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Abstract. A Drazin invertible Hilbert space operator T ∈ B(H ) , with Drazin inverse Td , is
(n,m) -power D-normal, T ∈ [(n,m)DN] , if [Tn

d ,T ∗m] = Tn
d T ∗m − T ∗mTn

d = 0 ; T is (n,m) -
power D-quasinormal, T ∈ [(n,m)DQN] , if [Tn

d ,T ∗mT ] = 0 . Operators T ∈ [(n,m)DN] have
a representation T = T1 ⊕ T0 , where T1 is similar to an invertible normal operator and T0 is
nilpotent. Using this representation, we have a keener look at the structure of [(n,m)DN] and
[(n,m)DQN] operators. It is seen that T ∈ [(n,m)DN] if and only if T ∈ [(n,m)DQN] , and if
[T,X ] = 0 for some operators X ∈ B(H ) and T ∈ [(1,1)DN] , then [T ∗

d ,X ] = 0 . Given simply

polar operators S,T ∈ [(1,1)DN] and an operator A =
(

T C
0 S

)
∈ B(H ⊕H ) , A ∈ [(1,1)DN]

if and only if C has a representation C = 0⊕C22 .

1. Introduction

Let B(H ) denote the algebra of operators, i.e. bounded linear transformations,
on a complex infinite dimensional Hilbert space H into itself. For S,T ∈ B(H ) , let
[S,T ] = ST − TS denote the commutator of S,T . An operator A ∈ B(H ) is normal
if [A∗,A] = 0. The spectral mapping theorem guarantees the existence of normal n th
roots of a normal operator A ∈ B(H ) ; however, normal A may have other non-normal
n th roots. If T ∈ B(H ) is an n th root of a normal operator A ∈ B(H ) , then an appli-
cation of the Fuglede theorem [9, 10] to [Tn,T ] = 0 implies [Tn,T ∗] = 0. Conversely,
[Tn,T ∗] = 0 implies Tn is normal. Recall, [3], that T ∈ B(H ) is Drazin invertible if
there exists an operator Td ∈ B(H ) such that

[Td ,T ] = 0, T 2
d T = Td , T p+1Td = T p

for some integer p � 1. The operator Td is then the Drazin inverse of T and p is the
Drazin index of T . A generalization of [Tn,T ∗] = 0 is obtained upon replacing T by
Td : T is Drazin normal , T ∈ [DN] , if [Td ,T ∗] = 0 [2] and T is (n,m)-Drazin normal,
for some integer m � 1, T ∈ [(n,m)DN] , if [Tn

d ,T ∗m] = 0 [13].
It is clear that if we let the positive integer k denote the least common multiple of n

and m , k = LCM(n,m) , then T ∈ [(n,m)DN] implies Tk
d is normal. As an n th root of
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a normal operator, Td , has a well defined structure [6, 8, 12]. Add to this the fact that as
a Drazin invertible operator, T has a direct sum decomposition of type T = T1⊕T0 , T1

invertible and T0 nilpotent (of some order), and Td has a decomposition Td = T−1
1 ⊕0,

it follows that T1 is similar to a normal operator [14]. Using this characterisation, we
study the structure of [(n,m)DN] operators in this note to prove that the (so called) class
[(n,m)DQN] of (n,m) D-quasinormal operators T , [Tn

d ,T ∗mT ] = 0, studied by [2, 13]
coincides with the class of [(n,m)DN] operators. It is seen that T ∈ [(n,m)DN]∧ [(n+
1,m)DN] (resp., T ∈ [(n,m)DN]∧ [(n,m+1)DN]) if and only if T ∈ [(k,m)DN] (resp.,
T ∈ [(n,k)DN]) for all integers k � 1; an m-partially isometric [(n,m)DN] contraction
is the direct sum of a unitary with a nilpotent; [T,X ] = 0 implies [T ∗

d ,X ] = 0 for T ∈
[DN] and X ∈ B(H ) . More generally, if A,B ∈ B(H ) are such that TA = BT for an
operator T ∈ [DN] , and if either of the hypotheses AT = TB and Td(A−B)= (B−A)Td

is satisfied, then T ∗
d A = BT ∗

d and AT ∗
d = T ∗

d B . Given operators S,T ∈ [(n,m)DN] , we

prove a sufficient conditiion for the upper triangular operator A =
(

T C
0 S

)
to be an

[(n,m)DN] operator; it is seen that this condition is necessary too in the case in which
n = m = 1, and both S and T have a simple pole at 0 .

