results into two cases: ω(N−1) > 0 and ω(N−1) < 0.
Moreover, for ν ∈ {+,−} , let us use λ (K)k,ν to denote the zeros of F(λ ) with α = 0,
λ (−K)k,ν to denote the zeros of F(λ ) with α = π and λ (eiαK)k,ν to denote the zeros
of F(λ ) with −π < α < π and α �= 0,π .

THEOREM 4.1. Suppose (H1)-(H4) hold, ω(N−1) > 0 and

(H6) k3 + k1−2 � k2 ∑N−1
s=0

p(−1)
p(s) .

Then, for α = 0 , F(λ ) has at least two zeros λ (K)1,− and λ (K)1,+ in (μ1,−,μ1,+) ,
and have exactly n−2 positive zeros in (μ1,+,∞) and have exactly N−n−1 negative
zeros in (−∞,μ1,−). Then these N eigenvalues can be ordered as follows.

(a) If N and n are both even numbers, then

μN−n,−�λ (K)N−n,−<μN−n−1,−<λ (K)N−n−1,−�μN−n−2,−�λ (K)N−n−2,−
<μN−n−3,− < λ (K)N−n−3,− · · · � λ (K)4,− < μ3,− < λ (K)3,− � μ2,− � λ (K)2,−
<μ1,− < λ (K)1,− � 0 � λ (K)1,+ < μ1,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < μ3,+

<λ (K)4,+ � μ4,+ � · · · � μn−4,+ � λ (K)n−3,+ < μn−3,+ < λ (K)n−2,+ � μn−2,+

�λ (K)n−1,+ < μn−1,+ < λ (K)n,+.
(4.1)

(b) If N is an even number and n is an odd number, then

μN−n,−<λ (K)N−n,−�μN−n−1,−�λ (K)N−n−1,−<μN−n−2,−<λ (K)N−n−2,−
�μN−n−3,− � λ (K)N−n−3,− · · · � λ (K)4,− < μ3,− < λ (K)3,− � μ2,− � λ (K)2,−
<μ1,− < λ (K)1,− � 0 � λ (K)1,+ < μ1,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < μ3,+

<λ (K)4,+ � μ4,+ � · · · < μn−4,+ < λ (K)n−3,+ � μn−3,+ � λ (K)n−2,+ < μn−2,+

<λ (K)n−1,+ � μn−1,+ � λ (K)n,+.
(4.2)
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(c) If N is an odd number and n is an even number, then

μN−n,−<λ (K)N−n,−�μN−n−1,−�λ (K)N−n−1,−<μN−n−2,−<λ (K)N−n−2,−
�μN−n−3,−�λ (K)N−n−3,−� · · ·�λ (K)4,−<μ3,−<λ (K)3,−�μ2,−�λ (K)2,−
<μ1,− < λ (K)1,− � 0 � λ (K)1,+ < μ1,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < μ3,+

<λ (K)4,+ �μ4,+ � · · ·�μn−4,+ �λ (K)n−3,+ <μn−3,+ <λ (K)n−2,+ �μn−2,+

�λ (K)n−1,+ < μn−1,+ < λ (K)n,+.
(4.3)

(d) If N and n are both odd numbers, then

μN−n,−�λ (K)N−n,−<μN−n−1,−�λ (K)N−n−1,−�μN−n−2,−�λ (K)N−n−2,−
<μN−n−3,−<λ (K)N−n−3,−� · · ·�λ (K)4,−<μ3,−<λ (K)3,−�μ2,−�λ (K)2,−
<μ1,− < λ (K)1,− � 0 � λ (K)1,+ < μ1,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < μ3,+

<λ (K)4,+ �μ4,+ � · · ·�μn−4,+ �λ (K)n−3,+ <μn−3,+ <λ (K)n−2,+ �μn−2,+

�λ (K)n−1,+ < μn−1,+ < λ (K)n,+.
(4.4)

Proof. By Lemma 3.3, F(0) � 0. Combining this with Lemma 3.1, we get that
F(λ ) has at least two zeros λ (K)1,− and λ (K)1,+ in (μ1,−,μ1,+) , which satisfy

μ1,+ > λ (K)1,+ � 0 � λ (K)1,− > μ1,−.

Now, our proof will be divided into two cases.
Case 1. N is an even number.
Case 1.1. n is an even number. Then n−1 is an odd number and N−n is an even

number. By Lemma 3.1, we have
(i) F(λ ) has at least two zeros λ (K)2k,+ and λ (K)2k+1,+ in (μ2k−1,+,μ2k+1,+) ,

(k = 1,2, · · · , n−2
2 ), which satisfy λ (K)2k,+ � μ2k,+ � λ (K)2k+1,+ .

