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LAPLACIANS ON BIPARTITE METRIC GRAPHS

PAVEL KURASOV AND JONATHAN ROHLEDER ∗

Abstract. We study spectral properties of the standard (also called Kirchhoff) Laplacian and the
anti-standard (or anti-Kirchhoff) Laplacian on a finite, compact metric graph. We show that the
positive eigenvalues of these two operators coincide whenever the graph is bipartite; this leads
to a precise relation between their eigenvalues enumerated with multiplicities and including the
possible eigenvalue zero. Several spectral inequalities for, e.g., trees are among the consequences
of this. In the second part we study inequalities between standard and Dirichlet eigenvalues in
more detail and expose another connection to bipartiteness.

1. Introduction

Differential operators on metric graphs have attracted considerable attention in
recent years. They have turned out to be useful as idealized models for systems on
thin, network-like structures as, e.g., quantum wires or thin waveguides; see the recent
monographs [8, 21] for more details and an overview on the vast literature. Any such
operator is specified by the underlying metric graph, its action on functions on the graph
and its vertex conditions. In this paper we consider a finite, compact metric graph Γ .
As for the action of the differential operator on Γ , we focus on the Laplacian, i.e.
the second derivative operator on each edge of the graph. The most common vertex
conditions for the Laplacian on a metric graph are so-called standard (or continuity–
Kirchhoff) conditions that require functions to be continuous at each vertex and the
directed derivatives to have zero mean, i.e. the sum of all outgoing derivatives equals
zero at each vertex; see Section 3 below for more details. The standard Laplacian Lst(Γ)
provides an important example of a self-adjoint quantum graph.

One of our goals in the present paper is to investigate the relation between the
spectra of the standard Laplacian and the anti-standard (or anti-Kirchhoff) Laplacian
La/st(Γ) that corresponds to conditions that are formally dual to standard conditions:
the directed derivatives are assumed to be equal and the function values sum up to zero
at each vertex. Some spectral properties of the anti-standard Laplacian were studied
recently in [4, 5, 15, 23]. However, it seemingly has remained unnoticed that there
is an intimate and simple relation between the eigenvalues of Lst(Γ) and La/st(Γ) . In
fact, as we show in Section 3, the eigenvalues of the two operators, enumerated non-
decreasingly and counting multiplicities, satisfy

λk+β
(
La/st(Γ)

)
= λk+1

(
Lst(Γ)

)
(1.1)
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for all k ∈ N if (and only if) the graph Γ is bipartite; here β denotes the first Betti
number, i.e. the number of independent cycles in Γ . To provide the simplest example,
any tree is bipartite and satisfies β = 0, so that the identity (1.1) holds and simplifies
to λk(La/st(Γ)) = λk+1(Lst(Γ)) for all k . The proof of the equation (1.1) relies on a
decomposition of the involved Laplacians into products of momentum operators.

The relation (1.1) has a lot of immediate consequences for the spectra of the anti-
standard Laplacian La/st(Γ) on any bipartite graph. However, it can also be used to
derive properties of standard Laplacian eigenvalues. We demonstrate this by showing
quite directly that on any tree Γ one has

λk+1
(
Lst(Γ)

)
� λk

(
Lst,D(Γ)

)
(1.2)

for all k ∈ N , where Lst,D(Γ) is the Laplacian subject to Dirichlet conditions at all ver-
tices of degree one (i.e. on the “natural boundary” of Γ) and standard conditions at all
other vertices; thus the two operators considered here differ only by their conditions
on the boundary, being Neumann in one case and Dirichlet in the other. The inequal-
ity (1.2) was shown in [1] by completely different methods; it is the counterpart for
trees of an inequality between Neumann and Dirichlet eigenvalues of the Laplacian on
a bounded domain in Rn due to Friedlander [12] and Filonov [11]. We point out that
the inequality (1.2) is not true in general on graphs with β � 1.

This leads us to the second part of this paper: in Section 5 we deal with variants of
the inequality (1.2) for graphs that are not necessarily trees and compare the eigenvalues
of the standard Laplacian with those of the “decoupled” Dirichlet Laplacian LD(Γ) , i.e.
the Laplacian on Γ subject to Dirichlet vertex conditions at all vertices. This gives rise
to another connection to bipartiteness of the graph: in the case that Γ is equilateral, i.e.
all edges have the same length, we show that

λk+1
(
Lst(Γ)

)
� λk

(
LD(Γ)

)
(1.3)

is valid for all k ∈ N if and only if Γ is bipartite. This is done by using the relation
between the eigenvalues of Lst(Γ) and those of a corresponding discrete Laplacian.
For not necessarily equilateral graphs we provide sufficient conditions for the inequal-
ity (1.3) to hold for all k .

2. Preliminaries

Let Γ be a finite, compact, connected metric graph formed by a finite set E =
{e1, . . . ,eE} of non-degenerate edges en = [x2n−1,x2n] joined at a set of vertices V =
{v1, . . . ,vV} , where each vertex is understood as a subset of endpoints and the vertices
are disjoint such that {x j}2E

j=1 = v1 ∪ v2 ∪ . . .∪ vV . An edge is said to be incident to a
vertex v if (at least) one of its endpoints belongs to v . The degree degv of a vertex v in
Γ is the number of edges incident to v ; note that loops, i.e. edges whose two endpoints
belong to the same vertex, count twice. We introduce the natural boundary of Γ being
the set of vertices of degree one,

∂Γ := {v ∈ V : degv = 1} ⊂ V .
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The number of independent cycles (the first Betti number) is given by β := E −V +1.
In this paper we will be mainly concerned with graphs which are bipartite, i.e., V =
V1 ∪V2 for disjoint sets V1,V2 and each edge has one endpoint in V1 and one in V2 ;
see Figure 1.

V1

�
�
�
�

V2

�
�
�

Figure 1: A bipartite graph.

Recall that a graph Γ is bipartite if and only if each cycle in Γ contains an even
number of edges or, equivalently, if its chromatic number is two.