2. Results

Throughout the following, S,T shall denote operators in B(H ) , n and m shall
denote positive integers, and I shall denote the identity map. The spectrum of T will
be denoted by σ(T ) and isoσ(T ) shall denote the isolated points of the spectrum of
T . Many of the properties of [(n,m)DN] operators lie on the surface. For example,
T ∈ [(n,m)DN] implies Tk ∈ [(n,m)DN] for all integers k � 1, since

(Tk)d = Tk
d , [Tn

d ,T ∗m] = 0 =⇒ [Tkn
d ,T ∗mk] = 0.

If S,T ∈ [(n,m)DN] and [S,T ] = 0 = [S∗,T ] , then (TS)d = TdSd = SdTd = (ST )d ,

[Tn
d ,T ∗m] = 0 = [Sn

d ,S
∗m] =⇒ [(TS)n

d,(TS)∗m] = 0,

and this (result) in turn implies (for tensor product T ⊗S of T and S ) that

[(T ⊗S)n
d,(T ⊗S)∗m] = [(Tn

d ⊗ I)(I⊗Sn
d),(T

∗m ⊗ I)(I⊗S∗m)] = 0.

For an understanding of some of the not so apparent structural properties of operators
T ∈ [(n,m)DN]∨ [(n,m)DQN] , we start by recalling that T is Drazin invertible if and
only if T has finite ascent and finite descent [3, 15]. Equivalently, T is Drazin invertible
if and only if 0 ∈ isoσ(T ) and there exists an integer p � 1, called the Drazin index of
T , such that

H = T p(H )⊕T−p(0) = H1 ⊕H0, T = T |T p(H )⊕T |T−p(0) = T1 ⊕T0.

Here, T1 is (evidently) invertible and T0 is p -nilpotent. (In the case in which 0 /∈σ(T ) ,
we allow ourselves a misuse of language and let T−1 denote the Drazin inverse of T ).
Denoting as before the Drazin inverse of T by Td , Td has a direct sum representation

Td = T−1
1 ⊕0 ∈ B(H1 ⊕H0)
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[3, Theorem 2.2.3]. Evidently,

T ∈ [(n,m)DN] ⇐⇒ [Tn
d ,T ∗m] = 0

⇐⇒ [T−n
1 ⊕0,T∗m

1 ⊕T ∗m
0 ] = 0

⇐⇒ [T−n
1 ,T ∗m

1 ]⊕0 = 0

⇐⇒ [Tn
1 ,T ∗m

1 ] = 0.

Hence:

PROPOSITION 2.1. T ∈ [(n,m)DN] if and only if T1 ∈ [(n,m)DN] .

The following theorem provides further information on the structure of [(n,m)DN]
operators T .

THEOREM 2.2. For every T ∈ [(n,m)DN] , there exists a direct sum decomposi-
tion H = H1 ⊕H0 of H and a decomposition T = T |H1 ⊕ T |H0 = T1 ⊕ T0 of T
such that T is similar to the direct sum of a normal operator in B(H1) with a nilpotent
operator (of the order of the Drazin index of T ) and Td is similar to a normal operator.

Proof. Assuming p to be the Drazin index of T , define the (closed) subspaces
H1 and H0 and the operators T1 and T0 as above. Then

H = H1 ⊕H0, T = T1 ⊕T0 ∈ B(H1 ⊕H0)

(with T1 invertible and T0 p -nilpotent). Let s = LCM(n,m) . Then

[Tn
d ,T ∗m] = 0 =⇒ [Tn

d ,T ∗m
d ] = 0 =⇒ [T s

d ,T ∗s
d ] = 0,

i.e., T s
d is normal. Since

T s
d is normal⇐⇒ T−s

1 is normal⇐⇒ Ts
1 is normal,

it follows from [14] that there exists an invertible normal operator N1 ∈ B(H1) and an
invertible operator S1 ∈ B(H1) such that T1 = S−1

1 N1S1 . Letting S = S1 ⊕ I|H0 and
N = N−1

1 ⊕0, we have Td = S−1NS .
Theorem 2.2 leads to the simplification of the proofs of a number of results from

[2, 13]. Postponing this exercise for the time being, we start here with the following
proposition which (contrary to the claim in [13, 2]) proves that the classes [(n,m)DN]
and [(n,m)DQN] of Hilbert space operators coincide.