(ii) F(λ ) has at least two zeros λ (K)2 j+1,− and λ (K)2 j,− in (μ2 j+1,−,μ2 j−1,−) ,
( j = 1,2, · · · , N−n−2

2 ) which satisfy λ (K)2 j+1,− � μ2 j,− � λ (K)2 j,− .
Now, we will prove that there exist at least one zero λ (K)n,+ of F(λ ) which

satisfies λ (K)n,+ > μn−1,+ and at least one zero λ (K)N−n,− of F(λ ) which satisfies
μN−n,− � λ (K)N−n,− < μN−n−1,− . From (3.1)-(3.4), we get that

ψ(N,λ ) = (−1)n ΠN−1
t=0 ω(t)

ΠN−1
t=0 p(t)

λ N +A(λ ),

where A(λ ) is a polynomial of λ with degree N−1. Similarly, we could also get that
ϕ(N−1,λ ) and ψ(N−1,λ ) are both polynomials of λ with degree N−1. Therefore,

F(λ ) =k3ϕ(N−1,λ )+ k1ψ(N,λ )+ (k1− k2)ψ(N−1,λ )−2cosα
=(−1)nk1A(N)λ N +B(λ )−2cosα,
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where B(λ ) is a polynomial of λ whose degree is N−1. Since N and n are both even
number and k1 > 0 (according to (H3)), F(λ ) → +∞ as λ →±∞. Meanwhile, since
n− 1 is an odd number, according to Lemma 3.1, F(μn−1,+) < 0. Therefore, F(λ )
has at least one real zero λ (K)n,+ with λ (K)n,+ > μn−1,+ . Since N − n is an even
number, we get that F(μN−n,−) � 0 and F(μN−n−1,−) > 0. Combining this with the
fact that limλ→−∞ F(λ ) = +∞ , we obtain that there exists another real zero λ (K)N−n,−
of F(λ ) with μN−n,− � λ (K)N−n,− < μN−n−1,− .

Furthermore, as a N degree polynomial of λ , F(λ ) has at most N real zeros.
Therefore, F(λ ) has exactly N real zeros. According to the above discussion, these N
eigenvalues satisfy (4.1).

Case 1.2. n is an odd number. Then n−1 is an even number and N−n is an odd
number. By Lemma 3.1, we have

(i) F(λ ) has at least two zeros λ (K)2k,+ and λ (K)2k+1,+ in (μ2k−1,+,μ2k+1,+) ,
(k = 1,2, · · · , n−3

2 ), which satisfy λ (K)2k,+ � μ2k,+ � λ (K)2k+1,+ .
(ii) F(λ ) has at least two zeros λ (K)2 j+1,− and λ (K)2 j,− in (μ2 j+1,−,μ2 j−1,−) ,

( j = 1,2, · · · , N−n−1
2 ) which satisfy λ (K)2 j+1,− � μ2 j,− � λ (K)2 j,− .

Moreover, by the definition of F(λ ) , we can see that F(λ ) → +∞ as λ → +∞.
Combining this with the fact that F(μn−2,+) < 0, we obtain there exists another zero
λ (K)n,+ of F(λ ) with λ (K)n,+ > μn−1,+ .

Furthermore, as a polynomial of λ with degree N , F(λ ) has at most N real zeros.
Therefore, F(λ ) has exactly N real zeros which satisfy (4.2) .

Case 2. N is an odd number.
Case 2.1. n is an even number. Then n−1 is an odd number and N−n is an odd

number. Similar to the discussion of Case 1, (4.3) holds.
Case 2.2. n is an odd number. Then n−1 is an even number and T −n an even

number. Furthermore, similar to the which discussion of Case 1, (4.4) holds. �
As a direct consequence, we could get the following corollary.

COROLLARY 4.2. Suppose that (H1)-(H4), (H6) hold and ω(N − 1) > 0 . If
λ (K)k,ν is a double zero of F(λ ) with α = 0 , then either

(i) λ (K)k,ν = 0 ;

or

(ii) λ (K)k,ν = μi,ν for some even i ∈ {1, · · ·max{N−n,n−1}} .

REMARK 4.3. In Theorem 4.1, if the strict inequality holds in (H6), then by
Lemma 3.3, the two principal eigenvalues λ (K)1,+ and λ (K)1,− satisfy: λ (K)1,+ >
0 > λ (K)1,− .

On the other hand, if the equation holds in (H6), i.e., (H5) holds, then the relations
between λ (K)1,+ , λ (K)1,− and 0 could be determined by the conditions on ki ( i =
1,2,3) and α in Lemma 3.6. Actually, if (3.11) holds, then λ (K)1,− < 0 = λ (K)1,+ .
If (3.12) holds, then λ (K)1,− = 0 < λ (K)1,+ . If (3.13) holds, then λ (K)1,− = 0 =
λ (K)1,+ .
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So, in Theorem 4.1 and the following main results, we only give the non-strict
inequality for λ (K)1,+ , λ (K)1,− and 0.

