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BOUNDARY INTEGRAL FORMULATIONS OF EIGENVALUE

PROBLEMS FOR ELLIPTIC DIFFERENTIAL OPERATORS

WITH SINGULAR INTERACTIONS AND THEIR NUMERICAL

APPROXIMATION BY BOUNDARY ELEMENT METHODS

MARKUS HOLZMANN ∗ AND GERHARD UNGER

Abstract. In this paper the discrete eigenvalues of elliptic second order differential operators
in L2(Rn) , n ∈ N , with singular δ - and δ ′ -interactions supported on hypersurfaces are stud-
ied. We show the self-adjointness of these operators and derive equivalent formulations for the
eigenvalue problems involving boundary integral operators. These formulations are suitable for
the numerical computations of the discrete eigenvalues and the corresponding eigenfunctions by
boundary element methods. We provide convergence results and show numerical examples.

1. Introduction

Schrödinger operators with singular interactions supported on sets of measure zero
play an important role in mathematical physics. The simplest example are Schrödinger
operators with point interactions, which were already introduced in the beginnings of
quantum mechanics [26, 34]. The importance of these models comes from the fact
that they reflect the physical reality still to a reasonable exactness and that they are
explicitly solvable. The point interactions are used as idealized replacements for regular
potentials, which are strongly localized close to those points supporting the interactions,
and the eigenvalues can be computed explicitly via an algebraic equation involving the
values of the fundamental solution corresponding to the unperturbed operator evaluated
at the interaction support, cf. the monograph [1] and the references therein.

Inspired by this idea, Schrödinger operators with singular δ - and δ ′ -interactions
supported on hypersurfaces (i.e. manifolds of codimension one like curves in R2 or
surfaces in R3 ) were introduced. Such interactions are used as idealized replacements
of regular potentials which are strongly localized in neighborhoods of these hypersur-
faces e.g. in the mathematical analysis of leaky quantum graphs, cf. the review [16] and
the references therein, and in the theory of photonic crystals [19]. Note that in the case
of δ -potentials this idealized replacement is rigorously justified by an approximation
procedure [4]. The self-adjointness and qualitative spectral properties of Schrödinger
operators with δ - and δ ′ -interactions are well understood, see e.g. [7, 8, 12, 16, 17, 28]
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and the references therein, and the discrete eigenvalues can be characterized via an ab-
stract version of the Birman-Schwinger principle. However, following the strategy from
the point interaction model one arrives, instead of an algebraic equation, at a boundary
integral equation involving the fundamental solution for the unperturbed operator.

In this paper we suggest boundary element methods for the numerical approxima-
tions of these boundary integral equations. With this idea of computing the eigenvalues
of the differential operators with singular interactions numerically, we give a link of
these models to the original explicitly solvable models with point interactions. As the-
oretical framework for the description of the eigenvalues of these boundary integral
equations we use the theory of eigenvalue problems for holomorphic and meromor-
phic Fredholm operator-valued functions [20, 21, 25]. For the approximation of this
kind of eigenvalue problems by the Galerkin method there exists a complete conver-
gence analysis in the case that the operator-valued function is holomorphic [22, 23, 33].
This analysis provides error estimates for the eigenvalues and eigenfunctions as well as
results which guarantee that for sufficiently fine discretizations there are no artificial
eigenvalues, i. e. additional eigenvalues which are not related to the original problem.

We would like to note that other approaches for the numerical approximation of
eigenvalues of differential operators with singular interactions as the finite element
method or the finite difference method are possible. The application of these meth-
ods requires a bounded computational domain which one does not have in the case of
eigenvalue problems of differential operators with singular interactions since they are
posed on the whole R

n , see (1.3) and (1.4) below. The eigenfunctions of this kind of
eigenvalue problems typically have an exponential decay behavior as ‖x‖→ ∞ , there-
fore the usual procedure of these methods consists first in a truncation of the domain
to a sufficiently large neighborhood of the hypersurface which allows then the appli-
cation of standard finite element methods or finite difference methods. Compared to
the boundary element method this results in an algebraic linear eigenvalue problem.
Whereas the convergence of the finite element method for the eigenvalue problem for
differential operators with δ -interactions can be treated with the Babuška-Osborn the-
ory [3] this seems to be open for the the case of δ ′ -interactions due to the discontinuity
of the eigenfunctions along the hypersurface, for which we refer to (1.4) below.

We also want to mention the works [13, 18, 29] where it is shown in various
settings in space dimensions n ∈ {2,3} that Schrödinger operators with δ -potentials
supported on curves (for n = 2) or surfaces (for n = 3) can be approximated in the
strong resolvent sense by Hamiltonians with point interactions. An improvement of this
approach is presented in [14]. This allows also to compute numerically the eigenvalues
of the limit operator.

Let us introduce our problem setting and give an overview of the main results.
Consider a strongly elliptic and formally symmetric partial differential operator in Rn ,
n ∈ N , of the form

P := −
n

∑
j,k=1

∂ka jk∂ j +
n

∑
j=1

(
a j∂ j − ∂ ja j

)
+a,

see Section 3 for details. Moreover, let Ωi be a bounded Lipschitz domain with bound-
ary Σ := ∂Ωi , let Ωe := R

n \Ωi , and let ν be the unit normal to Ωi . Eventually, let γ
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be the Dirichlet trace and Bν the conormal derivative at Σ (see (3.4) for the definition).
We are interested in the eigenvalues of two kinds of perturbations of P as self-adjoint
operators in L2(Rn) which are formally given by

Aα := P + αδΣ and Bβ := P + β 〈δ ′
Σ, ·〉δ ′

Σ,

where δΣ is the Dirac δ -distribution supported on Σ and the interaction strengths α,β
are real-valued functions defined on Σ with α,β−1 ∈ L∞(Σ) . For P = −Δ these op-
erators have been intensively studied e.g. in [8, 12, 16, 17], for certain strongly elliptic
operators and smooth surfaces several properties of Aα and Bβ have been investigated
in [7, 28]. For the realization of Aα as an operator in L2(Rn) we remark that if the
distribution Aα f is generated by an L2 -function, then fi/e := f � Ωi/e have to fulfill

γ fi = γ fe and Bν fe −Bν fi = αγ f on Σ, (1.1)

as then the singularities at Σ compensate, cf. [8]. In a similar manner, if the distribution
Bβ f is generated by an L2 -function, then f has to fulfill

Bν fi = Bν fe and γ fe − γ fi = βBν f on Σ. (1.2)

Hence, the relations (1.1) and (1.2) are necessary conditions for a function f to belong
to the domain of definition of Aα and Bβ , respectively. Our aims are to show the self-
adjointness of Aα and Bβ in L2(Rn) and to fully characterize their discrete spectra in
terms of boundary integral operators. We pay particular attention to establish formu-
lations which fit in the framework of eigenvalue problems for holomorphic and mero-
morphic Fredholm operator-valued functions and which are accessible for boundary
element methods. This requires a thorough analysis of the involved boundary integral
operators.

When using boundary element methods for the approximations of discrete eigen-
values of Aα and Bβ it is convenient to consider the related transmission problems.
A value λ belongs to the point spectrum of Aα if and only if there exists a nontrivial
f ∈ L2(Rn) satisfying

(P −λ ) f = 0 in R
n \Σ,

γ fi = γ fe, on Σ,

Bν fe −Bν fi = αγ f on Σ.

(1.3)

Similarly, λ belongs to the point spectrum of Bβ if and only if there exists a nontrivial
f ∈ L2(Rn) satisfying

(P −λ ) f = 0 in R
n \Σ,

Bν fi = Bν fe on Σ,

γ fe − γ fi = βBν f on Σ.