PROPOSITION 2.3. T ∈ [(n,m)DQN] ⇐⇒ T ∈ [(n,m)DN] .
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Proof. Following the notation above,

T ∈ [(n,m)DQN] ⇐⇒ [Tn
d ,T ∗mT ] = 0

⇐⇒ [T−n
1 ⊕0,(T ∗m

1 ⊕T ∗m
0 )(T1 ⊕T0)] = 0

⇐⇒ [T−n
1 ,T ∗m

1 T1] = 0

⇐⇒ [T−n
1 ,T ∗m

1 ] = 0

⇐⇒ [T−n
1 ⊕0,T∗m

1 ⊕T ∗m
0 ] = 0

⇐⇒ [Tn
d ,T ∗m] = 0

⇐⇒ T ∈ [(n,m)DN].

This completes the proof.

REMARK 2.4. Defining the invertible operator S as in the proof of Theorem
2.2, it is seen that the operators T ∈ [(n,m)DQN]∨ [(n,m)DN] are similar to the di-
rect sum of a normal operator with a nilpotent operator. Hence, for operators T ∈
[(n,m)DQN]∨ [(n,m)DN] , both T and T ∗ satisfy Bishop– Eschmeier– Putinar prop-
erties (β )ε and (β ) . (The interested reader will find all pertinent information related
to these properties, and results on operators satisfying these properties, in references
[7, 11, 4].) In particular, such operators T are decomposable (hence have the single-
valued extension property). Furthermore, because of similarity to the direct sum of a
normal and a nilpotent operator, points λ ∈ isoσ(T ) for such T are poles of the resol-
vent of the operator: simple poles if λ 
= 0 and a pole of order p at 0 . In consequence,
operators T satisfy most, generalized and classical, Browder and Weyl type theorems.
(See [1] for information on Browder and Weyl type theorems.)

By definition, T ∈ [(n,m)DN]∧ [(n+1,m)DN] if and only if

Td(Tn
d T ∗m) = (T ∗mTn

d )Td = (Tn
d T ∗m)Td

⇐⇒ T−(n+1)
1 T ∗m

1 = (T ∗m
1 T−n

1 )T−1
1 = (T−n

1 T ∗m
1 )T−1

1

⇐⇒ [T−1
1 ,T ∗m

1 ] = 0 ⇐⇒ T1 ∈ [(1,m)DN]
⇐⇒ T ∈ [(1,m)DN];

again, T ∈ [(n,m)DN]∧ [(n,m+1)DN] if and only if

(T ∗mTn
d )T ∗ = (Tn

d T ∗m)T ∗ = T ∗(m+1)Tn
d

⇐⇒ T ∗m
1 T−n

1 T ∗
1 = T−n

1 T ∗(m+1)
1 = T ∗(m+1)

1 T−n
1

⇐⇒ [T−n
1 ,T ∗

1 ] = 0 ⇐⇒ T1 ∈ [(n,1)DN]
⇐⇒ T ∈ [(n,1)DN].

Hence:

PROPOSITION 2.5. T ∈ [(n,m)DN]∧[(n+1,m)DN] if and only if T ∈ [(k,m)DN]
and T ∈ [(n,m)DN]∧[(n,m+1)DN] if and only if T ∈ [(n,k)DN] for all integers k � 1 .
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Proposition 2.5 generalizes [13, Propositions 2.5 –2.9]. We remark here that the
hypotheses T is injective in [13, Proposition 2.6] and T ∗ is injective in [13, Proposition
2.9] are redundant.

An operator A∈ B(H ) is an m-partial isometry for some integer m � 1 if AmA∗m
Am = Am . An invertible m-partial isometry is unitary. Hence, for operators T ∈
[(n,m)DN] for which T is an m-partial isometry, Tm

1 is a unitary, σ(T ) ⊆ ∂D∪{0}
and T = T1⊕T0 , where ∂D denote the boundary of the unit disc in C , T1 is similar to
a unitary operator [14] and T0 is nilpotent. Furthermore, since T ∗m

1 = T−m
1 ,

T ∈ [(n,m)DN] ⇐⇒ [T−n
1 ,T ∗m

1 ] = 0

⇐⇒ T−n−m
1 T ∗m

1 = T ∗2m
1 T−n

1 = T ∗m
1 T−n−m

1

⇐⇒ T ∈ [(m+n,m)DN].

