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SOME C∗–ALGEBRAS WHOSE EXT IS NOT A GROUP
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Abstract. It has been known since 1977 that, for a unital, separable C∗ -algebra A, Extu(A) is
a group if and only if every unital ∗ -monomorphism of A with values in the Calkin algebra
B(�2)/K(�2) has a unital completely positive lifting to B(�2). While Extu is a group for all
C∗ -algebras with the Local Lifting Property, the information in the opposite direction is rather
scarce, with only two examples being known to this day whose Extu is not a group.

In this note we present several new examples of separable C∗ -algebras whose Extu is not
a group. These examples are a consequence of the existence of a finite dimensional operator
system in the Calkin algebra whose identity map has no completely positive lifting to B(�2).

1. Introduction

Lifting a map ϕ : A → B/J from a C∗ -algebra A with values in a quotient C∗ -
algebra B/J means the existence of a map ψ : A → B such that ϕ = q ◦ψ , where
q : B → B/J is the quotient map, and has long been an important goal in the theory
of C∗ -algebras. While a variety of maps are of particular interest, it is the completely
positive ones that have received the most attention. We say that a unital C∗ -algebra
A has the Lifting Property (LP) if, for every unital completely positive (u.c.p.) map
ϕ : A → B/J, there exists a u.c.p. map ψ : A → B such that ϕ = q◦ψ . A u.c.p. map ϕ
with this property is said to be u.c.p. liftable to B. A u.c.p. map ϕ : A → B/J is locally
u.c.p. liftable if, for every finite dimensional operator system E ⊂ A, there exists a
u.c.p. map ψ : E → B such that ϕ |E = q ◦ψ . A C∗ -algebra has the Local Lifting
Property (LLP) if every u.c.p. map from A to B/J is locally u.c.p. liftable to B.

The origins of this circle of ideas can be traced back to the work of Brown, Dou-
glas and Fillmore [4, 5], Arveson [2, 3], and Voiculescu [19] in the 1970’s, which was
largely motivated by the study of essentially normal operators, a topic that goes back to
Weyl in the early 1900’s. The two central questions were: (1) Under what conditions
is an essentially normal operator T ∈ B(�2) (that is, the image of T in B(�2)/K(�2)
is normal) a compact perturbation of a normal operator in B(�2)? (2) Under what
conditions are two normal operators in B(�2) unitarily equivalent modulo K(�2)? Ad-
dressing these questions led to the study of ∗ -monomorphisms of abelian C∗ -algebras
into the Calkin algebra and to the necessity of lifting them to completely positive maps
with values in B(�2). This, in turn, led to the notion of Ext and from there two new and
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important directions emerged. Brown, Douglas and Fillmore pursued the topological
aspects of the problem, marking the moment when topological methods were intro-
duced in the study of C∗ -algebras, while Arveson initiated the theory of completely
positive maps for C∗ -algebras. Connecting the two trends was Arveson’s theorem stat-
ing that Extu(A) is a group if and only if every unital ∗ -monomorphism of A into the
Calkin algebra has a u.c.p. lifting. Subsequently, Anderson [1] found the first example
of a C∗ -algebra for which Extu is not a group.

After Choi and Effros [6] settled in the affirmative the u.c.p. lifting problem for
separable nuclear C∗ -algebras, by proving in effect that these algebras have the LP,
Kirchberg [11] exhibited a non-nuclear C∗ -algebra with the LP, namely C∗(F∞), the
full C∗ -algebra of the free group on countably many generators. To this date, nuclear
C∗ -algebras and C∗(F∞) are the only basic examples known to have the LP. In [10],
Kirchberg introduced the LLP, which turned out to be very successful in establishing
surprising connections with tensor products and with Connes’ embedding problem. We
recall that Kirchberg’s (still open) conjecture, stating that every C∗ -algebra is QWEP,
is equivalent to Connes’ embedding problem (every finite von Neumann algebra with
separable predual is isomorphic to a subalgebra of Rω ), and, in turn, equivalent to the
uniqueness of the C∗ -norm on C∗(F∞)⊗C∗(F∞). We refer the reader to [10] and [17]
for more information and a wealth of related results.

Whether Extu(A) being a group implies that A has the LLP is an open problem.
The best result in this direction was obtained by Kirchberg in [10]: If Extu(cone(A))
or Extu(susp(A)) is a group, then A has the LLP. For a long time, Anderson’s example
[1] was the only C∗ -algebra whose Extu was known not to be a group. In 2005 ([8])
Haagerup and Thorbjornsen proved the same for Extu(C∗

red(F2)). To this date, these
two are the only known examples with this property.

The goal of this paper is to present some new examples of C∗ -algebras whose
Extu is not a group. The examples we present in Proposition 3.4 are based on a finite
dimensional operator system E of the Calkin algebra whose identity map has no u.c.p.
lifting to B(�2), and whose existence is proved in Corollary 3.3.