Our main goal is to study spectral properties of Laplacians on Γ in the case where
the graph is bipartite. These operators will be self-adjoint in the Hilbert space

L2(Γ) =
E⊕

n=1

L2(en).

They will be defined on subspaces of the Sobolev spaces Wk
2 (Γ\V ) , k = 1,2, . . . , con-

sisting of functions in L2(Γ) whose weak partial derivatives up to the order k exist
inside every edge and are square-integrable. The self-adjoint Laplacians under consid-
eration will have purely discrete spectra and we will denote the eigenvalues of any such
operator A by

λ1(A) � λ2(A) � . . . ,

where we count multiplicities.

3. Relation between standard and anti-standard eigenvalues and its consequences

Standard and anti-standard Laplacians

With the Laplace differential expression

(L f )(x) = − f ′′(x), x ∈ en, n = 1, . . . ,E, (3.1)

on Γ we associate two self-adjoint realisations. To specify their vertex conditions we
denote by f (x j) and ∂ f (x j) the limiting values of the function f and its first derivative
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(taken in the direction from the vertex into the edge) as the point x approaches one of
the endpoints of the edge, i.e.

f (x j) = lim
x→x j

f (x)

and

∂ f (x j) =

{
f ′(x j) provided x j is the left endpoint,

− f ′(x j) provided x j is the right endpoint.

DEFINITION 3.1. The standard Laplacian Lst(Γ) (also called Kirchhoff or Neu-
mann Laplacian in the literature) is defined by (3.1) on the functions from the Sobolev
space W 2

2 (Γ\V ) satisfying standard vertex conditions at each vertex v , that is{
f (x j) = f (xi) provided x j,xi ∈ v (equal function values),

∑x j∈v ∂ f (x j) = 0 (zero mean of directed derivatives).

DEFINITION 3.2. The anti-standard Laplacian La/st(Γ) (also called anti-Kirch-
hoff Laplacian) is defined by (3.1) on the functions from the Sobolev space W 2

2 (Γ\V )
satisfying anti-standard vertex conditions, that is{

∑x j∈v f (x j) = 0 (zero mean of function values),

∂ f (x j) = ∂ f (xi) provided x j,xi ∈ v (equal directed derivatives).

We remark that Lst(Γ) and La/st(Γ) are self-adjoint, non-negative operators in
L2(Γ) with purely discrete spectra. Furthermore, at any vertex of degree one the vertex
conditions simplify to a Neumann condition in the case of Lst(Γ) or a Dirichlet con-
dition for La/st(Γ) . We further remark that the operators Lst(Γ) and La/st(Γ) both are
independent of the choice of parametrization of the edges in Γ , of course assuming that
the lengths are preserved.

Momentum operator decomposition of the Laplacians

Let us introduce the momentum operator D , which as a first order differential
operator depends on the orientation of the edges. It was used earlier in [15] to derive
index theorems for quantum graphs; cf. also [10]. Our goal is to study bipartite graphs
with the set of vertices V being divided into two disjoint sets V1 and V2 such that each
edge connects a vertex in V1 with a vertex in V2 . In what follows we shall assume that
each edge is oriented pointing from V1 to V2 , in other words the left endpoint of each
edge belongs to a vertex from V1 and the right one to a vertex from V2.

DEFINITION 3.3. The momentum operator D = D(Γ) on Γ is defined by

(Df )(x) =
1
i
f ′(x), x ∈ en, n = 1, . . . ,E, (3.2)
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on the functions in the Sobolev space W 1
2 (Γ\V ) satisfying the continuity condition

f (x j) = f (xi) provided x j,xi ∈ v (3.3)

at each vertex v .

The momentum operator is uniquely determined by Γ since the orientation of
the edges is fixed; reversing the orientation of all edges simultaneously would lead
to multiplication of D by −1. Note that the momentum operator is not self-adjoint
in L2(Γ) but its adjoint D∗ is given by the same differential expression (3.2) on the
functions from W 1

2 (Γ\V ) satisfying the balance condition

∑
x j∈v

f (x j) = 0 (3.4)

at each vertex v .
The momentumoperator can be used to express both the standard and anti-standard

Laplacians; as a consequence, these operators are “almost isospectral”.

LEMMA 3.4. The standard Laplacian Lst(Γ) and the anti-standard Laplacian
La/st(Γ) on a bipartite, finite, compact metric graph Γ are related to the momentum
operator D and its adjoint D∗ via the relations

Lst(Γ) = D∗D and La/st(Γ) = DD∗. (3.5)

In particular, the positive eigenvalues of Lst(Γ) and La/st(Γ) coincide including multi-
plicities.

Proof. The representations (3.5) are obvious from the definitions of the involved
operators and the form of D∗ as Γ is bipartite. Assume that λ and ψ are a positive
eigenvalue and a corresponding eigenfunction, respectively, for the standard Laplacian,
that is, D∗Dψ = λ ψ by (3.5). Then Dψ is non-trivial and belongs to the domain of
DD∗ and, hence,

La/st(Γ)Dψ = DD∗Dψ = λDψ ,

that is, Dψ is an eigenfunction of La/st(Γ) corresponding to the eigenvalue λ . Simi-
larly, if φ is an eigenfunction of La/st(Γ) corresponding to a positive eigenvalue then
D∗φ is an eigenfunction of Lst(Γ) corresponding to the same eigenvalue. As D respec-
tively D∗ map linearly independent eigenfunctions to linearly independent functions,
multiplicities are preserved. �

Spectral relation between the Laplacians

Despite Lemma 3.4 the standard and anti-standard Laplacian are not necessarily
isospectral in general. In order to establish the precise relation between the eigenvalues
we need to study the kernels of these operators. The statement of the following lemma
is also contained in [4, Lemma 2.1]. However, for completeness of the presentation we
provide a short proof.
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LEMMA 3.5. The dimensions of the kernels of the standard and anti-standard
Laplacians on a bipartite, finite, compact, connected metric graph Γ are

dimkerLst(Γ) = 1 and dimkerLa/st(Γ) = β . (3.6)

Proof. Each function in the kernel of either Lst(Γ) or La/st(Γ) has to be con-
stant on each edge. Indeed, if, e.g., ψ ∈ kerLst(Γ) = kerD∗D then 0 = (D∗Dψ ,ψ) =
(Dψ ,Dψ) in the inner product (·, ·) of L2(Γ) and, hence, Dψ = 0; similarly for the
anti-standard Laplacian. In particular, as Γ is connected, the continuity condition at
each vertex implies that each ψ ∈ kerLst(Γ) is constant on Γ and, thus, dimkerLst(Γ)=
1.