Since all the proofs are similar to the proof of Theorem 4.1 with obvious change,
we only list other two main results, i.e., the result for F(λ ) = 0 with α = π and the
result for F(λ ) = 0 with α ∈ (−π ,0)∪ (0,π) .

THEOREM 4.4. Suppose that (H1)-(H4) hold, ω(N−1) > 0 and

(H7) k3 + k1 +2 � k2 ∑N−1
s=0

p(−1)
p(s) .

Then, for α = π , F(λ ) has at least two zeros λ (−K)1,− and λ (−K)1,+ in (μ1,−,μ1,+) ,
exactly n − 2 positive zeros in (μ1,+,∞) and exactly N − n− 1 negative zeros in
(−∞,μ1,−) . Moreover, these N eigenvalues can be ordered as follows.

(a) If N and n are both even numbers, then

μN−n,−<λ (−K)N−n,−�μN−n−1,− � λ (−K)N−n−1,− < μN−n−2,−
<λ (−K)N−n−2,−�μN−n−3,−�λ (−K)N−n−3,−< · · ·�μ3,−�λ (−K)3,−<μ2,−
<λ (−K)2,− � μ1,− � λ (−K)1,− � 0 � λ (−K)1,+ � μ1,+ � λ (−K)2,+ < μ2,+

<λ (−K)3,+ � · · · < μn−4,+ < λ (−K)n−3,+ � μn−3,+ � λ (−K)n−2,+ < μn−2,+

<λ (−K)n−1,+ � μn−1,+ � λ (−K)n,+.

(b) If N is an even number and n is an odd number, then

μN−n,− � λ (−K)N−n,− < μN−n−1,− < λ (−K)N−n−1,− � μN−n−2,−
�λ (−K)N−n−2,−<μN−n−3,−<λ (−K)N−n−3,−� · · ·�μ3,−�λ (−K)3,−<μ2,−
<λ (−K)2,− � μ1,− � λ (−K)1,− � 0 � λ (−K)1,+ � μ1,+ � λ (−K)2,+ < μ2,+

<λ (−K)3,+ � · · · � μn−4,+ � λ (−K)n−3,+ < μn−3,+ < λ (−K)n−2,+ � μn−2,+

�λ (−K)n−1,+ < μn−1,+ < λ (−K)n,+.

(c) If N is an odd number and n is an even number, then

μN−n,− � λ (−K)N−n,− < μN−n−1,− < λ (−K)N−n−1,− � μN−n−2,−
�λ (−K)N−n−2,−<μN−n−3,−<λ (−K)N−n−3,−� · · ·�μ3,−�λ (−K)3,−<μ2,−
<λ (−K)2,− � μ1,− � λ (−K)1,− � 0 � λ (−K)1,+ � μ1,+ � λ (−K)2,+ < μ2,+

<λ (−K)3,+ � · · · < μn−4,+ < λ (−K)n−3,+ � μn−3,+ � λ (−K)n−2,+ < μn−2,+

<λ (−K)n−1,+ � μn−1,+ � λ (−K)n,+.

(d) If N and n are both odd numbers, then

μN−n,− < λ (−K)N−n,− � μN−n−1,− � λ (−K)N−n−1,− < μN−n−2,−
<λ (−K)N−n−2,−�μN−n−3,−�λ (−K)N−n−3,−< · · ·�μ3,−�λ (−K)3,−<μ2,−
<λ (−K)2,− � μ1,− � λ (−K)1,− � 0 � λ (−K)1,+ � μ1,+ � λ (−K)2,+ < μ2,+

<λ (−K)3,+ � μ3,+ � · · · � μn−4,+ � λ (−K)n−3,+ < μn−3,+ < λ (−K)n−2,+

�μn−2,+ � λ (−K)n−1,+ < μn−1,+ < λ (−K)n,+.
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COROLLARY 4.5. Suppose that (H1)-(H4), (H6) hold and ω(N − 1) > 0 . If
λ (−K)k,ν is a double zero of F(λ ) with α = π , then λ (−K)k,ν = μi,ν for some odd
i ∈ {1, · · · ,max{N−n,n−1}}.

THEOREM 4.6. Suppose that (H1)-(H4) hold, ω(N−1) > 0 and

(H8) k3 + k1−2cosα � k2 ∑N−1
s=0

p(−1)
p(s) , α ∈ (−π ,0)∪ (0,π) .

