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SOME C∗–ALGEBRAS WHOSE EXT IS NOT A GROUP

FLORIN POP

Abstract. It has been known since 1977 that, for a unital, separable C∗ -algebra A, Extu(A) is
a group if and only if every unital ∗ -monomorphism of A with values in the Calkin algebra
B(�2)/K(�2) has a unital completely positive lifting to B(�2). While Extu is a group for all
C∗ -algebras with the Local Lifting Property, the information in the opposite direction is rather
scarce, with only two examples being known to this day whose Extu is not a group.

In this note we present several new examples of separable C∗ -algebras whose Extu is not
a group. These examples are a consequence of the existence of a finite dimensional operator
system in the Calkin algebra whose identity map has no completely positive lifting to B(�2).
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