Let e1, . . . ,eβ be edges in Γ such that removing e1, . . . ,eβ from Γ leads to a
connected tree T . Then e j is part of a (unique up to shifts and inversion) cycle Cj

in T ∪ e j. Since Γ is bipartite every cycle contains an even number of edges. Thus
the function ψ j taking alternately the constant values 1 and −1 on the edges of Cj

and being constantly zero on the rest of Γ belongs to the kernel of the anti-standard
Laplacian since it satisfies the balance condition (3.4). In this way we obtain β linearly
independent functions ψ j , all from the kernel. It remains to show that these functions
span the kernel.

If ψ ∈ kerLa/st(Γ) is arbitrary then there exist constants γ1, . . . ,γβ ∈ C such that

γ jψ j coincides with ψ on e j , j = 1, . . . ,β . Thus the function ψ −∑β
j=1 γ jψ j is sup-

ported on the tree T . It satisfies Dirichlet conditions on each vertex of degree one in
T (including all vertices in ∂Γ). But every function which is constant on every edge
of T and satisfies the balance conditions (3.4) is identically equal to zero on T . Thus
ψ1, . . . ,ψβ form a basis of kerLa/st(Γ) . �

Combining Lemma 3.4 and Lemma 3.5 we arrive at the following result.

THEOREM 3.6. Assume that the finite, compact, connected metric graph Γ is bi-
partite. Then

λk+β
(
La/st(Γ)

)
= λk+1

(
Lst(Γ)

)
holds for all k ∈ N .

Observe that any graph can be transformed into a bipartite graph by introduc-
ing additional vertices inside certain edges. This procedure has no influence on the
standard Laplacian but it changes the anti-standard Laplacian. Hence the statement of
Theorem 3.6 cannot be extended to arbitrary metric graphs. In fact, if Γ is not bipartite
then dimkerLa/st(Γ) = β − 1 by [4, Lemma 2.1] while dimkerLst(Γ) = 1 still holds
and thus λβ (La/st(Γ)) > 0 = λ1(Lst(Γ)) .

The following statement is a consequence of Theorem 3.6 and observations on the
kernel of the anti-standard Laplacian. For equilateral quantum graphs it was proved
in [5, Corollary 3.9].

COROLLARY 3.7. Let the metric graph Γ be finite, compact and connected. Then
the following are equivalent:
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1. Lst(Γ) and La/st(Γ) are isospectral;

2. Γ is bipartite and β = 1 .

Proof. If Γ is bipartite and β = 1 then it follows from Theorem 3.6 that the two
operators are isospectral. Conversely, by Theorem 3.6 their isospectrality implies that
β = 1 and dimker(La/st(Γ))= 1. But then [4, Lemma 2.1] gives that Γ is bipartite. �

We would like to point out specifically the situation where Γ is a finite metric tree
as the spectrum of La/st(Γ) in this case was studied recently in [23].

COROLLARY 3.8. Let Γ be a finite, compact, connected metric tree. Then

λk
(
La/st(Γ)

)
= λk+1

(
Lst(Γ)

)
holds for all k ∈ N .

As a consequence of this, all known results on the spectra of the standard Laplacian
on a finite, compact metric tree carry over directly to the anti-standard Laplacian on the
tree. To give a few examples, the lower eigenvalue bound

λk
(
La/st(Γ)

)
� (k+1)2π2

4L(Γ)2 , k ∈ N,

on any tree follows immediately from [13], see also [22] and [20]; here L(Γ) denotes
the total length of Γ . Equality holds if and only if Γ is an equilateral star with k + 1
edges. By means of Theorem 3.6 similar statements follow for any bipartite finite graph.
More specifically for trees the upper estimates

λk
(
La/st(Γ)

)
� k2π2

diam(Γ)2 , k ∈ N, (3.7)

and

λk
(
La/st(Γ)

)
� k2E2π2

4L(Γ)2 , k ∈ N, (3.8)

provided E � 2, follow immediately from the corresponding results for the standard
Laplacian in [24], where diam(Γ) is the diameter of Γ . In the latter estimate, equality
holds for k = 1 if and only if Γ is any equilateral star, and for k > 1 if and only if Γ is
an equilateral star with E = 2. The estimates (3.7)–(3.8) were shown recently in [23]
in a more complicated way, mimicking the proofs for the standard Laplacian. We point
out that upper estimates for anti-standard eigenvalues on general bipartite graphs can
be derived from, e.g., [2, 6, 7, 16, 17] with the help of Theorem 3.6.

Another example concerns estimates involving the doubly connected part of the
graph – the closed subgraph consisting of all x ∈ Γ for which there is a non-self-
intersecting path in Γ starting and ending at x. Assume that the doubly connected
part of Γ has size Ldc � L(Γ) . Then using [7, Theorem 6.3] we obtain the estimate

λβ+1
(
La/st(Γ)

)
� λ2

(
Lst(D)

)
(3.9)
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for the eigenvalues of the anti-standard Laplacian, provided Γ is bipartite, where D
is the symmetric dumbbell graph of total length L(Γ) and both loops of length Ldc/2.
Similarly, if the doubly connected part of a bipartite graph Γ has a connected compo-
nent of length L � L(Γ) , then the estimate

λβ+1
(
La/st(Γ)

)
� λ2

(
Lst(L)

)
, (3.10)

holds (following [7, Theorem 6.5]), where L is the lasso graph of total length L(Γ) and
length of the loop L .