I am grateful to the anonymous referee, whose pertinent comments and sugges-
tions substantially improved the presentation of the material.

2. Background and preliminary results

In this section we collect some useful preliminary results. We also present, for the
benefit of the reader, the proof of the fact that Extu of a C∗ -algebra with the LLP is a
group (Corollary 2.6). All C∗ -algebras except K(�2) are assumed to be unital.

Whether every locally u.c.p. liftable map from a separable C∗ -algebra A with
values in B/J is actually u.c.p. liftable is an open question. The next result is Lemma
3.10(ii) in [14].

LEMMA 2.1. Let A,B,J be C∗ -algebras with A unital and separable, B unital,
and J ⊂ B an ideal. Suppose that for every ε > 0, for any finite dimensional operator
systems E ⊂ F ⊂ A, and for every c.p. map θ : E → J, there exists a c.p. map θ̃ : F → J
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such that ||θ̃ |E −θ || < ε. Then every locally u.c.p. liftable map ϕ : A → B/J is u.c.p.
liftable.

The next result shows that the condition in Lemma 2.1 is satisfied if J is nuclear.

LEMMA 2.2. Let J be a nuclear C∗ -algebra, and let E ⊂ F ⊂ B(H) be finite
dimensional operator systems. Let θ : E → J be a c.p. map. Then, for every ε > 0,
there exists a c.p. map θ̃ : F → J such that ||θ̃ |E −θ ||< ε.

Proof. Since E is finite dimensional, its closed unit ball is norm-compact. Hence,
since J is a nuclear C∗ -algebra, we can find a matrix C∗ -algebra M and contractive c.p.
maps σ : J → M and ρ : M → J such that ||θ −ρ ◦σ ◦θ || < ε. Since M is injective,
we can extend σ ◦θ to a c.p. map Θ : F → M. Then θ̃ = ρ ◦Θ is the desired map.
From Lemmas 2.1 and 2.2 we obtain

COROLLARY 2.3. Let A,B,J be C∗ -algebras with A unital and separable, B
unital, and J ⊂ B a nuclear ideal. If ϕ : A → B/J is locally u.c.p. liftable, then
it is u.c.p. liftable. In particular, every locally u.c.p. liftable u.c.p. map ϕ : A →
B(�2)/K(�2) is u.c.p. liftable.

We say that a C∗ -algebra A has the Weak Expectation Property (WEP) if, for every
faithful representation π : A → B(Hπ), there exists a u.c.p. map ψ : B(Hπ) → π(A)′′
such that ψ(π(a)) = π(a) for all a ∈ A (see [13]). Such a map ψ is called a weak
expectation. Equivalently, A has the WEP if and only if for some faithful representation
A ⊂ B(H), there exists a u.c.p. map Ψ : B(H) → A∗∗ such that Ψ(a) = ρ(a) for all
a∈ A, where ρ is the universal representation. It is therefore obvious that B(H) has the
WEP. A is said to be QWEP if it is a quotient of a C∗ -algebra with the WEP. Recall that
A has the LLP if, for every unital completely positive (u.c.p.) map ϕ : A → B/J and
every finite dimensional operator subsystem E ⊂ A, there exists a u.c.p. map ψ : E →B
such that q ◦ψ = ϕ on E, where q : B → B/J is the quotient map.

The following proposition contains two fundamental results of Kirchberg [10].

THEOREM 2.4. (i) If A has the LLP and B has the WEP, then A⊗max B = A⊗min

B.
(ii) A has the WEP if and only if A⊗maxC∗(F∞) = A⊗minC∗(F∞).

Two unital ∗ -monomorphisms ϕ ,ψ defined on a unital, separable C∗ -algebra A
with values in the Calkin algebra B(�2)/K(�2) are said to be equivalent if there exists
a unitary operator u ∈ B(�2) such that ψ(x) = q(u)ϕ(x)q(u∗) for all x ∈ A, where q
denotes the quotient map. The set of equivalence classes is denoted by Extu(A) and is
a commutative semigroup with respect to the additive operation [ϕ ]+ [ψ ] = [ϕ ⊕ψ ].
A unital ∗ -monomorphism ϕ is called trivial if there exists a unital ∗ -monomorphism
ψ : A→ B(�2) such that ϕ = q◦ψ . A consequence of Voiculescu’s theorem [19] is that
all trivial unital ∗ -monomorphisms are equivalent, thus forming the neutral element of
Extu(A). We refer the reader to [7] for a good introduction to the subject and further ref-
erences. The following theorem of Arveson [3] highlights the close connection between
liftings and the existence of inverses in Ext.
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PROPOSITION 2.5. If A is a unital, separable C∗ -algebra, then Extu(A) is a
group if and only if every unital ∗ -monomorphism of A with values in the Calkin alge-
bra B(�2)/K(�2) is u.c.p. liftable to B(�2).