It is evident that an m-partially isometric operator T ∈ [(n,m)DN] for m = 1 is the
direct sum of a unitary operatorwith a nilpotent: a similar conclusion holds for a general
m in the case in which T is a contraction.

Recall that every contraction A∈B(H ) has a direct sum decomposition A = Au⊕
Ac into its unitary and cnu (=completely non-unitary) parts. A is a cnu C.0 contraction
if ||A∗nx|| −→ 0 as n −→ ∞ for all x ∈ H [10, Page 110]. The operator A is k -
paranormal for some integer k � 2 if ||Ax||k � ||Akx||||x||k−1 for all x ∈ H . It is
known, see [5, Page 319], that k -paranormal contractions have C.0 cnu parts.

PROPOSITION 2.6. If T ∈ [(n,m)DN] is an m-partially isometric operator, then
T ∈ [(1,1)DN] (equivalently, T ∈ [DN]) and T has a representation T =U⊕T0 , where
U ∈ B(H1) is a unitary and T0 ∈ B(H0) is a nilpotent.

Proof. If T ∈ [(n,m)DN] is m-partially isometric, then (see above) Tm
1 is unitary.

This, since T is a contraction implies T1 is a contraction, implies

||T1x||m � ||x||m = ||Tm
1 x||||x||m−1

for all x ∈ H1 . Consequently, T1 is m-paranormal. Since T1 has a non-trivial C.0

cnu part forces Tm
1 to have a non-trivial C.0 cnu part, we must have that T1 is unitary.

Hence T = U ⊕T0 for some unitary U and nilpotent T0 ∈ B(H0) . Finally,

T ∗2
1 = T−1

1 T ∗
1 = T ∗

1 T−1
1 ⇐⇒ [T−1

1 ,T ∗
1 ] = 0 ⇐⇒ [Td ,T

∗] = 0,

i.e., T ∈ [(1,1)DN] .

Commutativity properties. For operators T∈[DN] (equivalently, T∈[(1,1)DN]),
Td is normal, hence if [Td ,A] = 0 for an operator A ∈ B(H ) , then [T ∗

d ,A] = 0 (by
the Fuglede theorem [9, 10]). Again, if T ∈ [DN] is injective, then it is necessar-
ily invertible and Td = T−1 . Hence, T is normal and if [T,A] = 0 for some operator
A∈B(H ) , then [T ∗,A] = 0 = [T ∗

d ,A] . The operator T ∈ [DN] is in general not normal,
and TA = AT does not always imply T ∗A = AT ∗ ; however, [T,A] = 0 and T ∈ [DN]
implies [T ∗

d ,A] = 0, as the following argument shows. The operator T ∈ [DN] has
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a direct sum representation T = T1 ⊕ T0 , T1 invertible normal and T0 nilpotent, and
the Drazin inverse Td has a direct sum representation Td = T−1

1 ⊕ 0. Letting A have
the corresponding matrix representation A = [Ai j]2i, j=1 , it is seen that [T,A] = 0 forces
A12 = A21 = 0, and then

[T,A] = 0 =⇒ [Td ,A] = 0 ⇐⇒ [T1,A11] = 0 ⇐⇒ [T ∗
1 ,A11] = 0 ⇐⇒ [T ∗

d ,A] = 0.

This conclusion does not extend to T ∈ [DN] such that TA = BT for some operators
A,B ∈ B(H ) .

EXAMPLE 2.7. Define operators T,A,B ∈ B(C4) by

T = M⊕N, A =
(

A1 A3

0 A2

)
, B =

(
B1 B3

0 0

)
,

where M,N,Ai(1 � i � 3),Bi(i = 1,3) are the B(C2) operators

M =
(

0 1
−1 0

)
, N =

(
0 1
0 0

)
, A1 =

(
1 0
1 1

)
, A2 =

(
0 −1
0 0

)
,

A3 =
(

0 0
0 1

)
, B1 =

(
1 −1
0 1

)
, B3 =

(
1 0
0 0

)
.