It is a special feature of trees that functions satisfying standard vertex conditions
at interior vertices can be transformed into functions with anti-standard interior vertex
conditions by a simple transformation that does not increase the eigenvalues. More
precisely, the following lemma holds; here Lst,D(Γ) denotes the Laplacian subject to
standard vertex conditions at all vertices in V \ ∂Γ and Dirichlet boundary conditions
on ∂Γ .

LEMMA 3.9. If Γ is a finite, compact, connected tree then

λk
(
La/st(Γ)

)
� λk

(
Lst,D(Γ)

)
holds for all k ∈ N .

Proof. Recall that the edges of Γ are parametrized such that at each vertex either
all incident edges are incoming or all are outgoing. Let us first show that we can choose
numbers φ1, . . . ,φE ∈ R such that for each v ∈ V \ ∂Γ we have

∑
en incident to v

eiφn = 0. (3.11)

Indeed, let v0 ∈ ∂Γ be arbitrary. Let en0 be the edge incident to v0 and let v1 be
the vertex different from v0 to which en0 is incident. Define φn0 = 0 and assign the
remaining unit roots of the equation zdeg(v1) = 1 to the edges en1 , . . . ,endeg(v)−1

incident
to v1 and different from en0 . Then the condition (3.11) is satisfied for v = v1 . For
the vertex v2 different from v1 to which en1 is incident, assign to the edges incident
to v2 and different from en1 the unit roots of zdeg(v2) = 1 different from 1, multiplied
by eiφn1 . Then the condition (3.11) is satisfied also at v = v2 . Successively one can go
through the whole tree and reach (3.11) at each vertex v ∈ V \ ∂Γ .

Now define an operator U : L2(Γ) → L2(Γ) by

(U f )(x) := eiφn f (x), x ∈ en, n = 1, . . . ,E.

Clearly, U is unitary. Consider the quadratic form

aU [ f ] =
∫

Γ
|(U∗ f )′|2dx =

∫
Γ
| f ′|2dx

defined on all functions f ∈ W 1
2 (Γ \V ) such that U∗ f is continuous at each vertex

and satisfies Dirichlet conditions on ∂Γ . This form is densely defined, nonnegative
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and closed with representing self-adjoint operator ULst,D(Γ)U∗ . As the domain of this
form is contained in the form domain of La/st(Γ) due to (3.11) and the two forms have
the same action on the smaller domain, the assertion of the lemma follows. �

The construction of the unitary operator U in the previous proof does not work
in general for bipartite graphs. Take, for instance, the lasso graph Γ consisting of
three edges e1 = [x1,x2],e2 = [x3,x4],e3 = [x5,x6] and three vertices v1 = {x1} , v2 =
{x2,x4,x6} and v3 = {x3,x5} , see Figure 2. Then Γ is bipartite and in order to assign
to each edge en a complex number zn of modulus one such that the sum of these
numbers is zero at each vertex one would need both z1 + z2 + z3 = 0 and z2 + z3 = 0, a
contradiction.

��
��

x4

x6

x2 x1
x3

x5 � ��
Figure 2: Lasso graph.

As a consequence of the previous lemma and Corollary 3.8 we get the following
inequality between the eigenvalues of the standard Laplacian and the Laplacian Lst,D(Γ)
subject to standard conditions on V \ ∂Γ and Dirichlet conditions on ∂Γ .

COROLLARY 3.10. Let Γ be a finite, compact, connected metric tree. Then

λk+1
(
Lst(Γ)

)
� λk

(
Lst,D(Γ)

)
holds for all k ∈ N .

This result was proven in [1, Lemma 4.5] by completely different methods (in
the more general form given in Corollary 4.2 below). It is the counterpart of the in-
equality between Neumann and Dirichlet Laplacian eigenvalues on domains proved by
Friedlander in [12] and refined by Filonov in [11].

4. Generalisations

The methods developed in the previous section for the standard and anti-standard
Laplacians on bipartite graphs can be applied to larger classes of vertex conditions.

Mixed Dirichlet–Neumann conditions on the boundary

The considerations in Section 3 were based on the fact that applying the mo-
mentum operator turns vertex conditions into their duals, i.e. standard conditions into
anti-standard conditions and vice versa, provided the graph is bipartite. This princi-
ple extends naturally to mixed boundary conditions where some boundary vertices are
equipped with Dirichlet conditions and the remaining ones with Neumann conditions.
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Let Γ be a finite, compact, connected and bipartite metric graph, let B⊂ ∂Γ be any
subset of boundary vertices and denote by Lst,D(Γ,B) the Laplacian subject to Dirichlet
conditions at the vertices in B and standard conditions at all other vertices (including
∂Γ \B). Then Lst,D(Γ,B) allows a decomposition into a product of momentum oper-
ators, Lst,D(Γ,B) = D∗D , where D = 1

i
d
dx is defined on the functions in W 1

2 (Γ \V )
that are continuous at all vertices and satisfy Dirichlet conditions on B . Then DD∗
coincides with the Laplacian La/st,N(Γ,B) subject to Neumann conditions on B and
anti-standard conditions on all remaining vertices (in particular, Dirichlet conditions on
∂Γ \B). In particular, Lst,D(Γ,B) and La/st,N(Γ,B) have the same positive eigenval-
ues including multiplicities. If B is nonempty then a reasoning similar to the proof of
Lemma 3.5 yields

dimkerLst,D(Γ,B) = 0 and dimkerLa/st,N(Γ,B) = β + |B|−1.

Hence we get the following counterpart of Theorem 3.6.

THEOREM 4.1. Let Γ be a finite, compact, connected metric graph that is bipar-
tite and let B ⊂ ∂Γ be nonempty. Then

λk+β+|B|−1
(
La/st,N(Γ,B)

)
= λk

(
Lst,D(Γ,B)

)
holds for all k ∈ N .

As the reasoning of Lemma 3.9 also applies to mixed boundary conditions on ∂Γ ,
on any tree we get the following corollary analogous to Corollary 3.10, which is [1,
Lemma 4.5] in its full generality, but with a different proof.