From Proposition 2.5 and Corollary 2.3 we obtain

COROLLARY 2.6. If A is a unital, separable C∗-algebra with the LLP, then Extu(A)
is a group.

Conversely, Kirchberg [10] proved that if Extu(cone(A)) or Extu(susp(A)) is a
group, then A has the LLP.

The next results are motivated by Arveson’s Proposition 2.5. The question which
arises naturally about a C∗ -algebra whose Extu is a group is what (unital) maps other
than unital ∗ -monomorphisms are u.c.p. liftable? Some simple observations are col-
lected in the next lemma.

LEMMA 2.7. (i) If A is unital and separable, then there exists a unital ∗ -monomor-
phism from A into B(�2)/K(�2).

(ii) If Extu(A) is a group, then every unital ∗ -homomorphism from A with values
in the Calkin algebra B(�2)/K(�2) is u.c.p. liftable.

Proof. (i) This fact is undoubtedly folklore, but we include a proof for the sake
of completeness. Assume that A is faithfully represented on a separable Hilbert H
and denote by q : B(�2) → B(�2)/K(�2) the quotient map. If A contains no nonzero
compact operator in B(H), then, by identifying H and �2, we have ker (q) = 0, so q
is a ∗ -monomorphism. If A∩K(H) �= {0}, then A is isomorphic to A⊗ I acting on
H⊗ �2, and which contains no nonzero compact operator.

(ii) Let ϕ : A → B(�2)/K(�2) be a unital ∗ -homomorphism and, by part(i), let
θ : A → B(�2)/K(�2) be a unital ∗ -monomorphism. Then

ψ(x) =
(

ϕ(x) 0
0 θ (x)

)

is a ∗ -monomorphism defined on A with values in B(�2 ⊕ �2)/K(�2⊕ �2). Since ψ is
u.c.p. liftable, there exists a uc.p. map α : A → B(�2⊕ �2) = M2(B(�2)) such that ψ =
(q⊗ id)◦α, where q⊗ id is the quotient map from B(�2⊕�2) to B(�2⊕�2)/K(�2⊕�2).
It is easy to see that the (1,1) corner of α is the desired lifting of ϕ .

3. The main results

We begin this section by recalling Proposition 2.1(ii) in [18].

LEMMA 3.1. If A and B are C∗ -algebras, then the C∗ -algebras M2(A)⊗max B
and M2(A⊗max B) are isomorphic.
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Given an operator space E ⊂ B(H), the Paulsen operator system SE ⊂ M2(B(H)) as-
sociated with E is

SE =
{(

λ I a
b∗ μI

)
; a,b ∈ E, λ ,μ ∈ C

}
.

The following is the main technical result of the paper.

PROPOSITION 3.2. Suppose that A is a unital QWEP C∗ -algebra and let A =
B/J, where B has the WEP. Denote by q : B → A the quotient map, and by qn the
quotient map from Mn(B) to Mn(A). If, for every n � 1 and for every finite dimensional
operator system E ⊂ Mn(A), there exists a u.c.p. map αn : E → Mn(B) such that
qn ◦αn(x) = x for every x ∈ E, then A has the WEP.

Proof. Fix x0, ...,xn−1 ∈ A and let U0,U1,U2, ... be the generators of C∗(F∞),

where U0 = I. Recall that we have ||
n−1

∑
i=0

xi ⊗Ui||A⊗minC∗(F∞) = ||ϕ ||cb where ϕ : �n
∞ → A

is defined by ϕ((λ0,λ1, ...,λn−1)) =
n−1

∑
i=0

λixi (page 155 in [16]) and assume without

loss of generality that ||
n−1

∑
i=0

xi⊗Ui||A⊗minC∗(F∞) = 1, making ϕ a complete contraction.

Next, we consider the map ψ : S�n
∞ → M2(A) defined by

ψ
((

λ In a
b∗ μIn

))
=

(
λ In ϕ(a)

ϕ(b)∗ μIn

)

It is well known that ψ is u.c.p. (Lemma 8.1 in [15]).
We use the hypothesis to obtain a u.c.p. map α2 ◦ψ = Ψ : S�n

∞ → M2(B) such
that q2 ◦Ψ = ψ , where q2 is the quotient map from M2(B) onto M2(A) and note that
M2(B) has the WEP, as well as all Mn(B), n � 1. By taking into account Theorem
4.2(ii) we obtain the composition of the sequence of u.c.p. maps

S�n
∞ ⊗minC

∗(F∞) Ψ⊗id−→ M2(B)⊗minC
∗(F∞)=M2(B)⊗maxC

∗(F∞)
q2⊗id−→ M2(A)⊗maxC

∗(F∞)

and use Lemma 3.1 to focus on the (1,2) corner of this map, namely ϕ ⊗ id, which
represents a complete contraction from �n