(1.4)

For the analysis of the spectra of Aα and Bβ a good understanding of the un-
perturbed operator A0 being the self-adjoint realization of P with no jump condition
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at Σ and some operators related to the fundamental solution of P −λ are necessary.
Assume for λ ∈ ρ(A0)∪σdisc(A0) that G(λ ;x,y) is the integral kernel of a suitable
paramatrix associated to P −λ which is explained in detail in Section 3; for λ in the
resolvent set ρ(A0) it is in fact a fundamental solution for P −λ . We remark that the
knowledge of G(λ ;x,y) or at least a good approximation of this function is essential
for our numerical considerations. We introduce the single layer potential SL(λ ) and
the double layer potential DL(λ ) acting on sufficiently smooth functions ϕ : Σ → C

and x ∈ Rn \Σ as

SL(λ )ϕ(x) :=
∫

Σ
G(λ ;x,y)ϕ(y)dσ(y)

and

DL(λ )ϕ(x) :=
∫

Σ
(Bν,yG(λ ;x,y))ϕ(y)dσ(y).

As we will see, all solutions of (P − λ ) f = 0 will be closely related to the ranges
of SL(λ ) and DL(λ ) . Moreover, the boundary integral operators which are formally
given by

S (λ )ϕ := γ SL(λ )ϕ , T (λ )′ϕ := Bν (SL(λ )ϕ)i +Bν(SL(λ )ϕ)e,

and

T (λ )ϕ := γ (DL(λ )ϕ)i + γ (DL(λ )ϕ)e, R(λ )ϕ := −BνDL(λ )ϕ ,

will play an important role. While the properties of the above operators are well-known
for many special cases, e.g. for P = −Δ , the corresponding results are, to the best of
the authors’ knowledge, not easily accessible in the literature for general P . Hence,
for completeness we spend some efforts in Section 3.3 to provide those properties of the
above integral operators which are needed for our considerations. Eventually, following
a strategy from [10], we show that the discrete eigenvalues of A0 can be characterized
as the poles of an operator-valued function which is built up by the operators S (λ ) ,
T (λ ) , T (λ )′ , and R(λ ) ; see also [15] for related results. Compared to [10] our
formulation is particularly useful for the application of boundary element methods to
compute the discrete eigenvalues of A0 numerically, as the appearing operators are
easily accessible for numerical computations.

In order to introduce Aα and Bβ rigorously, consider the Sobolev spaces

H1
P(Ω) := { f ∈ H1(Ω) : P f ∈ L2(Ω)}.

Inspired by (1.1) and (1.2) we define Aα as the partial differential operator in L2(Rn)
given by

Aα f := P fi ⊕P fe,

domAα :=
{

f = fi ⊕ fe ∈ H1
P(Ωi)⊕H1

P(Ωe) : γ fi = γ fe, Bν fe −Bν fi = αγ f
}
,

(1.5)
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and Bβ by

Bβ f := P fi ⊕P fe,

domBβ :=
{

f = fi ⊕ fe ∈ H1
P (Ωi)⊕H1

P(Ωe) : Bν fi = Bν fe, γ fe − γ fi = βBν f
}
.

(1.6)

In Sections 4 and 5 we show the self-adjointness of these operators in L2(Rn) and via
the Weyl theorem that the essential spectra of Aα and Bβ coincide with the essential
spectrum of the unperturbed operator A0 . Hence, to know the spectral profile of Aα and
Bβ we have to understand the discrete eigenvalues of these operators. The characteriza-
tion of the discrete eigenvalues of Aα and Bβ in terms of boundary integral equations
depends on the discrete spectrum of the unperturbed operator A0 being empty or not.
Let us consider first the case that σd(A0) = /0 . It turns out that λ ∈ ρ(A0) is a discrete
eigenvalue of Aα if and only if there exists a nontrivial ϕ ∈ L2(Σ) such that

(I + αS (λ ))ϕ = 0. (1.7)

Similarly, the existence of a discrete eigenvalue λ ∈ ρ(A0) of Bβ is equivalent to the
existence of a corresponding nontrivial ψ ∈ H1/2(Σ) which satisfies

(β−1 +R(λ ))ψ = 0. (1.8)

As shown in Sections 4 and 5 the boundary integral formulations in (1.7) and (1.8)
are eigenvalue problems for holomorphic Fredholm operator-valued functions. These
eigenvalue problems can be approximated by standard boundary element methods. The
convergence of the approximations follows from well-known abstract convergence re-
sults [22, 23, 33], which are summarized in Section 2. In the case that σdisc(A0) is not
empty, still all eigenvalues of Aα and Bβ in ρ(A0) can be characterized and computed
using (1.7) and (1.8), respectively. For the possible eigenvalues of Aα and Bβ which
lie in σdisc(A0) also boundary integral formulations are provided which are accessible
by boundary element methods and discussed in detail in Section 4 and 5.

Finally, let us note that our model also contains certain classes of magnetic Schrö-
dinger operators with singular interactions with rather strong limitations for the mag-
netic field. Nevertheless, one could use our strategy and the Birman-Schwinger prin-
ciple for magnetic Schrödinger operators with more general magnetic fields provided
in [6, 29] to compute the discrete eigenvalues of such Hamiltonians numerically. Also,
an extension of our results to Dirac operators with δ -shell interactions [5] would be of
interest, but this seems to be a rather challenging problem.

Let us shortly describe the structure of the paper. In Section 2 we recall some ba-
sic facts on eigenvalue problems of holomorphic Fredholm operator-valued functions
and on the approximation of this kind of eigenvalue problems by the Galerkin method.
In Section 3 we introduce the elliptic differential operator P and the associated inte-
gral operators and investigate the properties of the unperturbed operator A0 . Sections 4
and 5 are devoted to the analysis of Aα and Bβ , respectively. We introduce these oper-
ators as partial differential operators in L2(Rn) , show their self-adjointness and derive
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boundary integral formulations to characterize their discrete eigenvalues. Moreover, we
discuss how these boundary integral equations can be solved numerically by boundary
element methods, provide convergence results, and give some numerical examples.

Notations

Let X and Y be complex Hilbert spaces. The set of all anti-linear bounded func-
tionals on X and Y are denoted by X� and Y � , respectively, and the sesquilinear duality
product in X� ×X , which is linear in the first and anti-linear in the second argument,
is (·, ·) ; the underlying spaces of the duality product will be clear from the context.
Next, the set of all bounded and everywhere defined linear operators from X to Y is
B(X ,Y ) ; if X = Y , then we simply write B(X) := B(X ,X) . For A ∈ B(X ,Y ) the
adjoint A� ∈B(Y �,X�) is uniquely determined by the relation (y,Ax) = (A�y,x) for all
x ∈ X and y ∈ Y � .

The domain, range, and kernel of a linear operator A from X to Y are denoted by
domA , ranA , and kerA . Recall that a densely defined, in general unbounded, linear
operator A in the Hilbert space (X ,(·, ·)X ) is called self-adjoint, if it coincides with its
Hilbert space adjoint A∗ , i.e. if and only if (Ax,y)X = (x,Ay)X for all x,y ∈ domA and

domA = domA∗ := {x ∈ X : ∃x̃ ∈ X ∀y ∈ domA : (x,Ay)X = (x̃,y)X}.

Note that we use for the Hilbert space adjoint A∗ another star symbol as for the adjoint
operator B� defined above; this will not lead to confusion, as we do not use the symbol
for the Hilbert space adjoint in the rest of the paper. If A is a self-adjoint operator, then
its resolvent set, spectrum, discrete, essential, and point spectrum are ρ(A) , σ(A) ,
σdisc(A) , σess(A) , and σp(A) , respectively. Finally, if Λ is an open subset of C and
A : Λ → B(X ,X�) , then we say that λ ∈ Λ is an eigenvalue of the operator-valued
function A (·) , if kerA (λ ) = {0} .