COROLLARY 4.2. Assume that Γ is a finite, compact, connected metric tree.
Then for B ⊂ ∂Γ

λk
(
Lst,D(Γ,B)

)
� λk+|B|−1

(
Lst,D(Γ,∂Γ\B)

)
(4.1)

holds for all k ∈ N .

Scaling-invariant Laplacians

Standard and anti-standard conditions are special cases of scaling-invariant (or
non-Robin) vertex conditions. At a vertex of degree d such conditions are characterized
by two mutually orthogonal subspaces X±(v) that span Cd , and the vertex conditions
are then given by {

�f (v) ∈ X+(v),
∂�f (v) ∈ X−(v),

(4.2)

where �f (v) is the vector containing the values f (x j) for all x j ∈ v and ∂�f (v) is the vec-
tor containing all the ∂ f (x j) , where the endpoints x j are enumerated in the same order.
For X+(v) = span{(1, . . . ,1)�} and X−(v) = X+(v)⊥ we have standard conditions,
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and the converse choice leads to anti-standard conditions. Any scaling-invariant Lapla-
cian L is then defined on all functions in W 2

2 (Γ \V ) satisfying the conditions (4.2).
Under these conditions, stretching all the edges in Γ and keeping the same vertex condi-
tions will lead to a Laplace operator whose eigenvalues are multiples of the eigenvalues
for the original problem, hence the name scaling-invariant.

In the same way as for the operators in Section 3 every scaling-invariant Laplacian
L possesses a decomposition into a product of two mutually adjoint first order operators,

L = D∗D, (4.3)

where D = 1
i

d
dx is defined on all functions f in W 1

2 (Γ \V ) such that �f (v) ∈ X+(v)
is satisfied at each vertex. If the graph Γ is bipartite, then the domain of the adjoint
operator D∗ is determined by the conditions

�f (v) ∈ X−(v)

at each vertex. Hence the domain of the dual operator L̂ := DD∗ is given by just
interchanging the roles of the subspaces X+(v) and X−(v) at each vertex. Thus a
similar analysis as in Section 3 can be carried out. The only difficulty is to determine
the dimensions of the kernels of L and L̂ .

If Γ is not bipartite, then still every scaling-invariant Laplacian possesses a de-
composition (4.3), but the domain of the dual operator L̂ depends on the orientation of
the edges and is not obtained by just interchanging the subspaces X+(v) and X−(v) .

Topological perturbations of bipartite graphs

Standard and anti-standard conditions lead to a different behaviour of the eigen-
values as one of the vertices is chopped into two pieces, i.e. dividing the corresponding
equivalence class into two or more and thus turning Γ into a new graph Γ′ :

• the eigenvalues of Lst(Γ) are non-increasing, λk(Lst(Γ)) � λk(Lst(Γ′)) for all
k ∈ N , since the domain of the quadratic form is increasing;

• the eigenvalues of La/st(Γ) are non-decreasing, λk(La/st(Γ)) � λk(La/st(Γ′)) for
all k ∈ N , since the domain of the quadratic form is decreasing,

see, e.g., [19, 25]. On the other hand, as we have shown Lst(Γ) and La/st(Γ) have the
same spectra outside the origin, and the same holds for Lst(Γ′) and La/st(Γ′) .

The relation between the eigenvalues on the chopped graph Γ′ depends on whether
the cut leads to a graph with two connected components or just opens one of the cycles.
In either case we have the relation

λm+1
(
Lst(Γ′)

)
= λm+β−1

(
La/st(Γ′)

)
, m ∈ N,

but for different reasons:

• if Γ′ is connected, then the multiplicity of the eigenvalue zero for the anti-
standard Laplacian decreases by 1 since β ′ = β −1;

• if Γ′ is not connected, then the multiplicity of the eigenvalue zero for the standard
Laplacian increases by 1 since Γ′ consists of two components.
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5. Inequalities between standard and Dirichlet eigenvalues

This section is devoted to comparison principles of the type of Corollary 3.10. It
will turn out that among equilateral quantum graphs bipartite graphs are characterized
by the validity of such an inequality. Moreover, we consider non-equilateral cases. In
contrast to the situation in Corollary 3.10, in this section we focus on the comparison
between the eigenvalues of the standard Laplacian Lst(Γ) and the Dirichlet Laplacian
LD(Γ) that acts as LD(Γ) f = L f and is defined on all functions f ∈W 2

2 (Γ\V ) such
that

f (v) = 0 for all v ∈ V .

These vertex conditions separate the graph effectively into intervals and its spectrum
consists of the points

m2π2

L(en)2 , m ∈ N,n = 1, . . . ,E,

where L(en) is the length of the edge en. That is, the spectrum is determined by the
edge lengths and is independent of the connectivity of Γ . It is clear from variational
principles that we have the two trivial inequalities

λn
(
Lst(Γ)

)
� λn

(
LD(Γ)

)
and

λn
(
La/st(Γ)

)
� λn

(
LD(Γ)

)
(5.1)

for all n ∈ N . Using the second estimate and Corollary 3.8, for any tree we obtain

λn+1(Lst(Γ)) � λn
(
LD(Γ)

)
(5.2)

for all n∈N , which is another simple proof of [24, Theorem 4.1]. Note that for bipartite
graphs with β > 0 the combination of the second inequality with Theorem 3.6 does not
improve the estimate for the standard Laplacian. The estimate (5.2) is not true in general
on a metric graph Γ . To provide one of the simplest counterexamples, consider the loop
graph constisting of one edge [x1,x2] and one vertex v = {x1,x2} . In this case we have

λ2(Lst(Γ)) = 4π2

(x2−x1)2
but λ1(LD(Γ)) = π2

(x2−x1)2
, that is, (5.2) is violated for n = 1. In

this context we also refer the reader to the recent observation [14].
We would like to point out that the estimate (5.2) cannot be improved, since for

the equilateral star graph S with three edges and edge lengths 1 we have

λn
(
Lst(S)

)
= 0,

(π
2

)2
,
(π

2

)2
,π2,

(3π
2

)2
, . . . ,

λn
(
LD(S)

)
= π2,π2,π2,(2π)2, . . . ,

implying λ4(Lst(S)) = λ3(LD(S)) and λ5(Lst(S)) > λ3(LD(S)) . The eigenvalues de-
pend continuously on the edge lengths, hence considering any three-star graph with al-
most equal but rationally independent edge lengths we obtain a counterexample telling
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that estimate (5.2) cannot be improved by imposing any extra conditions like rational
independence of the edge lengths. For the same reason, the equivalent inequality (5.1)
cannot be improved either by imposing such conditions. In particular, the estimate
claimed in [23, Theorem 5] seems to be false.