Then, for α ∈ (−π ,0)∪(0,π) , F(λ ) has at least two zeros λ (eiαK)1,− and λ (eiαK)1,+
in (μ1,−,μ1,+) , and have exactly n− 2 positive zeros in (μ1,+,∞) and have exactly
N − n− 1 negative zeros in (−∞,μ1,−). Then these N eigenvalues can be ordered as
follows

μN−n,− < λ (eiαK)N−n,− < μN−n−1,− < λ (eiαK)N−n−1,− < μN−n−2,− < · · · < μ3,−
<λ (eiαK)3,− < μ2,− < λ (eiαK)2,− < μ1,− < λ (eiαK)1,− � 0 � λ (eiαK)1,+ < μ1,+

<λ (eiαK)2,+ < μ2,+ < λ (eiαK)3,+ < μ3,+ < · · · < λ (eiαK)n−2,+ < μn−2,+

<λ (eiαK)n−1,+ < μn−1,+ < λ (eiαK)n,+.

Based on Theorem 4.1, Theorem 4.4 and Theorem 4.6, we could obtain the inter-
lacing properties for the eigenvalues of (1.1), (1.2) as α changes as follows. Until now,
we know that the existence of the eigenvalues λ (K)1,ν , λ (−K)1,ν and λ (eiαK)1,ν
mainly depend on F(0) � 0. From (H6)-(H8), it is easy to see that if (H6) holds, then
(H7) and (H8) hold. Furthermore, F(0) � 0 for each α ∈ (−π ,π). Therefore, in the
following discussion, we always suppose that (H6) holds for discussing the interlacing
properties of the eigenvalues.

THEOREM 4.7. Suppose that (H1)-(H4), (H6) hold and ω(N−1) > 0 . If N and
n are both even numbers, then the eigenvalues λ (−K)k,ν , λ (eiαK)k,ν and λ (−K)k,ν
can be ordered as follows

μN−n,−�λ (K)N−n,−<λ (eiαK)N−n,−<λ (−K)N−n,−�μN−n−1,−�λ (−K)N−n−1,−
<λ (eiαK)N−n−1,− < λ (K)N−n−1,− � μN−n−2,− � λ (K)N−n−2,− < λ (eiαK)N−n−2,−
<λ (−K)N−n−2,− � μN−n−3,− � · · · < λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,−
<λ (eiαK)2,−<λ (−K)2,−�μ1,−�λ (−K)1,−<λ (eiαK)1,−<λ (K)1,−�0�λ (K)1,+

<λ (eiαK)1,+ < λ (−K)1,+ � μ1,+ � λ (−K)2,+ < λ (eiαK)2,+ < λ (K)2,+ � μ2,+

�λ (K)3,+ < λ (eiαK)3,+ < λ (−K)3,+ � μ3,+ � · · · � λ (−K)n−2,+ < λ (eiαK)n−2,+

<λ (K)n−2,+ � μn−2,+ � λ (K)n−1,+ < λ (eiαK)n−1,+ < λ (−K)n−1,+ � μn−1,+

�λ (−K)n,+ < λ (eiαK)n,+ < λ (K)n,+.

Proof. We only need to prove that for ν ∈ {+,−} ,

|λ (K)2k−1,ν | < |λ (eiαK)2k−1,ν | < |λ (−K)2k−1,ν |, (4.5)

and
|λ (−K)2k,ν | < |λ (eiαK)2k,ν | < |λ (K)2k,ν |. (4.6)
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At first, let us consider the value of F(λ ) at λ = λ (K)k,ν , λ = λ (eiαK)k,ν and
λ = λ (−K)k,ν for different α . For the sake of convenience, let Fα=0(λ ) be the
value of F(λ ) at λ for α = 0, Fα=π(λ ) be the value of F(λ ) at λ for α = π and
Fα∈(−π ,0)∪(0,π)(λ ) be the value of F(λ ) at λ for α ∈ (−π ,0)∪ (0,π) .

(a) Let λ = λ (K)k,ν . If α = 0, then Fα=0(λ (K)k,ν ) = 0, which implies that

k3ϕ(N−1,λ (K)k,ν)+ k1Δψ(N−1,λ (K)k,ν)− k2ψ(N−1,λ (K)k,ν)−2 = 0. (4.7)

By (4.7), if α = π , then

Fα=π(λ (K)k,ν )
=k3ϕ(N−1,λ (K)k,ν)+ k1Δψ(N−1,λ (K)k,ν)− k2ψ(N−1,λ (K)k,ν)+2

=4 > 0.

(4.8)

If −π < α < π and α �= 0, then

Fα∈(−π ,0)∪(0,π)(λ (K)k,ν )

=k3ϕ(N−1,λ (K)k,ν)+ k1Δψ(N−1,λ (K)k,ν)− k2ψ(N−1,λ (K)k,ν)−2cosα
=2−2cosα > 0.