2. Galerkin approximation of eigenvalue problems for holomorphic Fredholm
operator-valued functions

In this section we present basic results of the theory of eigenvalue problems for
holomorphic Fredholm operator-valued functions [20, 25] and summarize main results
of the convergence analysis of the Galerkin approximation of such eigenvalue problems
[22, 23, 35]. These results build the abstract framework which we will utilize in order
to show the convergence of the boundary element method for the approximation of
the discrete eigenvalues of Aα as well as of Bβ which lie in ρ(A0) . Under specified
conditions the convergence for discrete eigenvalues of Aα and Bβ in σdisc(A0) is also
guaranteed.

Let X be a Hilbert space and let Λ⊂C be an open and connected subset of C . We
consider an operator-valued function F : Λ → B(X ,X�) which depends holomorphi-
cally on λ ∈ Λ , i.e., the derivative d

dλ F (λ0) := limλ→λ0
1

λ−λ0
(F (λ )−F (λ0)) exists

as operator in B(X ,X�) for each λ0 ∈ Λ . Moreover, we assume that F (λ ) is a Fred-
holm operator of index zero for all λ ∈ Λ and that it satisfies a so-called Gårding’s
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inequality, i. e., for all λ ∈ Λ there exists a compact operator C (λ ) : X → X� and a
constant c(λ ) > 0 such that

|((F (λ )+C (λ ))u,u) | � c(λ )‖u‖2
X for all u ∈ X . (2.1)

Note that inequality (2.1) implies that F (λ ) is a Fredholm operator of index zero; cf
[27, Theorem 2.26].

We consider the eigenvalue problem for the operator-valued function F (·) of the
form: find eigenvalues λ ∈ Λ and corresponding eigenelements u ∈ X \ {0} such that

F (λ )u = 0. (2.2)

In the following we assume that the set {λ ∈ Λ : ∃F (λ )−1 ∈ B(X�,X)} is not empty.
Then the set of all eigenvalues in Λ has no accumulation points inside of Λ [20,
Cor. XI 8.4]. The dimension of the null space kerF (λ ) of an eigenvalue λ is called
the geometric multiplicity of λ . An ordered collection of elements u0,u1, . . . ,um−1 in
X is called a Jordan chain of (λ ,u0) , if (λ ,u0) is an eigenpair and if

n

∑
j=0

1
j!

F ( j)(λ )un− j = 0 for all n = 0,1, . . . ,m−1

is satisfied, where F ( j) denotes the j th derivative. The length of any Jordan chain of
an eigenvalue is finite [25, Lem. A.8.3]. Elements of any Jordan chain of an eigenvalue
λ are called generalized eigenelements of λ . The closed linear space of all generalized
eigenelements of an eigenvalue λ is called generalized eigenspace of λ and is denoted
by G(F ,λ ) . The dimension of the generalized eigenspace G(F ,λ ) is finite [25,
Prop. A.8.4] and it is referred to as algebraic multiplicity of λ .

For the approximation of the eigenvalue problem (2.2) we consider a conforming
Galerkin approximation. We assume that (XN)N∈N

is a sequence of finite-dimensional
subspaces of X such that the orthogonal projection PN : X → XN converges pointwise
to the identity I : X → X , i.e., for all u ∈ X we have

‖PNu−u‖X = inf
vN∈XN

‖vN −u‖X → 0 as N → ∞. (2.3)

The Galerkin approximation of the eigenvalue problem (2.2) reads as: find eigenpairs
(λN ,uN) ∈ Λ×XN \ {0} such that

(F (λN)uN ,vN) = 0 for all vn ∈ XN . (2.4)

For the formulation of the convergence results we need the definition of the gap
δV (V1,V2) of two subspaces V1,V2 of a normed space V :

δV (V1,V2) := sup
v1∈V1‖v1‖V =1

inf
v2∈V2

‖v1− v2‖V .
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THEOREM 2.1. Let F : Λ → B(X ,X�) be a holomorphic operator-valued func-
tion and assume that for each λ ∈ Λ there exist a compact operator C (λ ) : X → X�

and a constant c(λ ) > 0 such that inequality (2.1) is satisfied. Further, suppose that
(XN)N∈N is a sequence of finite-dimensional subspaces of X which fulfills the prop-
erty (2.3). Then the following holds true:

(i) (Completeness of the spectrum of the Galerkin eigenvalue problem) For each
eigenvalue λ ∈ Λ of the operator-valued function F (·) there exists a sequence
(λN)N∈N of eigenvalues of the Galerkin eigenvalue problem (2.4) such that

λN → λ as N → ∞.

(ii) (Non-pollution of the spectrum of the Galerkin eigenvalue problem) Let K ⊂Λ be
a compact and connected set such that ∂K is a simple rectifiable curve. Suppose
that there is no eigenvalue of F (·) in K . Then there exists an N0 ∈ N such that
for all N � N0 the Galerkin eigenvalue problem (2.4) has no eigenvalues in K .

(iii) Let D ⊂ Λ be a compact and connected set such that ∂D is a simple rectifiable
curve. Suppose that λ ∈ D̊ is the only eigenvalue of F in D. Then there exist
an N0 ∈ N and a constant c > 0 such that for all N � N0 we have:

(a) For all eigenvalues λN of the Galerkin eigenvalue problem (2.4) in D

|λ −λN | � cδX(G(F ,λ ),XN)1/�δX(G(F �,λ ),XN)1/�

holds, where F �(·) := (F (·))� is the adjoint function with respect to the
pairing (·, ·) for X� ×X and � is the maximal length of a Jordan chain
corresponding to λ .

(b) If (λN ,uN) is an eigenpair of (2.4) with λN ∈ D and ‖uN‖X = 1 , then

inf
u∈ker(F ,λ )

‖u−uN‖X � c(|λN −λ |+ δX(ker(F ,λ ),XN)) .

Proof. The Galerkin method fulfills the required properties in order to apply the
abstract convergence results in [22, 23, 35] to eigenvalue problems for holomorphic
operator-valued functions which satisfy inequality (2.1), see [33, Lem. 4.1]. We refer
to [22, Thm. 2] for assertion (i) and (ii), and to [23, Thm. 3] for (iii) (a). The error
estimate in (iii) (b) is a consequence of [35, Thm. 4.3.7].

3. Strongly elliptic differential operators and associated integral operators

In this section we introduce the class of elliptic differential operators which will
be perturbed by the singular δ - and δ ′ -interactions supported on a hypersurface Σ , and
we introduce the integral operators S (λ ) , T (λ ) , T (λ )′ , and R(λ ) in Section 3.3 in
a mathematically rigorous way and recall their properties, which will be of importance
for our further studies. Eventually, in Section 3.4 we show how the discrete eigenvalues
of A0 can be characterized with the help of these boundary integral operators. But first,
we introduce our notations for function spaces which we use in this paper.
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3.1. Function spaces

For an open set Ω ⊂ Rn , n ∈ N , and k ∈ N0∪{∞} we write Ck(Ω) for the set of
all k -times continuously differentiable functions and

C∞
b (Ω) := { f ∈C∞(Ω) : f ,∇ f are bounded}.

Moreover, the Sobolev spaces of order s∈R are denoted by Hs(Ω) , see [27, Chapter 3]
for their definition.

In the following we assume that Ω ⊂Rn is a Lipschitz domain in the sense of [27,
Definition 3.28]. We emphasize that Ω can be bounded or unbounded, but ∂Ω has to be
compact. Note that in this case we can identify Hs(Rn\∂Ω) with Hs(Ω)⊕Hs(Rn\Ω) .
With the help of the integral on ∂Ω with respect to the Hausdorff measure we get in
a natural way the definition of L2(∂Ω) . In a similar manner, we denote the Sobolev
spaces on ∂Ω of order s ∈ [0,1] by Hs(∂Ω) , see [27] for details on their definition.
For s ∈ [−1,0] we define Hs(∂Ω) := (H−s(∂Ω))� as the anti-dual space of H−s(∂Ω) .