Equilateral graphs

For equilateral graphs the following theorem gives a complete answer to the ques-
tion for which n the inequality (5.2) is satisfied. It leads back to the notion of bipartite-
ness.

THEOREM 5.1. Let the finite, compact, connected metric graph Γ be equilateral.
Then the inequality

λn+1
(
Lst(Γ)

)
� λn

(
LD(Γ)

)
(5.3)

holds for all n ∈ N if and only if Γ is bipartite. Moreover, if Γ is not bipartite then
(5.3) is violated for all n = (2m+1)E, m = 0,1,2, . . . , but holds for all other n.

Proof. Assume without loss of generality that each edge has length one. Then
the spectrum of LD(Γ) is given by the eigenvalues (πm)2 , m = 1,2, . . . , where each
eigenvalue has multiplicity E . Hence the first 2E eigenvalues of LD(Γ) are given by

λ1
(
LD(Γ)

)
= λ2

(
LD(Γ)

)
= . . . = λE

(
LD(Γ)

)
= π2;

λE+1
(
LD(Γ)

)
= λE+2

(
LD(Γ)

)
= . . . = λ2E

(
LD(Γ)

)
= 4π2.

(5.4)

To determine the spectrum of the standard Laplacian Lst(Γ) one may use the for-
mula connecting it to the spectrum of the normalised Laplacian Lnorm(G) on the dis-
crete graph G having the same set of vertices and edges as Γ , defined as(

Lnorm(G)ψ
)
(v) = ψ(v)− 1√

deg v ∑
w∼v

1√
deg w

ψ(w),

where v∼w means that the vertex w is adjacent to v .1 The spectrum of Lnorm(G) con-
sists of V eigenvalues 0 = μ1 < μ2 � . . . � μV � 2. They are related to the eigenvalues
of Lst(Γ) corresponding to eigenfunctions that do not vanish at all vertices simultane-
ously: a number k2

j > 0 is an eigenvalue of Lst(Γ) with an eigenfunction that is not
identically zero on all vertices if and only if

1− cosk j = μn, n = 1,2, . . . ,V, (5.5)

see [3]. To each eigenvalue of the normalised Laplacian on a discrete graph corre-
spond infinitely many eigenvalues of the standard Laplacian on the metric graph, but

1In the case of parallel edges and loops the summaton should be taken over all edges connecting vertices.
In this way parallel edges are counted in accordance with their multiplicity. Loops contribute twice to both
summation and calculation of the vertex degree.
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inside the interval (0,π2) the correspondence to the eigenvalues of Lnorm(G) in (0,2)
is one-to-one including multiplicities. Note that eigenfunctions of Lst(Γ) that vanish
simultaneously on all vertices may only appear at eigenvalues of the form (nπ)2 with
n ∈ N .

We will also make use of the fact that μ = 2 is an eigenvalue of Lnorm(G) if and
only if the graph G is bipartite, see, e.g., [9, Lemma 1.7]. For bipartite graphs the
multiplicity of the eigenvalue 2 is one and the corresponding eigenfunction is equal to
1 on V1 and −1 on V2 if V1 , V2 form a partition of V such that each edge connects
a vertex in V1 with a vertex in V2 .

Let us discuss the eigenvalues of the standard Laplacian on the interval [0,4π2].
We are going to show that there are totally 2E +1 eigenvalues (which can also be seen
from the Weyl asymptotics). It will be convenient to separately discuss the eigenvalues
inside the open intervals (0,π2) and (π2,4π2) and the points 0,π2,4π2.

Case 1. Consider the eigenvalues of Lst(Γ) inside (0,π2)∪ (π2,4π2) . To every
eigenvalue μ of Lnorm(G) that lies in (0,2) there correspond precisely two numbers
k ∈ (0,2π) satisfying (5.5) situated symmetrically with respect to the middle point
π of (0,2π) , and its squares k2 are eigenvalues of Lst(Γ) . Moreover, among the V
eigenvalues of Lnorm(G) , 0 is an eigenvalue of multiplicity one and, according to the
above remark, 2 is either an eigenvalue of multiplicity one (if G is bipartite) or no
eigenvalue. Accordingly, Lst(Γ) has

• V −1 pairs of eigenvalues in (0,π2)∪ (π2,4π2) if G is non-bipartite;

• V −2 pairs of eigenvalues in (0,π2)∪ (π2,4π2) if G is bipartite,

for each pair, one of the values belongs to (0,π2) and one to (π2,4π2) .
Case 2. The point k2 = 0 is always an eigenvalue of multiplicity one since the

graph is connected.
Case 3. The point k2 = π2 is an eigenvalue of multiplicity β ± 1 depending on

whether G is bipartite or not. To determine the multiplicity we need to calculate the
number of eigenfunctions corresponding to k2 = π2. If the graph is bipartite, then there
is one eigenfunction not equal to zero at the vertices and given by cosπ(x− x2n−1) on
every edge en , provided the edges are oriented so that their left end points belong to
the same bipartite component of G . On the other hand, if the graph is not bipartite,
then μ = 2 is not an eigenvalue of Lnorm(G) and only eigenfunctions that vanish at all
vertices may exist.