∞⊗minC∗(F∞) with values in A⊗maxC∗(F∞).
If we denote by {e0,e1, ...,en−1} the canonical basis of �n

∞, we get

||
n−1

∑
i=0

xi ⊗Ui||A⊗maxC∗(F∞) = ||
n−1

∑
i=0

ϕ(ei)⊗Ui||A⊗maxC∗(F∞) � ||
n−1

∑
i=0

ei ⊗Ui||�n
∞⊗minC∗(F∞) = 1

therefore

||
n−1

∑
i=0

xi ⊗Ui||A⊗maxC∗(F∞) = ||
n−1

∑
i=0

xi⊗Ui||A⊗minC∗(F∞).
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The above argument can be repeated identically for Mn(A) instead of A.
Denote E1 = span{x⊗Ui : x ∈ A, 0 � i < ∞} ⊂ A⊗min C∗(F∞), and let E2 ⊂

A⊗max C∗(F∞) be the corresponding linear subspace. In the first part of the proof
we obtained that θ , the identity map on elementary operators, is a complete isometry
between E1 and E2. Consider A⊗maxC∗(F∞) faithfully represented on some separable
Hilbert space H.

If we view θ as taking values in B(H), then this map extends to a complete
contraction Θ with domain A⊗min C∗(F∞) and values in B(H). Since Θ is unital, it
must be a u.c.p. map (2.11 in [15]). Since Θ takes x⊗Ui to x⊗Ui, the operators
x⊗Ui belong to the multiplicative domain of Θ. By virtue of Theorem 3.18 in [15], Θ
becomes a ∗ -homomorphism defined on A⊗min C∗(F∞). Since Θ acts identically on
elementary operators, its range is necessarily equal to A⊗max C∗(F∞). Consequently,
Θ is a ∗ -homomorphism with domain A⊗min C∗(F∞) and range A⊗max C∗(F∞). The
conclusion follows.

COROLLARY 3.3. The Calkin algebra B(�2)/K(�2) contains a finite dimensional
operator system E with the property that there exists no u.c.p. map α : E→B(�2) such
that q◦α(x) = x for every x ∈ E, where q : B(�2)→ B(�2)/K(�2) is the quotient map.

Proof. It is obvious that the Calkin algebra is QWEP, since B(�2) clearly has the
WEP. The Calkin algebra does not have the WEP, otherwise Proposition 2.4 (i) and (ii)
would imply that the sequence

0 →C∗(F∞)⊗min K(�2) →C∗(F∞)⊗min B(�2) →C∗(F∞)⊗min B(�2)/K(�2) → 0

is exact. By [9] this implies that C∗(F∞) is exact, which is a contradiction by [20].
The conclusion follows from Proposition 3.2, after noting that Mn(B(�2)/K(�2)) and
B(�2)/K(�2) are isomorphic for all n.

At this stage we recall the universal C∗ -algebra of an operator system, introduced
by Kirchberg and Wassermann. In [12] they proved that, given an operator system E,
there exists a C∗ -algebra C∗

u(E), unique up to isomorphism, satisfying:
1. There exists a unital completely isometric map ι : E →C∗

u(E).
2. C∗

u(E) is the C∗ -algebra generated by ι(E).
3. If θ : E → B is a u.c.p. map with values in a C∗ -algebra B, then there exists a

∗ -homomorphism π : C∗
u(E) → B such that θ = π ◦ ι.

We arrived at the main result of this paper.

PROPOSITION 3.4. (i) If C∗(E) is the sub-C∗ -algebra of B(�2)/K(�2) generated
by E, then Extu(C∗(E)) is not a group.

(ii) If C∗
u(E) is the universal C∗ -algebra of E, then Extu(C∗

u(E)) is not a group.
(iii) If A is an arbitrary separable C∗ -algebra, then there exists a separable C∗ -

algebra B containing (an isomorphic copy of) A and such that Extu(B) is not a group.

Proof. (i) The identity map of C∗(E) represents a ∗ -monomorphism of C∗(E)
into the Calkin algebra with no u.c.p. lifting to B(�2) by virtue of Corollary 3.3.
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(ii) By the definition of the universal C∗ -algebra, there exists a ∗ -homomorphism
of C∗

u(E) with values in the Calkin algebra taking ι(E) to E pointwise. If Extu(C∗
u(E))

was a group, then by Lemma 2.7(ii) this homomorphism would lift to B(�2), thus
producing a u.c.p lifting of E.

(iii) By Lemma 2.7(i), the Calkin algebra contains an isomorphic copy of A, call
it A0. Then the C∗ -algebra generated by A0 and E is the desired algebra B.
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