Finally, we recall that the Dirichlet trace operator C∞(Ω) � f �→ f |∂Ω can be
extended for any s ∈ (

1
2 , 3

2

)
to a bounded and surjective operator

γ : Hs(Ω) → Hs−1/2(∂Ω); (3.1)

cf. [27, Theorem 3.38].

3.2. Strongly elliptic differential operators

Let a jk,a j,a ∈ C∞
b (Rn) , n ∈ N , and j,k ∈ {1, . . . ,n} , and define the differential

operator

P f := −
n

∑
j,k=1

∂k(a jk∂ j f )+
n

∑
j=1

(
a j∂ j f − ∂ j(a j f )

)
+a f (3.2)

in the sense of distributions. We assume that a jk = ak j and that a is real-valued; then
P is formally symmetric. Moreover, we assume that P is strongly elliptic, that means
there exists a constant C > 0 independent of x such that

n

∑
j,k=1

a jk(x)ξ jξk � C|ξ |2

holds for all x ∈ Rn and all ξ ∈ Cn .
Next, define for an open set Ω ⊂ R

n the sesquilinear form ΦΩ : H1(Ω)×H1(Ω)
by

ΦΩ[ f ,g] :=
∫

Ω

[
n

∑
j,k=1

a jk∂ j f∂kg+
n

∑
j=1

(
a j(∂ j f )g+ f (a j∂ jg)

)
+a f g

]
dx. (3.3)

In the following assume that Ω ⊂ Rn is a Lipschitz domain, let ν be the unit nor-
mal vector field at ∂Ω pointing outwards Ω , denote by γ the Dirichlet trace operator,
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see (3.1), and introduce for f ∈ H2(Ω) the conormal derivative Bν f by

Bν f :=
n

∑
k=1

νk

n

∑
j=1

γ (a jk∂ j f )+
n

∑
j=1

ν jγ (a j f ). (3.4)

Then one can show that

(P f ,g)L2(Ω) = ΦΩ[ f ,g]− (Bν f ,γ g)L2(∂Ω), f ∈ H2(Ω), g ∈ H1(Ω), (3.5)

holds. Next, we introduce the Sobolev space

H1
P(Ω) :=

{
f ∈ H1(Ω) : P f ∈ L2(Ω)

}
, (3.6)

where P f is understood in the distributional sense. It is well known that the conormal
derivative Bν has a bounded extension

Bν : H1
P (Ω) → H−1/2(∂Ω), (3.7)

such that (3.5) extends to

(P f ,g)L2(Ω) = ΦΩ[ f ,g]− (Bν f ,γ g), f ∈ H1
P(Ω), g ∈ H1(Ω), (3.8)

where the term on the boundary in (3.5) is replaced by the duality product in H−1/2(Σ)
and H1/2(Σ) , see [27, Lemma 4.3]. We remark that this formula also holds for Ω = Rn ,
then the term on the boundary is not present.

Our first goal is to construct the unperturbed self-adjoint operator A0 in L2(Rn)
associated to P . With the help of [27, Theorem 4.7] it is not difficult to show that
the sesquilinear form ΦRn fulfills the assumptions of the first representation theorem
[24, Theorem VI 2.1], so we can define A0 as the self-adjoint operator corresponding
to ΦRn . The following result is well-known, the simple proof is left to the reader.

LEMMA 3.1. Let P be given by (3.2) and let the form ΦRn be defined by (3.3).
Then ΦRn is densely defined, symmetric, bounded from below, and closed. The self-
adjoint operator A0 in L2(Rn) associated to ΦRn is

A0 f = P f , domA0 = H2(Rn). (3.9)

Assume that Ωi is a bounded Lipschitz domain in Rn with boundary Σ := ∂Ωi ,
let ν be the unit normal to Ωi , and set Ωe := Rn \Ωi . Then it follows from [27,
Theorem 4.20] that a function f = fi ⊕ fe ∈ H1

P(Ωi)⊕H1
P(Ωe) fulfills

f ∈ domA0 = H2(Rn) ⇐⇒ γ fi = γ fe and Bν fi = Bν fe. (3.10)

Next, we review some properties of the resolvent of A0 which are needed later.
In the following, let λ ∈ ρ(A0)∪σdisc(A0) be fixed. Recall that a map G acting on
E �(Rn) , where E �(Rn) is the set of all distributions with compact support, is called
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a paramatrix for P − λ in the sense of [27, Chapter 6], if there exist linear integral
operators K1,K2 with C∞ -smooth integral kernels also acting on E �(Rn) such that

G (P −λ )u = u−K1u and (P −λ )G u = u−K2u

holds for all u ∈ E �(Rn) . A paramatrix is a fundamental solution for P − λ , if the
above equation holds with K1 = K2 = 0.

Let us denote the orthogonal projection onto ker(A0−λ ) by P̂λ and set

Pλ := I− P̂λ . (3.11)

Note that Pλ = I for λ ∈ ρ(A0) and if {e1, . . .eN} , N := dimker(A0−λ ) , is a basis of
ker(A0−λ ) for λ ∈ σdisc(A0) , then

P̂λ f =
N

∑
k=1

( f ,ek)L2(Rn)ek =
∫

Rn
K(·,y) f (y)dy, K(x,y) :=

N

∑
k=1

ek(x)ek(y),

for all f ∈ L2(Rn) . We remark that the integral kernel K is a C∞ -function by elliptic
regularity [27, Theorem 4.20]. By the spectral theorem we have that A0−λ is bound-
edly invertible in Pλ (L2(Rn)) . Therefore, the map

G (λ ) := Pλ (A0−λ )−1Pλ (3.12)

is bounded in L2(Rn) , and it is a paramatrix for P −λ , as

(P −λ )Pλ (A0−λ )−1Pλ f = Pλ (A0−λ )−1Pλ (P −λ ) f = Pλ f = f − P̂λ f (3.13)

holds for all f ∈C∞
0 (Rn) . Hence, by [27, Theorem 6.3 and Corollary 6.5] there exists

an integral kernel G(λ ;x,y) such that for almost every x ∈ Rn

G (λ ) f (x) =
∫

Rn
G(λ ;x,y) f (y)dy, f ∈ L2(Rn). (3.14)

In the following proposition we show some additional mapping properties of G (λ ) for
λ ∈ ρ(A0)∪σdisc(A0) ; they are standard and well-known, but for completeness we give
the proof of this proposition.

PROPOSITION 3.2. Let A0 be defined by (3.9), let λ ∈ ρ(A0)∪σdisc(A0) , and let
G (λ ) be given by (3.12). Then, for any s ∈ [−2,0] the mapping G (λ ) can be extended
to a bounded operator

G (λ ) : Hs(Rn) → Hs+2(Rn). (3.15)

Moreover, the map
ρ(A0) � λ �→ (A0−λ )−1

is holomorphic in B(Hs(Rn),Hs+2(Rn)) .
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Proof. Assume that λ ∈ ρ(A0)∪σdisc(A0) is fixed. First, we show that

G (λ ) : L2(Rn) → H2(Rn) (3.16)

is bounded. The operator in (3.16) is well-defined, as

ranG (λ ) = ranPλ (A0−λ )−1Pλ = Pλ dom(A0 −λ )⊂ H2(Rn).

Moreover, we claim that the operator in (3.16) is closed, then it is also bounded by
the closed graph theorem. Let ( fn) ⊂ L2(Rn) be a sequence and let f ∈ L2(Rn) and
g ∈ H2(Rn) be such that

fn → f in L2(Rn) and G (λ ) fn → g in H2(Rn).

Since G (λ ) is bounded in L2(Rn) , we get G (λ ) fn → G (λ ) f in L2(Rn) . Moreover,
as H2(Rn) is continuously embedded in L2(Rn) , we also have

G (λ ) fn → g in L2(Rn).

Hence, we conclude G (λ ) f = g , which shows that the operator in (3.16) is closed and
thus, bounded.