Then
Td = Md ⊕0, [Td,T

∗] = 0(⇐⇒ T ∈ [DN]), and TA = BT,

but
T ∗A 
= BT ∗ and T ∗

d A 
= BT ∗
d .

Additional hypotheses are required for T ∈ [DN] and TA = BT to imply T ∗
d A =

BT ∗
d . The following theorem considers a couple of such hypotheses.

THEOREM 2.8. Given operators A,B,T ∈ B(H ) such that AT = TB, if T ∈
[DN] and either of the hypotheses BT = TA and (A−B)Td = Td(B−A) is satisfied,
then T ∗

d A = BT ∗
d and T ∗

d B = AT ∗
d .

Proof. If T ∈ [DN] , then TdT ∗ = T ∗Td , T ∈ B(H1 ⊕H0) has a decomposition
T = T1⊕T0 , T1 is invertible normal, T0 is nilpotent, and Td = T−1

1 ⊕0∈ B(H1⊕H0) .
Let A,B ∈ B(H1 ⊕H0) have the matrix representations

A = [Ai j]2i, j=1 and B = [Bi j]2i, j=1.

Then AT = TB implies

A11T1 = T1B11, A12T2 = T1B12, A21T1 = T2B21, A22T2 = T2B22.

Since T p
2 = 0 for some integer p � 1 and T1 is invertible

A12T2 = T1B12 =⇒ T p
1 B12 = 0 ⇐⇒ B12 = 0 and

A21T1 = T2B21 =⇒ A21T
p

1 = 0 ⇐⇒ A21 = 0.
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(a) Assume to start with that BT = TA . Then

B21T1 = 0 ⇐⇒ B21 = 0 =⇒ B = B11⊕B22,

T1A12 = 0 ⇐⇒ A12 = 0 =⇒ A = A11⊕A22,

B11T1 = T1A11 ( and B22T2 = T2A22 ). Hence, since T1 is normal,

(A11 +B11)T1 = T1(A11 +B11) ⇐⇒ (A11 +B11)T ∗
1 = T ∗

1 (A11 +B11) and

(A11−B11)T1 = −T1(A11−B11) ⇐⇒ (A11−B11)T ∗
1 = −T ∗

1 (A11−B11).

Consequently,

A11T
∗
1 = T ∗

1 B11 ⇐⇒ AT ∗
d = T ∗

d B and

B11T
∗
1 = T ∗

1 A11 ⇐⇒ BT ∗
d = T ∗

d A.

(b) If instead (A−B)Td = Td(B−A) , then

−B21T
−1
1 = 0 ⇐⇒ B21 = 0, −T−1

1 A12 = 0 ⇐⇒ A12 = 0

and

(A11−B11)T−1
1 = −T−1

1 (A11−B11) ⇐⇒ (A11−B11)T1 = −T1(A11−B11)
⇐⇒ (A11−B11)T ∗

1 = −T ∗
1 (A11−B11).

Since we already have (A11T1 = T1B11 ⇐⇒) A11T ∗
1 = T ∗

1 B11 , once again we have
AT ∗

d = T ∗
d B and BT ∗

d = T ∗
d A .

Theorem 2.8 is an improved version of [13, Theorem 4.4]: it tells us that hypothe-
sis (4.1) and any one of the hypotheses (4.2) and (4.3) of [13, Theorem 4.4] guarantees
the validity of the theorem.

If S,T ∈ [(n,m)DN] and LCM(n,m) = k , then Sk
d and Tk

d are normal, hence
TdA = ASd for an operator A ∈ B(H ) implies Tk

d A−ASk
d = 0 = T ∗k

d A−AS∗kd . This,
however, does not guarantee T ∗

d A−AS∗d = 0 (contrary to the claim made in [13, Theo-
rem 4.3]).

EXAMPLE 2.9. For operators S,T ∈ B(C2) , let

S = T =
(

0 1
−1 1

)
.

Then

Td =
(

1 −1
1 0

)
, T 2

d T ∗3 = T ∗3T 2
d

(so that S = T ∈ [(2,3)DN]). Since T ∗3
d = −I , T ∗3

d A = AT ∗3
d for all A ∈ B(C2) . If,

however, we let A = T , then

[Td ,A] = 0 and T ∗
d A 
= AT ∗

d .