(4.9)
(b) Let λ = λ (eiαK)k,ν . If α �= 0,π , then Fα∈(−π ,0)∪(0,π)(λ (eiαK)k,ν ) = 0,

which implies that

k3ϕ(N−1,λ (eiαK)k,ν)+k1Δψ(N−1,λ (eiαK)k,ν)−k2ψ(N−1,λ (eiαK)k,ν)=2cosα.
(4.10)

By (4.10), if α = 0, then

Fα=0(λ (eiαK)k,ν )

=k3ϕ(N−1,λ (eiαK)k,ν)+ k1Δψ(N−1,λ (eiαK)k,ν )− k2ψ(N−1,λ (eiαK)k,ν )−2

=2cosα0−2 < 0, for some α0 �= 0,π .
(4.11)

If α = π , then

Fα=π(λ (eiαK)k,ν )

=k3ϕ(N−1,λ (eiαK)k,ν)+ k1Δψ(N−1,λ (eiαK)k,ν )− k2ψ(N−1,λ (eiαK)k,ν )+2

=2cosα0 +2 > 0, for some α0 �= 0,π .
(4.12)

(c) Let λ = λ (−K)k,ν . If α = π , then Fα=π(λ (−K)k,ν) = 0, which implies that

k3ϕ(N−1,λ (−K)k,ν)+ k1Δψ(N−1,λ (−K)k,ν)− k2ψ(N−1,λ (−K)k,ν) = −2.
(4.13)

By (4.13), if α = 0, then

Fα=0(λ (−K)k,ν )
=k3ϕ(N−1,λ (−K)k,ν)+ k1Δψ(N−1,λ (−K)k,ν)− k2ψ(N−1,λ (−K)k,ν)−2

=−2−2 = −4 < 0.
(4.14)
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If −π < α < π and α �= 0, then

Fα∈(−π ,0)∪(0,π)(λ (−K)k,ν )

=k3ϕ(N−1,λ (−K)k,ν)+ k1Δψ(N−1,λ (−K)k,ν)− k2ψ(N−1,λ (−K)k,ν)−2cosα
=−2−2cosα < 0.

(4.15)
Second, we prove (4.5) and (4.6) in the case that ν = + . Meanwhile, we only dis-

cuss the relations of λ (K)k,+ and λ (eiαK)k,+ . Other cases could be treated similarly.
Firstly, let us prove that λ (K)1,+ < λ (eiαK)1,+ . Suppose on the contrary that

λ (K)1,+ � λ (eiαK)1,+ . If λ (K)1,+ = λ (eiαK)1,+ , then

Fα=0(λ (eiαK)1,+) = Fα=0(λ (K)1,+) = 0. (4.16)

However, by (4.11), Fα=0(λ (eiαK)1,+) < 0. A contradiction. Therefore,

λ (K)1,+ > λ (eiαK)1,+. (4.17)

Obviously, λ (K)1,+ > 0. Furthermore, by (H6), we get that the strict inequality in
(H8) holds. Then by Lemma 3.3, Fα∈(−π ,0)∪(0,π)(0) > 0. Therefore, Remark 4.3 and
Theorem 4.6 imply that λ (eiαK)1,+ > 0, subsequently, λ (K)1,+ > λ (eiαK)1,+ > 0.

Now, by the fact that λ (K)1,+ is the first nonnegative zero of Fα=0(λ ) , we have
Fα=0(λ (eiαK)1,+) > 0, which contradicts (4.11). Thus, λ (K)1,+ < λ (eiαK)1,+ .

Secondly, we claim that λ (K)2k−1,+ < λ (eiαK)2k−1,+ for k ∈ {2, · · · , n−2
2 } . From

Theorem 4.1 and Theorem 4.6, we get that

μ2k−2,+ < λ (eiαK)2k−1,+ < μ2k−1,+, λ (K)2k−2,+ � μ2k−2,+ � λ (K)2k−1,+ < μ2k−1,+.

If μ2k−2,+ = λ (K)2k−1,+ , then it is obvious that λ (K)2k−1,+ < λ (eiαK)2k−1,+ . Now,
suppose that μ2k−2,+ < λ (K)2k−1,+. By Lemma 3.1, Fα=0(μ2k−2,+) � 0, this combines
with Fα=0(0) � 0 implies that for each λ ∈ (λ (K)2k−2,+,λ (K)2k−1,+) , Fα=0(λ ) � 0.
However, by (4.11), when α = 0, Fα=0(λ (eiαK)2k−1,+) < 0. Combining this with
λ (eiαK)2k−1,+ > μ2k−2,+ , it is not difficult to see that λ (K)2k−1,+ < λ (eiαK)2k−1,+
for k ∈ {2, · · ·, n−2

2 } .
Thirdly, we prove that λ (eiαK)2k,+ < λ (K)2k,+ for k ∈ {1,2, · · ·, n−2

2 } . From
Theorem 4.1 and Theorem 4.6,

μ2k−1,+ < λ (eiαK)2k,+ < μ2k,+, μ2k−1,+ < λ (K)2k,+ � μ2k,+ � λ (K)2k+1,+.