Since the operator in (3.16) is bounded for any λ ∈ ρ(A0)∪σdisc(A0) , we conclude
by duality and from the symmetry of P that also

G (λ ) : H−2(Rn) → L2(Rn)

is bounded. Therefore, interpolation yields that the mapping property (3.15) holds also
for all s ∈ (−2,0) .

In order to show that λ �→ (A0 −λ )−1 is holomorphic in B(Hs(Rn),Hs+2(Rn))
for any s ∈ [−2,0] in a fixed point λ0 ∈ ρ(A0) , we note that the resolvent identity
implies [

1− (λ −λ0)(A0−λ0)−1](A0−λ )−1 = (A0 −λ0)−1.

If λ is close to λ0 , we deduce from the Neumann formula that 1−(λ −λ0)(A0−λ0)−1

is boundedly invertible in Hs+2(Rn) and hence,

(A0−λ )−1 =
[
1− (λ −λ0)(A0−λ0)−1]−1(A0−λ0)−1.

In particular, (A0 −λ )−1 is uniformly bounded in B(Hs(Rn),Hs+2(Rn)) for λ be-
longing to a small neighborhood of λ0 and continuous in λ . Employing this and once
more the resolvent identity

(A0 −λ )−1− (A0−λ0)−1 = (λ −λ0)(A0−λ )−1(A0−λ0)−1,

we find that ρ(A0) � λ �→ (A0 −λ )−1 is holomorphic in B(Hs(Rn),Hs+2(Rn)) .
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3.3. Surface potentials associated to P

In this section we introduce several families of integral operators associated to the
paramatrix G (λ ) which will be of importance in the study of Aα and Bβ and for the
numerical calculation of their eigenvalues. Remark that many of the properties shown
below are well known for special realizations of P , for instance P = −Δ , but for
completeness we also provide the proofs for general P .

Throughout this section assume that Σ is the boundary of a bounded Lipschitz
domain Ωi , set Ωe := Rn \Ωi , and let ν be the unit normal to Ωi . If f is a function
defined on Rn , then in the following we will often use the notations fi := f � Ωi and
fe := f � Ωe .

Recall that the Dirichlet trace operator γ : H1(Rn)→H1/2(Σ) is bounded by (3.1).
Hence, it has a bounded dual γ � : H−1/2(Σ) → H−1(Rn) . This allows us to define for
λ ∈ ρ(A0)∪σdisc(A0) the single layer potential

SL(λ ) := G (λ )γ � : H−1/2(Σ) → H1(Rn). (3.17)

By the mapping properties of γ � and Proposition 3.2 the map SL(λ ) is well-defined
and bounded. Moreover, we have ranSL(λ ) ⊂ ranPλ = L2(Rn)� ker(A0 −λ ) . With
the help of (3.14) and duality, it is not difficult to show that SL(λ ) acts on functions
ϕ ∈ L2(Σ) and almost every x ∈ Rn \Σ as

SL(λ )ϕ(x) =
∫

Σ
G(λ ;x,y)ϕ(y)dσ(y).

Some further properties of SL(λ ) are collected in the following lemma. In particular,
the map SL(λ ) plays an important role to construct eigenfunctions of the operator Aα
defined in (1.5). For that, we prove in the lemma below the correspondence of the range
of SL(λ ) with all solutions f ∈ H1

P(Rn \Σ) of the equation

(P −λ ) f = 0 in R
n \Σ and γ fi = γ fe.

For this purpose we define for λ ∈ ρ(A0)∪σdisc(A0) the set

Mλ := {ϕ ∈ H−1/2(Σ) : (ϕ ,γ f ) = 0 ∀ f ∈ ker(A0−λ )}. (3.18)

We remark that Mλ = H−1/2(Σ) for λ ∈ ρ(A0) .

LEMMA 3.3. Let SL(λ ) , λ ∈ ρ(A0)∪σdisc(A0) , be defined by (3.17). Then the
following is true:

(i) We have ranSL(λ ) ⊂ H1
P(Rn \Σ) and

SL(λ )(Mλ )⊕ker(A0 −λ ) =
{

f ∈ H1(Rn) : (P −λ ) f = 0 in R
n \Σ

}
. (3.19)

(ii) Let Bν be the conormal derivative defined by (3.8). Then for any ϕ ∈ H−1/2(Σ)
the jump relations

γ (SL(λ )ϕ)i − γ (SL(λ )ϕ)e = 0 and Bν(SL(λ )ϕ)i −Bν(SL(λ )ϕ)e = ϕ

hold.
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(iii) The map
ρ(A0) � λ �→ SL(λ )

is holomorphic in B(H−1/2(Σ),H1
P (Rn \Σ)) .

Proof. (i)–(ii) Let {e1, . . . ,eN} be a basis of ker(A0 −λ ) (we use the convention
that this set is empty for λ ∈ ρ(A0)). Since G (λ ) is a paramatrix for P − λ , the
considerations in [27, equation (6.19)] and (3.13) imply for ϕ ∈ H−1/2(Σ) that

(P −λ )SL(λ )ϕ = −P̂λ γ �ϕ = −
N

∑
j=1

(ϕ ,γ e j)e j on R
n \Σ. (3.20)

This implies, in particular, that ranSL(λ ) ⊂ H1
P (Rn \Σ) and hence, Bν(SL(λ )ϕ)i/e

is well-defined for ϕ ∈ H−1/2(Σ) by (3.7). The jump relations in item (ii) are shown
in [27, Theorem 6.11]. Furthermore, (3.20) implies (P−λ )SL(λ )ϕ = 0 in Rn \Σ for
ϕ ∈ Mλ and thus,

SL(λ )(Mλ )⊕ker(A0 −λ )⊂ {
f ∈ H1(Rn) : (P −λ ) f = 0 in R

n \Σ
}
. (3.21)

Next, we verify the second inclusion in (3.19). Let f ∈ H1(Rn)∩H1
P(Rn \ Σ)

such that (P − λ ) f = 0 in R
n \Σ . Set ϕ := Bν fi −Bν fe ∈ H−1/2(Σ) . We claim

that ϕ ∈ Mλ . For λ ∈ ρ(A0) this is clear by the definition of Mλ in (3.18). For
λ ∈ σdisc(A0) ⊂ R we get with (3.8) applied in Ωi and Ωe (note that ν is pointing
outside Ωi and inside Ωe ) for any g ∈ ker(A0−λ ) ⊂ H2(Rn)

(ϕ ,γ g) = (Bν fi −Bν fe,γ g)− (γ f ,Bν gi−Bνge)
= ( f ,Pg)L2(Rn)− (P f ,g)L2(Rn) = ( f ,λg)L2(Rn) − (λ f ,g)L2(Rn) = 0,

which implies ϕ ∈ Mλ . Next, consider h := f − SL(λ )ϕ . Then h ∈ H1(Rn) and
by (ii) we have

Bνhi−Bνhe = Bν fi −Bν fe −
(
Bν (SL(λ )ϕ)i −Bν(SL(λ )ϕ)e

)
= ϕ −ϕ = 0.

Hence, (3.10) yields h ∈ domA0 . Eventually, due to the properties of f and SL(λ )ϕ
for ϕ ∈ Mλ we conclude

(A0−λ )h = (P −λ )hi⊕ (P−λ )he

= (P −λ )( fi− (SL(λ )ϕ)i)⊕ (P−λ )( fe −SL(λ )ϕ)e) = 0.