Observe that Td = T−1 , hence TA = AT and T ∗A 
= AT ∗ .
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The following theorem considers operators S,T ∈ [(n,m)DN] such that S,T are
intertwined by a quasiaffinity (i.e., an injective operator with a dense range) to prove
that S,T are similar to the perturbation of a normal operator by nilpotent operators.

THEOREM 2.10. If S,T ∈ B(H ) are such that X is a quasiaffinity, S and T are
[(n,m)DN] operators and SX = XT , then there exist a normal operator N , nilpotent
operators S0 and T0 , and invertible operators A,B ∈ B(H ) such that S = A−1(N ⊕
S0)A and T = B−1(N⊕T0)B.

Proof. There exist positive integers p,q such that

S = S1⊕S0 ∈ B(Sq(H )⊕S−q(0)), T = T1 ⊕T0 ∈ B(T p(H )⊕T−p(0)),

where S0 is q nilpotent, T0 is p nilpotent, S1 = A−1
1 N1A1 and T1 = A−1

2 N2A2 for
some normal operators N1 ∈ B(Sq(H )) and N2 ∈ B(T p(H )) , and invertible operators
A1 ∈ B(Sq(H )) and A2 ∈ B(T p(H )) . Define the invertible operators A,B1 ∈ B(H )
by

A = A1⊕ I|S−q(0), B1 = A2⊕ I|T−p(0).

Then

A−1(N1 ⊕S0)A1X = XB−1
1 (N2 ⊕T0)B1 ⇐⇒ (N1 ⊕S0)Y = Y (N2 ⊕T0),

where we have set AXB−1
1 =Y . Evidently, Y : T p(H )⊕T−p(0)−→ Sq(H )⊕S−q(0)

is a quasiaffinity. Let Y have the matrix representation Y = [Yi j]2i, j=1 . Then, since
N1,N2 are invertible and S0,T0 are nilpotent, a straightforward argument shows that

Y12 = Y21 = 0, Y = Y11⊕Y22, Y11 and Y22 are quasiaffinities.

Furthermore,
S0Y22 = Y22T0

(so that indeed p = q ) and

N1Y11 = Y11N2 ⇐⇒ N∗
1Y11 = Y11N

∗
2 .

But then N1 and N2 are unitarily equivalent normal operators, i.e., there exists a unitary
U and a normal operator N such that N1 = N and N2 = U∗NU . Now define the
operator B by B =UA2 ⊕ I|T−p(0) . Then S = A−1(N⊕S0)A and T = B−1(N⊕T0)B .

If S,T ∈ [(n,m)DN] , then S⊕ T ∈ [(n,m)DN] . This fails for upper triangular
operator matrices (with a non-trivial entry in the (1,2)-place).

EXAMPLE 2.11. Consider operators T,C ∈ B(C2) and A ∈ B(C4) defined by

T =
(

0 1
−1 1

)
(as in Example 2.9) and

C =
(

0 1
0 1

)
, A =

(
T C
0 T

)
.
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Then T ∈ [(2,3)DN] and Ad =
(

Td X
0 Td

)
, where X =

(
0 0
−1 0

)
. A simple calculation

shows that A /∈ [(2,3)DN] .

If S,T ∈ B(H ) are [(n,m)DN] operators such that S has Drazin index q and
T has Drazin index p , then S = S1 ⊕ S0 ∈ B(Sq(H )⊕ S−q(0)) and T = T1 ⊕ T0 ∈
B(T p(H )⊕T−p(0)) . Let C : Sq(H )⊕S−q(0)−→ T p(H )⊕T−p(0) have the matrix

representation C = [Ci j]2i, j=1 . Then the operator A =
(

T C
0 S

)
, is Drazin invertible with

Drazin inverse Ad =
(

Td X
0 Sd

)
, where X is the operator

X =

[
q−1

∑
j=0

T j+2
d CS j

]
(I−SSd)+ (I−TTd)

[
p−1

∑
j=0

T jCS j+2
d

]
−TdCSd

=

(
−T−1

1 C11S
−1
1 ∑q−1

j=0 T− j−2
1 C12B

j
2

∑p−1
j=0 T j

2 C21S
− j−2
1 0

)

[3, 2.3.12 Theorem, Page 29]. The following theorem considers the case n = m = p =
q = 1 to give a necessary and sufficient condition for A ∈ [DN] .