If μ2k,+ = λ (K)2k,+ , then it is obvious that λ (eiαK)2k,+ < λ (K)2k,+ . Now, sup-
pose that λ (K)2k,+ < μ2k,+. By Lemma 3.1, Fα=0(μ2k,+) � 0, this combines with
Fα=0(0) � 0 implies that for each λ ∈ (λ (K)2k,+,λ (K)2k+1,+) , Fα=0(λ ) � 0. Mean-
while, by (4.11), when α = 0, Fα=0(λ (eiαK)2k−1,+) < 0. Combining this with
λ (eiαK)2k,+<μ2k,+ , we could obtain that λ (eiαK)2k,+<λ (K)2k,+ for k∈{1,2, · · · , n−2

2 } .
Finally, we claim that λ (eiαK)n,+ < λ (K)n,+ . Suppose on the contrary that λ (K)n,+

� λ (eiαK)n,+ . Since λ (K)n,+ is the last zero of Fα=0(λ ) and Fα=0(λ ) → +∞ as
λ → +∞ , we know that Fα=0(λ (eiαK)n,+) > 0. However, this contradicts (4.11).
Therefore, λ (eiαK)n,+ < λ (K)n,+ . �
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THEOREM 4.8. Suppose that (H1)-(H4), (H6) hold and ω(N−1) > 0 . Then the
eigenvalues λ (−K)k,ν , λ (eiαK)k,ν and λ (−K)k,ν can be ordered as follows.

(a) If N is an even number and n is an odd number, then

μN−n,− � λ (−K)N−n,− < λ (eiαK)N−n,− < λ (K)N−n,− � μN−n−1,−
�λ (K)N−n−1,− < λ (eiαK)N−n−1,− < λ (−K)N−n−1,− � μN−n−2,−
�λ (−K)N−n−2,− < λ (eiαK)N−n−2,− < λ (K)N−n−2,− � μN−n−3,− � · · ·
<λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,− < λ (eiαK)2,− < λ (−K)2,− � μ1,−
�λ (−K)1,−<λ (eiαK)1,−<λ (K)1,−�0�λ (K)1,+ <λ (eiαK)1,+ <λ (−K)1,+

�μ1,+ � λ (−K)2,+ < λ (eiαK)2,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < λ (eiαK)3,+

<λ (−K)3,+ �μ3,+ � · · ·�λ (K)n−2,+ <λ (eiαK)n−2,+ <λ (−K)n−2,+ �μn−2,+

�λ (−K)n−1,+ <λ (eiαK)n−1,+ <λ (K)n−1,+ �μn−1,+ �λ (K)n,+ <λ (eiαK)n,+

<λ (−K)n,+.

(b) If N and n are both odd numbers, then

μN−n,− � λ (K)N−n,− < λ (eiαK)N−n,− < λ (−K)N−n,− � μN−n−1,−
�λ (−K)N−n−1,− < λ (eiαK)N−n−1,− < λ (K)N−n−1,− � μN−n−2,−
�λ (K)N−n−2,− < λ (eiαK)N−n−2,− < λ (−K)N−n−2,− � μN−n−3,− � · · ·
<λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,− < λ (eiαK)2,− < λ (−K)2,− � μ1,−
�λ (−K)1,−<λ (eiαK)1,−<λ (K)1,−�0�λ (K)1,+ <λ (eiαK)1,+ <λ (−K)1,+

�μ1,+ � λ (−K)2,+ < λ (eiαK)2,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < λ (eiαK)3,+

<λ (−K)3,+ �μ3,+ � · · ·�λ (K)n−2,+ <λ (eiαK)n−2,+ <λ (−K)n−2,+ �μn−2,+

�λ (−K)n−1,+ <λ (eiαK)n−1,+ <λ (K)n−1,+ �μn−1,+ �λ (K)n,+ <λ (eiαK)n,+

<λ (−K)n,+.