This gives h = f −SL(λ )ϕ ∈ ker(A0−λ ) . Therefore, we have also verified{
f ∈ H1(Rn) : (P −λ ) f = 0 in R

n \Σ
} ⊂ ranSL(λ )⊕ker(A0−λ ). (3.22)

The inclusions in (3.21) and (3.22) imply finally (3.19).
(iii) By the definition of SL(λ ) and Proposition 3.2 we have that SL(λ ) is holo-

morphic in B(H−1/2(Σ),H1(Rn)) . Since PSL(λ )ϕ = λSL(λ )ϕ in R
n \Σ for any
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λ ∈ ρ(A0) by (i), we find that the H1 -norm is equivalent to the norm in H1
P(Rn \Σ)

on ranSL(λ ) . Therefore, SL(λ ) is also holomorphic in B(H−1/2(Σ),H1
P (Rn \Σ)) .

Two important objects associated to SL(λ ) are the single layer boundary integral
operator S (λ ) , which is defined by

S (λ ) : H−1/2(Σ) → H1/2(Σ), S (λ )ϕ = γ SL(λ )ϕ = γ G (λ )γ �ϕ , (3.23)

and the mapping T (λ )′ , which is given by

T (λ )′ : H−1/2(Σ)→H−1/2(Σ), T (λ )′ϕ = Bν (SL(λ )ϕ)i +Bν(SL(λ )ϕ)e. (3.24)

The operators S (λ ) and T (λ )′ have for a density ϕ ∈ L2(Σ) and almost all x ∈ Σ
the integral representations

S (λ )ϕ(x) =
∫

Σ
G(λ ;x,y)ϕ(y)dσ(y)

and

T (λ )′ ϕ(x) = 2 lim
ε↘0

∫
Σ\B(x,ε)

Bν,xG(λ ;x,y)ϕ(y)dσ(y).

Some further properties of S (λ ) and T (λ )′ are stated in the following lemma:

LEMMA 3.4. Let S (λ ) and T (λ )′ , λ ∈ ρ(A0)∪σdisc(A0) , be defined by (3.23)
and (3.24), respectively. Then, the following is true:

(i) For the restriction S0(λ ) := S (λ ) � L2(Σ) one has S0(λ ) ∈B(L2(Σ),H1(Σ)) .
In particular, S0(λ ) is compact in L2(Σ) .

(ii) S (λ ) is a Fredholm operator with index zero and there exist a compact operator
C (λ ) : H−1/2(Σ) → H1/2(Σ) and a constant c(λ ) > 0 such that

Re (ϕ ,(S (λ )+C (λ ))ϕ) � c(λ )‖ϕ‖2
H−1/2(Σ)

holds for all ϕ ∈ H−1/2(Σ) .

(iii) The maps
ρ(A0) � λ �→ S (λ ) and ρ(A0) � λ �→ T (λ )′

are holomorphic in B(H−1/2(Σ),H1/2(Σ)) and B(H−1/2(Σ)) , respectively.

(iv) For any ϕ ∈ H−1/2(Σ)

Bν(SL(λ )ϕ)i =
1
2
(ϕ +T (λ )′ϕ) and Bν(SL(λ )ϕ)e =

1
2
(−ϕ +T (λ )′ϕ)

hold.
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Proof. For the proof of the mapping property of S0(λ ) in (i) we refer to the
discussion after [27, Theorem 6.12], the compactness of S0(λ ) follows then from the
fact that H1(Σ) is compactly embedded in L2(Σ) . Statement (ii) is shown in [27, Theo-
rem 7.6]. Item (iii) is a consequence of Lemma 3.3 (iii) and the mapping properties of γ
and Bν , respectively. Finally, statement (iv) follows immediately from Lemma 3.3 (ii)
and the definition of T (λ )′ in (3.24).

Next, we define the double layer potential associated to P − λ . For that we
recall the definition of Bν from (3.4) and note that Bν : H2(R2) → L2(Σ) is bounded.
Hence, it admits a dual B�

ν ∈B(L2(Σ),H−2(Rn)) and with the help of Proposition 3.2
(applied for s = −2) we can define the double layer potential as the bounded operator

DL(λ ) := G (λ )B�
ν : L2(Σ) → L2(Rn). (3.25)

Since ranG (λ ) ⊂ L2(Rn)�ker(A0−λ ) , we have ranDL(λ ) ⊂ L2(Rn)�ker(A0−λ ) .
Using (3.14) and duality it is not difficult to show that DL(λ ) acts on ϕ ∈ L2(Σ) and
almost all x ∈ Rn \Σ as

DL(λ )ϕ(x) =
∫

Σ
(Bν,yG(λ ;x,y))ϕ(y)dσ(y).

Some further properties of DL(λ ) are collected in the following lemma. In particular,
the map DL(λ ) plays an important role to construct eigenfunctions of the operator Bβ
defined in (1.6). For that, we investigate the correspondence of the range of DL(λ )
with all solutions f ∈ H1

P(Rn \Σ) of the equation

(P −λ ) f = 0 in R
n \Σ and Bν fi = Bν fe.

For this purpose we define for λ ∈ ρ(A0)∪σdisc(A0) the set

Nλ := {ϕ ∈ H1/2(Σ) : (ϕ ,Bν f ) = 0 ∀ f ∈ ker(A0−λ )}. (3.26)

We remark that Nλ = H1/2(Σ) for λ ∈ ρ(A0) . In analogy to Lemma 3.3 we have the
following properties of DL(λ ) .

LEMMA 3.5. Let DL(λ ) , λ ∈ ρ(A0)∪σdisc(A0) , be defined by (3.25). Then the
following is true:

(i) The restriction of DL(λ ) onto H1/2(Σ) gives rise to a bounded operator

DL(λ ) : H1/2(Σ) → H1
P(Rn \Σ)

and

DL(λ )(Nλ )⊕ker(A0−λ )

=
{

f ∈ H1
P(Rn \Σ) : Bν fi = Bν fe, (P −λ ) f = 0 in R

n \Σ
}
.

(3.27)
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(ii) Let Bν be the conormal derivative defined by (3.8). Then for any ϕ ∈ H1/2(Σ)
the jump relations

γ (DL(λ )ϕ)e − γ (DL(λ )ϕ)i = ϕ and Bν (DL(λ )ϕ)i −Bν(DL(λ )ϕ)e = 0

hold.

(iii) The map
ρ(A0) � λ �→ DL(λ )

is holomorphic in B(H1/2(Σ),H1
P (Rn \Σ)) .

Proof. The proofs of many statements of this lemma are analogous to the ones in
Lemma 3.3, so we point out only the main differences. Since G (λ ) is a paramatrix for
P −λ , the considerations in [27, equation (6.19)] and (3.13) imply for ϕ ∈ H1/2(Σ)
that

(P −λ )DL(λ )ϕ = −P̂λ B�
νϕ on R

n \Σ. (3.28)

In particular, we have P(DLϕ)i/e ∈ L2(Ωi/e) . Next, we show the boundedness of the

operator DL(λ ) : H1/2(Σ) → H1
P (Rn \Σ) . Using the last observation and the closed

graph theorem it is enough to verify

DL(λ )ϕ ∈ H1(Rn \Σ) for ϕ ∈ H1/2(Σ); (3.29)

cf. the proof of (3.16) for a similar argument. To prove (3.29) choose R > 0 such that
Ωi is contained in the open ball B(0,R) of radius R centered at the origin and a cutoff
function χ ∈C∞(Rn) which is supported in B(0,R+1) and satisfies χ � B(0,R) ≡ 1.
Moreover, let ϕ ∈ H1/2(Σ) be fixed. Then χDL(λ )ϕ ∈ H1(Rn \ Σ) by [27, Theo-
rem 6.11]. Furthermore, (1− χ)DL(λ )ϕ belongs to L2(Rn) and by the product rule
we have

P(1− χ)DL(λ )ϕ =(1− χ)PDL(λ )ϕ

−
n

∑
j,k=1

[
a jk(∂k(1− χ))(∂ jDL(λ )ϕ)+DL(λ )ϕ∂k(a jk∂ j(1− χ))

+a jk(∂ j(1− χ))(∂kDL(λ )ϕ)
]

+DL(λ )ϕ
n

∑
j=1

[a j∂ j(1− χ)−a j∂ j(1− χ)].