THEOREM 2.12. Given operators S,T ∈ B(H ) such that S,T ∈ [DN] , S and
T have Drazin index 1 and C : S(H )⊕ S−1(0) −→ T (H )⊕T−1(0) has the matrix
representation C = [Ci j]2i, j=1 , a necessary and sufficient condition for the operator A ∈
B(H ⊕H ) to be a [DN] operator is that C = 0⊕C22 .

Proof. If S,T have Drazin index 1, then S = S1 ⊕0, T = T1 ⊕0, S1 and T1 are
normal invertible and the operator X (above) has the form

X =
(−T−1

1 C11S
−1
1 T−2

1 C12

C21S
−2
1 0

)
.

Given S,T ∈ [DN] , A ∈ [DN] if and only if

[Ad,A
∗] = 0 ⇐⇒

(
TdT ∗ +XC∗ XS∗

SdC∗ SdS∗

)
=
(

T ∗Td T ∗X
C∗Td C∗X +S∗Sd

)
⇐⇒ SdC

∗ = C∗Td , XS∗ = T ∗X , XC∗ = 0 = C∗X .

The equality

SdC
∗ =C∗Td ⇐⇒ S−1

1 C∗
11 = C11T

−1
1 , S−1

1 C∗
21 = 0 = C∗

12T
−1
1

⇐⇒ S−1
1 C∗

11 = C∗
11T

−1
1 , C12 =C21 = 0;

XS∗ = T ∗X ⇐⇒ T−1
1 C11S

−1
1 S∗1 = T ∗

1 T−1
1 C11S

−1
1 , C21S

−2
1 S∗1 = 0 = T ∗

1 T−2
1 C12

⇐⇒ C12 = C21 = 0, T−1
1 C11S

∗
1S

−1
1 = T−1

1 T ∗
1 C11S

−1
1

⇐⇒ C12 = C21 = 0, C11S
∗
1 = T ∗

11C11.
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Considering finally the equalities XC∗ = 0 =C∗X , if C12 =C21 = 0 and C∗
11T1 = S1C∗

11 ,
then

XC∗ = 0 = C∗X ⇐⇒ T−1C11S
−1
1 C∗

11 = 0 = C∗
11T

−1
1 C11S

−1
1

⇐⇒ C11S
−1
1 C∗

11 = 0 = C∗
11T

−1
1 C11

⇐⇒ T−1
1 C11C

∗
11 = 0 = C∗

11C11S
−1
1

⇐⇒ C11 = 0.

It being straightforward to verify that XC∗ = 0 =C∗X and C11 = 0 implies C12 =C21 =
0 and C∗

11T1 = S1C∗
11 , it follows that a necessary and sufficient condition for A ∈ [DN]

is that C = 0⊕C22 ∈ B(S(H )⊕S−1(0),T (H )⊕T−1(0)) .
The proof above, in particular our consideration of the equation XS∗ = T ∗X , ex-

ploited the fact that S1 and T1 are normal. Since this no longer holds for S,T ∈
[(n,m)DN] for general n,m > 1, the necessity of the condition C = 0⊕C22 is not
clear (for the general case). The following theorem, however, shows that this con-
dition is sufficient. Let S have Drazin index q , T have Drazin index p , and let
C ∈ B(Sq(H )⊕ S−q(0),T p(H )⊕ T−p(0)) have the direct sum decomposition C =
0⊕C22 .

THEOREM 2.13. If S,T ∈ [(n,m)DN] , then A ∈ [(n,m)DN] .

Proof. The hypothesis C = 0⊕C22 forces X = 0, and then An
d = Tn

d ⊕Sn
d . Define

the operator L by

L = 0⊕
m−1

∑
j=0

S∗ j
2 C∗

22T
∗(m−1− j)
2 .

Then

An
dA

∗m =
(

Tn
d T ∗m 0
Sn

dL Sn
dS

∗m

)
= Tn

d T ∗m ⊕Sn
dS

∗m = T ∗mTn
d ⊕S∗mSn

d

=
(

T ∗mTn
d 0

LTn
d S∗mSn

d

)
= A∗mAn

d,

i.e., A ∈ [(n,m)DN] .
Theorem 2.13 is a generalized version of [13, Theorem 2.7] (which contrary to the

claim made by the authors does not prove the necessity of the stated conditions).
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