It remains to calculate the number of eigenfunctions which are equal to zero at
all vertices. Every cycle with an even number of edges determines one such eigen-
function equal to ±sinπ(x− x2n−1) on every edge en in the cycle and zero outside. If
G is bipartite then all cycles have an even number of edges and we obtain β linearly
independent eigenfunctions. There are no other such eigenfunction (see [18]).

If the graph G is not bipartite then there exists at least one cycle formed by an
odd number of edges. There is no eigenfunction supported only on such a cycle and
equal to zero at the vertices, but any two cycles with an odd number of edges determine
precisely one eigenfunction equal to zero at the vertices: it is supported by the two
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cycles and any single path connecting them. Therefore we have β − 1 eigenfunctions
equal to zero at the vertices in this case.

Summing up, the multiplicity of λ = π2 equals

• β −1 = E −V if G is non-bipartite;

• β +1 = E −V +2 if G is bipartite.

Case 4. The point k2 = 4π2 is an eigenvalue of multiplicity 1+ β = E −V + 2.
Indeed, there is just one eigenfunction equal to 1 at all vertices (given by cos2π(x−
x2n−1) on every edge en ) and β eigenfunctions equal to zero at all vertices; each such
eigenfunction is supported on one of the independent cycles in Γ (given by sin2π(x−
x2n−1) on each edge en in the cycle).

To sum up, there are precisely 2E +1 eigenvalues of the standard Laplacian inside
the interval [0,4π2] , and they satisfy the following:

• if the graph is not bipartite, then

0 = λ1
(
Lst(Γ)

)
< .. . � λV

(
Lst(Γ)

)
< λV+1

(
Lst(Γ)

)
= . . . = λE

(
Lst(Γ)

)
= π2;

π < λE+1
(
Lst(Γ)

)
� . . . < λE+V

(
Lst(Γ)

)
= . . . = λ2E+1

(
Lst(Γ)

)
= 4π2.

(5.6)

• if the graph is bipartite, then

0 = λ1
(
Lst(Γ)

)
< .. . � λV−1

(
Lst(Γ)

)
< λV

(
Lst(Γ)

)
= . . . = λE+1

(
Lst(Γ)

)
= π2;

π < λE+2
(
Lst(Γ)

)
� . . . < λE+V

(
Lst(Γ)

)
= . . . = λ2E+1

(
Lst(Γ)

)
= 4π2.

(5.7)

A comparison between (5.6) and (5.4) implies that the inequality (5.3) holds for all
n � 2E except for n = E if G is non-bipartite. From comparing (5.7) with (5.4) we
conclude that the inequality (5.3) holds for all n � 2E if G is bipartite.

In order to cover higher eigenvalues we observe that in k -scale the spectrum in any
interval (2πm,2π(m+1)] is obtained by shifting the interval (0,2π ] to the right due to
the 2π -periodicity of the relation (5.5) for generic points k �= πn , n∈ N , and repeating
our analysis for the special points k = πn , n ∈ N . Hence the inequality (5.3) holds
for any n , provided the graph is bipartite, and is violated exactly for n = (2m+ 1)E ,
provided the graph is non-bipartite. �

Non-equilateral graphs

For more general, possibly non-equilateral graphs the validity of the inequal-
ity (5.3) is not related one-to-one to bipartiteness of Γ . Consider for instance the
cycle graph consisting of two edges with lengths 1 and 3. Then Γ is bipartite but
λ2(Lst(Γ)) = π2

4 > π2

9 = λ1(LD(Γ)) .
However, one may give sufficient conditions in terms of the relation of the edge

lengths within each cycle for the eigenvalue inequality (5.2) to hold. This is done in
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the following theorem. There we say that Γ contains only independent cycles if there
is no edge in Γ which is part of two different cycles. Moreover, for each cycle C we
write E (C) for the set of edges which form the cycle. The length of any edge e ∈ E is
denoted here by L(e) .

THEOREM 5.2. Assume that the finite, compact, connected metric graph Γ con-
tains only independent cycles. Moreover, for each cycle C in Γ assume that for each
ê ∈ E (C) there exist numbers νê(e) ∈ {−1,1} , e ∈ E (C) , such that

1
L(ê) ∑

e∈C

νê(e)L(e) ∈ 2N. (5.8)

Then

λn+1
(
Lst(Γ)

)
� λn

(
LD(Γ)

)
(5.9)

holds for all n ∈ N .

Proof. Let us first consider the case that Γ consists only of one cycle, that is,
all vertices in Γ have degree two. Let n ∈ N be arbitrary. Then λ := λn(LD(Γ)) =
m2π2/L(ê)2 for some ê ∈ E and m ∈ N . By the min-max principle for LD(Γ) we have

λ = min
F⊂W1

2,0(Γ\V )
dimF=n

max
f∈F
f �=0

∫
Γ | f ′|2dx∫
Γ | f |2dx

,

where W 1
2,0(Γ \V ) consists of all f ∈ W 1

2 (Γ \V ) such that f (v) = 0 for all v ∈ V .

Hence there exists an n -dimensional subspace F of W 1
2,0(Γ\V ) such that∫

Γ
| f ′|2dx � λ

∫
Γ
| f |2dx, f ∈ F. (5.10)

Assume that a parametrization of the edges and an enumeration e1, . . . ,eE of E is
chosen along the orientation and order of the cycle. Define a function g on Γ by

g(x) = e
i
√

λ
(

∑ j−1
k=1 νê(ek)L(ek)+νê(e j)(x−x2 j−1)

)
, x ∈ e j, j = 1, . . . ,E.