Since supp∇(1−χ)= supp∇χ ⊂ B(0,R+1) , we have again with the help of [27, The-
orem 6.11] that (∂k(1−χ))(∂ jDL(λ )ϕ) ∈ L2(Rn) and thus with PDL(λ )ϕ ∈ L2(Rn)
and a j,a jk ∈C∞

b (Rn) we obtain P(1−χ)DL(λ )ϕ ∈ L2(R2) . Therefore, we conclude
from elliptic regularity that (1− χ)DL(λ )ϕ ∈ H2(Rn) . This implies eventually that

DL(λ )ϕ = χDL(λ )ϕ +(1− χ)DL(λ )ϕ ∈ H1(Rn \Σ)

and thus (3.29).
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Next, item (ii) is shown in [27, Theorem 6.11]. Furthermore, the relation (3.27)
can be shown in the same way as (3.19) using (3.28) instead of (3.20).

In order to prove statement (iii), let λ0,λ ∈ ρ(A0) . Using the resolvent identity
we have

DL(λ )−DL(λ0) =
(
(A0 −λ0)−1 − (A0−λ )−1)B�

ν

= (λ0 −λ )(A0−λ0)−1(A0 −λ )−1B�
ν .

(3.30)

Since (A0−λ0)−1(A0−λ )−1 ∈B(H−2(Rn),H2(Rn)) is continuous in λ in this topol-
ogy, see Proposition 3.2, we conclude that DL(λ ) : H1/2(Σ)→H1

P(Rn \Σ) is holomor-
phic.

Two important objects associated to DL(λ ) are the hypersingular boundary inte-
gral operator R(λ ) , which is defined by

R(λ ) : H1/2(Σ) → H−1/2(Σ), R(λ )ϕ = −BνDL(λ )ϕ = −BνG (λ )B�
νϕ , (3.31)

and the operator

T (λ ) : H1/2(Σ) → H1/2(Σ), T (λ )ϕ = γ (DL(λ )ϕ)i + γ (DL(λ )ϕ)e. (3.32)

It follows from Lemma 3.5 and (3.7) that R(λ ) and T (λ ) are well-defined and
bounded. While T (λ ) has for a continuous density ϕ ∈C(Σ) and almost all x ∈ Σ a
representation as a strongly singular integral operator,

T (λ )ϕ(x) = 2 lim
ε↘0

∫
Σ\B(x,ε)

(Bν,yG(λ ;x,y))ϕ(y)dσ(y),

the hypersingular operator R(λ ) can be only written as finite part integral

R(λ )ϕ(x) = −f.p.ε↘0

∫
Σ\B(x,ε)

Bν,x(Bν,yG(λ ;x,y))ϕ(y)dσ(y),

see [27, Section 7] for details. However, for special realizations of P the duality
product (R(λ )ϕ ,ψ) can be computed in a more convenient way, cf. e.g. [27, The-
orem 8.21]. Some further properties of R(λ ) and T (λ ) are stated in the following
lemma:

LEMMA 3.6. Let R(λ ) and T (λ ) , λ ∈ ρ(A0)∪σdisc(A0) , be defined by (3.31)
and (3.32), respectively. Then, the following is true:

(i) R(λ ) is a Fredholm operator with index zero and there exist a compact operator
C (λ ) : H1/2(Σ) → H−1/2(Σ) and a constant c(λ ) > 0 such that

Re(ϕ ,(R(λ )+C (λ ))ϕ) � c(λ )‖ϕ‖2
H1/2(Σ)

holds for all ϕ ∈ H1/2(Σ) .
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(ii) The maps
ρ(A0) � λ �→ R(λ ) and ρ(A0) � λ �→ T (λ )

are holomorphic in B(H1/2(Σ),H−1/2(Σ)) and B(H1/2(Σ)) , respectively.

(iii) For any ϕ ∈ H1/2(Σ)

γ (DL(λ )ϕ)i =
1
2
(−ϕ +T (λ )ϕ) and γ (DL(λ )ϕ)e =

1
2
(ϕ +T (λ )ϕ)

hold.

(iv) For all λ ,ν ∈ ρ(A0) the difference T (λ )−T (ν) is compact.

(v) The relation
(ϕ ,T (λ )ψ) = (T (λ )′ϕ ,ψ)

holds for all ϕ ∈ H−1/2(Σ) and ψ ∈ H1/2(Σ) .

Proof. Item (i) follows immediately from [27, Theorem 7.8]. Assertion (ii) is a
consequence of Lemma 3.5 (iii) and the mapping properties of γ and Bν in (3.1)
and (3.7). Next, the claim of item (iii) follows directly from Lemma 3.5 (ii) and the
definition of T (λ ) .

To show statement (iv) assume that λ = ν ∈ ρ(A0) . As in (3.30) we see that
DL(λ )−DL(ν) : L2(Σ)→H2(Rn) is bounded. Since H2(Rn) is boundedly embedded
in H1(Rn) , we deduce with the mapping properties of γ from (3.1) that

T (λ )−T (ν) = (ν −λ )γ (A0 −ν)−1(A0−λ )−1B�
ν

is bounded from L2(Σ) to H1/2(Σ) . Since H1/2(Σ) is compactly embedded in L2(Σ) ,
we conclude eventually that T (λ )−T (ν) is compact in H1/2(Σ) .

Finally, statement (v) is shown in [27, Chapter 7], since the operator T � in [27,
Chapter 7] coincides with T (λ )′ .

3.4. Characterization of discrete eigenvalues of A0

In this section we show how the discrete eigenvalues of A0 can be characterized
with the help of the boundary integral operators S (λ ),T (λ ),T (λ )′ , and R(λ ) . For
that purpose we follow closely considerations from [10], but we adapt the arguments to
obtain a formulation on more general hypersurfaces Σ which is also more convenient
for numerical considerations.

We define for λ ∈ ρ(A0) the operator

A (λ ) : H−1/2(Σ)×H1/2(Σ) → H1/2(Σ)×H−1/2(Σ),

A (λ )
(

ϕ
ψ

)
=

(
γ
(
SL(λ )ϕ +DL(λ )ψ

)
i−Bν

(
SL(λ )ϕ +DL(λ )ψ

)
e

)
.

(3.33)

Due to the mapping properties of γ from (3.1) and Bν from (3.7) we obtain from
Lemma 3.3 (i) and Lemma 3.5 (i) that A (λ ) is well-defined and bounded. With
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Lemma 3.4 (iv) and Lemma 3.6 (iii) we see that A (λ ) can be written as the block
operator matrix

A (λ ) =
(

S (λ ) 1
2 (−I +T (λ ))

1
2 (I−T (λ )′) R(λ )

)
. (3.34)

Some basic properties of A (λ ) are collected in the following lemma:

LEMMA 3.7. Let A (λ ) , λ ∈ ρ(A0) , be defined by (3.33). Then the following is
true:

(i) The map ρ(A0) � λ �→ A (λ ) is holomorphic.

(ii) There exists a compact operator K (λ ) and a constant c(λ ) > 0 such that∣∣∣∣((A (λ )+K (λ ))
(

ϕ
ψ

)
,

(
ϕ
ψ

))∣∣∣∣ � c(λ )
(‖ϕ‖2

H−1/2(Σ) +‖ψ‖2
H1/2(Σ)

)
holds for all ϕ ∈ H−1/2(Σ) and ψ ∈ H1/2(Σ) , where the duality product is the
one for the pairing H1/2(Σ)×H−1/2(Σ) and H−1/2(Σ)×H1/2(Σ) .

