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LAPLACIANS ON BIPARTITE METRIC GRAPHS

PAVEL KURASOV AND JONATHAN ROHLEDER

Abstract. We study spectral properties of the standard (also called Kirchhoff) Laplacian and the
anti-standard (or anti-Kirchhoff) Laplacian on a finite, compact metric graph. We show that the
positive eigenvalues of these two operators coincide whenever the graph is bipartite; this leads
to a precise relation between their eigenvalues enumerated with multiplicities and including the
possible eigenvalue zero. Several spectral inequalities for, e.g., trees are among the consequences
of this. In the second part we study inequalities between standard and Dirichlet eigenvalues in
more detail and expose another connection to bipartiteness.
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c© � � , Zagreb
Paper OaM-14-38

http://dx.doi.org/10.7153/oam-2020-14-38


536 P. KURASOV AND J. ROHLEDER
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