Then g ∈W 2
2 (Γ\V ) and g is continuous at each vertex since for j = 1, . . . ,E −1 we

have

g(x2 j) = e
i
√

λ
(

∑ j
k=1 νê(ek)L(ek)

)
= g(x2 j+1)

and

g(x2E) = ei
√

λ(∑E
k=1 νê(ek)L(ek)) = e

imπ 1
L(ê) (∑E

k=1 νê(ek)L(ek)) = 1 = g(x1)
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by (5.8). Note that g satisfies

g′(x) = i
√

λ νê(e j)g(x) and −g′′(x) = λg(x), x ∈ e j, j = 1, . . . ,E. (5.11)

Let now f ∈ F and η ∈ C . Then the inequality (5.10), integration by parts
and (5.11) yield∫

Γ
| f ′ + ηg′|2dx =

∫
Γ
| f ′|2dx+2Re

∫
Γ

f ′ηg′dx+
∫

Γ
|ηg′|2dx

� λ
∫

Γ
| f |2dx+2Re

∫
Γ

fη(−g′′)dx+
∫

Γ
|ηg′|2dx

= λ
∫

Γ
| f |2dx+2λ Re

∫
Γ

fηgdx+ λ
∫

Γ
|ηg|2dx

= λ
∫

Γ
| f + ηg|2dx,

(5.12)

where we have used that f vanishes at each vertex. Note that |g(x)| = 1 for all x ∈ Γ
and, hence, g /∈ F . Thus (5.12) implies the assertion (5.3) in the case that Γ is a cycle.

Let now Γ be an arbitrary compact, finite, connected graph having only inde-
pendent cycles. Then Γ can be obtained by gluing together successively cycle graphs
having the property (5.8) and trees, where in each step the gluing may only take place
at one fixed vertex. Using the statement for cycle graphs and the inequality (5.2) for
trees it suffices to show the following: If Γ1 , Γ2 are any finite, compact graphs such
that λn+1(Lst(Γ j)) � λn(LD(Γ j)) holds for all n ∈ N , j = 1,2, then

λn+1
(
Lst(Γ1,2)

)
� λn

(
LD(Γ1,2)

)
for all n ∈ N, (5.13)

where Γ1,2 is any graph obtained from choosing one vertex of Γ1 and one vertex of
Γ2 and gluing together Γ1 and Γ2 at these vertices. The inequality (5.13) follows from
a perturbation argument. Indeed, fix n ∈ N . Since the Dirichlet Laplacian on Γ1,2 is
the direct sum of the Dirichlet Laplacians on Γ1 and Γ2 , there exist numbers m, j ∈ N

such that m+ j � n and

λm
(
LD(Γ1)

)
� λn

(
LD(Γ1,2)

)
< λm+1

(
LD(Γ1)

)
,

λ j
(
LD(Γ2)

)
� λn

(
LD(Γ1,2)

)
< λ j+1

(
LD(Γ2)

)
.

Then it follows from the assumption on the eigenvalues on Γ1 and Γ2 that Lst(Γ1)
has at least m+1 eigenvalues in the interval [0,λn(LD(Γ1,2))] and Lst(Γ2) has at least
j+1 eigenvalues in the interval [0,λn(LD(Γ1,2))] . As the standard Laplacian on Γ1,2 is
a rank one perturbation in the resolvent sense of the direct sum of Lst(Γ1) and Lst(Γ2) ,
it follows that Lst(Γ1,2) has at least m+ j+1 � n+1 eigenvalues in [0,λn(LD(Γ1,2))] .
From this the inequality (5.13) follows. �

REMARK 5.3. If Γ =C is a cycle graph and contains a pair of rationally indepen-
dent edge lengths then the condition (5.8) implies ∑e∈E νê(e)L(e) = 0 for each ê .

The following example shows that the condition (5.8) is not necessary for the
inequality (5.9) to hold for all k .
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EXAMPLE 5.4. Consider the graph consisting of a cycle formed by four edges
e1, . . . ,e4 with lengths L(e1) = 5,L(e2) = 3 and L(e3) = L(e4) = 2. Then the condi-
tion (5.8) is not satisfied. Indeed, there is no possibility to choose numbers ν(e j) ∈
{−1,1} , j = 1,2,3,4, such that

1
5

(
5ν(e1)+3ν(e2)+2ν(e3)+2ν(e4)

) ∈ 2N.

On the other hand, one can check that the inequality (5.9) is satisfied for all n ∈ N .

Observe that in the condition (5.8) the numbers νê(e) have to be chosen for each
edge ê in each cycle. The following corollary gives an easier sufficient condition
for (5.8).

COROLLARY 5.5. Let Γ be a graph containing only independent cycles. More-
over, for each cycle C of Γ assume that there exist numbers ν(e) ∈ {−1,1} , e∈ E (C) ,
with ∑e∈C ν(e)L(e) = 0 . Then

λn+1
(
Lst(Γ)

)
� λn

(
LD(Γ)

)
holds for all n ∈ N .

We give another example for the case of rationally dependent edge lengths.

EXAMPLE 5.6. Let Γ be a cycle graph with pairwise rationally dependent edge
lengths. Then there exists x ∈ R such that xL(e) ∈ N holds for each edge e . We
assume that x is minimal with this property, i.e., gcd{xL(e) : e ∈ E } = 1. Suppose
xL(G) = ∑e∈E xL(e) is odd. Without loss of generality assume that L(e) , e ∈ E , are
natural numbers with gcd{L(e) : e ∈ E } = 1. Consider the cycle Γ̃ obtained from Γ
by dividing each edge e into L(e) edges of length one. Then Γ̃ is an equilateral cycle
graph with an odd total number Ẽ of edges, and with the help of Theorem 5.1 it follows

λẼ+1

(
Lst(Γ)

)
= λẼ+1

(
Lst(Γ̃)

)
> λẼ

(
LD(Γ̃)

)
� λẼ

(
LD(Γ)

)
.

Thus the inequality (5.9) is violated for n = Ẽ .

Acknowledgement. The work of PK was supported by the Swedish Research Coun-
cil (VR) grant D0497301. JR gratefully acknowledges financial support by the grant
No. 2018-04560 of the Swedish Research Council (VR).

RE F ER EN C ES

[1] R. BAND, G. BERKOLAIKO AND T. WEYAND, Anomalous nodal count and singularities in the dis-
persion relation of honeycomb graphs, J. Math. Phys., 56, 2015, 122111, 20 pp.
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