(c) If N is an odd number and n is an even number, then

μN−n,− � λ (−K)N−n,− < λ (eiαK)N−n,− < λ (K)N−n,− � μN−n−1,−
�λ (K)N−n−1,− < λ (eiαK)N−n−1,− < λ (−K)N−n−1,− � μN−n−2,−
�λ (−K)N−n−2,− < λ (eiαK)N−n−2,− < λ (−K)N−n−2,− � μN−n−3,− � · · ·
<λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,− < λ (eiαK)2,− < λ (−K)2,− � μ1,−
�λ (−K)1,−<λ (eiαK)1,−<λ (K)1,−�0�λ (K)1,+ <λ (eiαK)1,+ <λ (−K)1,+

�μ1,+ � λ (−K)2,+ < λ (eiαK)2,+ < λ (K)2,+ � μ2,+ � λ (K)3,+ < λ (eiαK)3,+

<λ (−K)3,+ �μ3,+ � · · ·�λ (−K)n−2,+ <λ (eiαK)n−2,+ <λ (K)n−2,+ �μn−2,+

�λ (K)n−1,+ <λ (eiαK)n−1,+ <λ (−K)n−1,+�μn−1,+ �λ (−K)n,+ <λ (eiαK)n,+

<λ (K)n,+.
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Proof. The proof is similar to the proof of Theorem 4.7 with obvious change, so
we omit it here. �

Finally, we just list the interlacing properties of the eigenvalues of (1.1), (1.2) for
the case ω(N−1) < 0, since the discussion is similar to the discussion for ω(N−1) >
0. The main difference between these two kinds of cases is the different number of the
positive and negative eigenvalues under these two cases.

THEOREM 4.9. Suppose that (H1)-(H4), (H6) hold and ω(N − 1) < 0 . Then
eigenvalues λ (−K)k,ν , λ (eiαK)k,ν and λ (−K)k,ν can be ordered as follows.

(a) If N and n are both even numbers, then

λ (K)N−n,− < λ (eiαK)N−n,− < λ (−K)N−n,− � μN−n−1,− � λ (−K)N−n−1,−
<λ (eiαK)N−n−1,−<λ (K)N−n−1,−�μN−n−2,−�λ (K)N−n−2,−<λ (eiαK)N−n−2,−
<λ (−K)N−n−2,− � μN−n−3,− � · · · < λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,−
<λ (eiαK)2,− < λ (−K)2,− � μ1,− � λ (−K)1,− < λ (eiαK)1,− < λ (K)1,− � 0

�λ (K)1,+ < λ (eiαK)1,+ < λ (−K)1,+ � μ1,+ � λ (−K)2,+ < λ (eiαK)2,+

<λ (K)2,+ � μ2,+ � λ (K)3,+ < · · · � μn−2,+ � λ (K)n−1,+ < λ (eiαK)n−1,+

<λ (−K)n−1,+ � μn−1,+ � λ (−K)n,+ < λ (eiαK)n,+ < λ (K)n,+ � μn,+.

(b) If N is an even number and n is an odd number, then

λ (−K)N−n,− < λ (eiαK)N−n,− < λ (K)N−n,− � μN−n−1,− � λ (K)N−n−1,−
<λ (eiαK)N−n−1,−<λ (−K)N−n−1,−�μN−n−2,−�λ (−K)N−n−2,−<λ (eiαK)N−n−2,−
<λ (K)N−n−2,− � μN−n−3,− � · · · < λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,−
<λ (eiαK)2,− < λ (−K)2,− � μ1,− � λ (−K)1,− < λ (eiαK)1,− < λ (K)1,− � 0

�λ (K)1,+ < λ (eiαK)1,+ < λ (−K)1,+ � μ1,+ � λ (−K)2,+ < λ (eiαK)2,+

<λ (K)2,+ � μ2,+ � λ (K)3,+ < · · · � μn−2,+ � λ (−K)n−1,+ < λ (eiαK)n−1,+

<λ (K)n−1,+ � μn−1,+ � λ (K)n,+ < λ (eiαK)n,+ < λ (−K)n,+ � μn,+.

(c) If N is an odd number and n is an even number, then

λ (−K)N−n,− < λ (eiαK)N−n,− < λ (K)N−n,− � μN−n−1,− � λ (K)N−n−1,−
<λ (eiαK)N−n−1,−<λ (−K)N−n−1,−�μN−n−2,−�λ (−K)N−n−2,−<λ (eiαK)N−n−2,−
<λ (K)N−n−2,− � μN−n−3,− � · · · < λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,−
<λ (eiαK)2,− < λ (−K)2,− � μ1,− � λ (−K)1,− < λ (eiαK)1,− < λ (K)1,− � 0

�λ (K)1,+ < λ (eiαK)1,+ < λ (−K)1,+ � μ1,+ � λ (−K)2,+ < λ (eiαK)2,+

<λ (K)2,+ � μ2,+ � λ (K)3,+ < · · · � μn−2,+ � λ (K)n−1,+ < λ (eiαK)n−1,+

<λ (−K)n−1,+ � μn−1,+ � λ (−K)n,+ < λ (eiαK)n,+ < λ (K)n,+ � μn,+.
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(d) If N and n are both odd numbers, then

λ (K)N−n,− < λ (eiαK)N−n,− < λ (−K)N−n,− � μN−n−1,− � λ (−K)N−n−1,−
<λ (eiαK)N−n−1,−<λ (K)N−n−1,−�μN−n−2,− � λ (K)N−n−2,−<λ (eiαK)N−n−2,−
<λ (−K)N−n−2,− � μN−n−3,− � · · · < λ (eiαK)3,− < λ (K)3,− � μ2,− � λ (K)2,−
<λ (eiαK)2,− < λ (−K)2,− � μ1,− � λ (−K)1,− < λ (eiαK)1,− < λ (K)1,− � 0

�λ (K)1,+ < λ (eiαK)1,+ < λ (−K)1,+ � μ1,+ � λ (−K)2,+ < λ (eiαK)2,+

<λ (K)2,+ � μ2,+ � λ (K)3,+ < · · · � μn−2,+ � λ (−K)n−1,+ < λ (eiαK)n−1,+

<λ (K)n−1,+ � μn−1,+ � λ (K)n,+ < λ (eiαK)n,+ < λ (−K)n,+ � μn,+.

REMARK 4.10. Until now, we only discuss the case that F(0) � 0. If F(0) < 0,
we could also obtain the real eigenvalues of (1.1), (1.2). However, compared to the case
that F(0) � 0, we could only obtain that (1.1), (1.2) has at least N−2 real eigenvalues,
similar to the case F(0) � 0, we also could obtain the interlacing properties for these
N−2 real eigenvalues. For example, suppose that (H1)-(H4) hold and

(H9) k3 + k1−2cosα < k2 ∑N−1
s=0

p(−1)
p(s) .

Then, by (H9), F(0) < 0. Furthermore, since F(μ1,+) < 0 and F(μ1,−) < 0, we
could not obtain two real zeros in (μ1,−,μ1,+) of F(λ ) as in the proof of Theorem 4.1,
Theorem 4.4, Theorem 4.6-Theorem 4.9, but other eigenvalues also exist and satisfy
the same interlacing properties in this case. This implies that we may lose the principal
eigenvalues for (1.1), (1.2).

REMARK 4.11. In this remark, we shall point out the relations of our problems
and the discrete left-definite problems. Define the Hilbert space X := {y|y : [−1,N]Z →
C, and y satisfy (1.2)} with the inner product

〈u,v〉 =
N−1

∑
t=0

u(t)v(t), u,v ∈ X .

Then X is Banach space with the induced norm ‖u‖=
√

∑N−1
t=0 |u(t)|2 . Define L : X →

X by
Ly := −∇(p(n)Δy(n))+q(n)y(n).

Then for y ∈ X and y �= θ ,

〈Ly, y〉 = −
N−1

∑
t=0

∇(p(t)Δy(t))y(t)+
N−1

∑
t=0

q(t)y(t)y(t)

=
N−1

∑
t=0

p(t−1)y(t)Δy(t−1)−
N−1

∑
t=0

p(t)y(t)Δy(t)+
N−1

∑
t=0

q(t)y(t)y(t)

=
N−2

∑
t=−1

p(t)y(t +1)Δy(t)−
N−2

∑
t=−1

p(t)y(t)Δy(t)+
N−1

∑
t=0

q(t)y(t)y(t)

+ p(−1)y(−1)Δy(−1)− p(N−1)y(N−1)Δy(N−1).
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Combining the boundary condition (1.2) with the assumption p(−1) = p(N − 1) , we
have

〈Ly,y〉=
N−2

∑
t=−1

p(t)|Δy(t)|2+
N−1

∑
t=0

q(t)|y(t)|2+p(−1)[y(−1)Δy(−1)−y(N−1)Δy(N−1)]

=
N−2

∑
t=−1

p(t)|Δy(t)|2+
N−1

∑
t=0

q(t)|y(t)|2+p(−1)[(1−k1k3)y(−1)Δy(−1)−k1k2|y−1|2].

Now, if q(t) �≡ 0 and q(t) � 0 on [0,N − 1]Z , we could get a sharp condition for
〈Ly, y〉 > 0. That is, k1k3 = 1 and k2 = 0. This is only a special case of our Lemma
3.4. Therefore, the problem we discuss here is more general than the left-definite case.
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[24] M. BOHNER, O. DOS̆LÝ AND W. KRATZ, Sturmian and spectral theory for discrete symplectic sys-
tems, Trans. Amer. Math. Soc., 361 (2009), 3109–3123.

[25] W. KRATZ, Discrete Oscillation, J. Difference Equ. Appl., 9 (2003), 135–147.
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