Proof. Assertion (i) follows from Lemma 3.4 (iii) and Lemma 3.6 (ii), as S (λ ) ,
T (λ ) , T (λ )′, and R(λ ) are holomorphic. To prove item (ii) we compute(

A (λ )
(

ϕ
ψ

)
,

(
ϕ
ψ

))
=

((
S (λ ) 1

2(−I +T (λ ))
1
2(I−T (λ )′) R(λ )

)(
ϕ
ψ

)
,

(
ϕ
ψ

))
=(S (λ )ϕ ,ϕ)+ (R(λ )ψ ,ψ)+

1
2

(
(ϕ ,ψ)− (ψ ,ϕ)

)
+

1
2

(
(T (λ )ψ ,ϕ)− (ϕ ,T (λ )ψ)

)
+

1
2

(
(ϕ ,T (λ )ψ)− (T (λ )′ϕ ,ψ)

)
.

With Lemma 3.6 (v) we have(
ϕ ,T (λ )ψ

)− (
T (λ )′ϕ ,ψ

)
=

(
ϕ ,(T (λ )−T (λ ))ψ

)
and the operator T (λ )−T (λ ) is compact by Lemma 3.6 (iv). Therefore, we get with
a compact operator K (λ )

Re

(
A (λ )

(
ϕ
ψ

)
,

(
ϕ
ψ

))
=Re

(
(S (λ )ϕ ,ϕ)+ (R(λ )ψ ,ψ)+

(
ϕ ,(T (λ )−T (λ ))ψ

))
�c(λ )

(‖ϕ‖2
H−1/2(Σ) +‖ψ‖2

H1/2(Σ)

)
+Re

(
K (λ )

(
ϕ
ψ

)
,

(
ϕ
ψ

))
,

which implies because of |z| � Re z for z ∈ C the claimed result.
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In the following theorem we characterize the discrete eigenvalues of A0 with the
help of the operator-valued function A . For this purpose we define for a number
λ0 ∈ σdisc(A0)∪ ρ(A0) = C \σess(A0) , for which there exists a number ε > 0 with
B(λ0,ε)\ {λ0} ⊂ ρ(A0) , the map

RA (λ0) := lim
λ→λ0

(λ −λ0)A (λ ). (3.35)

The proof of the following theorem follows closely ideas from [10, Theorem 3.2], but
the operator A (λ ) appearing in our formulation is easier accessible for numerical ap-
plications than the map M(λ ) in [10] since it consists of explicitly computable integral
operators.

THEOREM 3.8. A number λ0 belongs to the discrete spectrum of A0 if and only
if λ0 is a pole of A (λ ) . Moreover,

ranRA (λ0) =
{
(γ f ,Bν f )� : f ∈ ker(A0−λ0)

}
(3.36)

holds.

Proof. Let λ0 /∈ σess(A0) . It suffices to show that (3.36) is true. Let μ ∈ C\R be
fixed and let P̂λ0

be the orthogonal projection in L2(Rn) onto ker(A0−λ0) . We claim
first that

ker(A0−λ0) =
{
P̂λ0

[SL(μ)ϕ +DL(μ)ψ ] : ϕ ∈ H−1/2(Σ),ψ ∈ H1/2(Σ)}. (3.37)

To show this assume that f ∈ ker(A0−λ0) is such that

0 =
(
f , P̂λ0

[SL(μ)ϕ +DL(μ)ψ ]
)
L2(Rn) =

(
f ,SL(μ)ϕ +DL(μ)ψ

)
L2(Rn)

holds for all ϕ ∈ H1/2(Σ) and ψ ∈ H−1/2(Σ) . Since f ∈ ker(A0 −λ0) , we have that
(A0− μ)−1 f = (λ0− μ)−1 f and thus, the definitions of SL(μ) and DL(μ) lead to

0 =
(
f ,(A0 − μ)−1γ �ϕ +(A0− μ)−1B�

ν ψ
)
L2(Rn)

=
(
γ (A0− μ)−1 f ,ϕ

)
+

(
Bν (A0− μ)−1 f ,ψ

)
=

1
λ0− μ

[
(γ f ,ϕ)+ (Bν f ,ψ)

]
.

Since this holds for all ϕ ∈ H1/2(Σ) and ψ ∈ H−1/2(Σ) , we conclude γ f = Bν f = 0.
It follows from [9, Proposition 2.5] (this result and its proof are also true for unbounded
domains) that f = 0. Since for λ0 /∈σess(A0) the set ker(A0−λ0) is finite-dimensional,
(3.37) is shown.

We are now prepared to prove (3.36). By the spectral theorem the resolvent of A0

can be written in a small neighborhood of λ0 as

(A0− μ)−1 =
1

λ0− μ
P̂λ0

+F (μ),
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where F (μ) is a locally bounded and continuous operator in μ . Hence, we conclude
that RA (λ0) can be a nontrivial operator, only if P̂λ0

is nontrivial, and that

ranRA (λ0) ⊂
{
(γ f ,Bν f )� : f ∈ ker(A0 −λ0)

}
.

To show the other inclusion in (3.36), let f ∈ ker(A0 −λ0) , fix μ ∈ C\R , and choose
ϕ ∈ H−1/2(Σ) and ψ ∈ H1/2(Σ) such that f = P̂λ0

[SL(μ)ϕ +DL(μ)ψ ] ; such a choice
is always possible by (3.37). Note that according to the spectral theorem we have
P̂λ0

g = limλ→λ0
(λ0−λ )(A0−λ )−1g , where the limit is the one in L2(Rn) . Hence, we

find(
γ f

Bν f

)
=

(
γ

Bν

)
(A0− μ)−1(A0− μ)P̂λ0

[SL(μ)ϕ +DL(μ)ψ ]

= (λ0− μ)
(

γ
Bν

)
(A0 − μ)−1P̂λ0

[SL(μ)ϕ +DL(μ)ψ ]

= (λ0− μ)
(

γ
Bν

)
(A0 − μ)−1 lim

λ→λ0

(λ0−λ )(A0−λ )−1[SL(μ)ϕ +DL(μ)ψ ].

Note that the mapping(
γ

Bν

)
(A0− μ)−1 : L2(Rn) → H1/2(Σ)×H−1/2(Σ)

is continuous. Hence, we conclude(
γ f

Bν f

)
= lim

λ→λ0

(λ0−λ )(λ0− μ)
(

γ
Bν

)
(A0− μ)−1(A0−λ )−1[SL(μ)ϕ +DL(μ)ψ ]

= lim
λ→λ0

(λ0−λ )(λ0−μ)
(

γ
Bν

)
(A0−μ)−1(A0−λ )−1(A0−μ)−1[γ �ϕ+B�

νψ ].

Applying two times the resolvent identity, we find first for g ∈ L2(Rn) that

(A0− μ)−1(A0−λ )−1(A0− μ)−1g

=
1

μ −λ
[(A0− μ)−1− (A0−λ )−1](A0− μ)−1g

=
1

μ −λ
(A0− μ)−2g− 1

(μ −λ )2 [(A0− μ)−1− (A0−λ )−1]g.

With a continuity argument this extends to all g∈H−2(Rn) . Using this, we find finally(
γ f

Bν f

)
= lim

λ→λ0

(λ0−λ )(λ0− μ)
(

γ
Bν

)
(A0−μ)−1(A0−λ )−1(A0−μ)−1[γ �ϕ+B�

νψ ]

= lim
λ→λ0

(λ0−λ )(λ0− μ)
(λ − μ)2

(
γ

Bν

)
[(A0−λ )−1γ �ϕ +(A0−λ )−1B�

ν ψ ]

= lim
λ→λ0

(λ0−λ )(λ0− μ)
(λ − μ)2 A (λ )

(
ϕ
ψ

)
=

1
λ0− μ

RA (λ0)

(
ϕ
ψ

)
,

which shows that also the second inclusion in (3.36) is true. This finishes the proof of
this theorem.
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4. Elliptic differential operators with δ -potentials supported on compact
Lipschitz smooth surfaces

This section is devoted to the study of the spectral properties of the differential
operator which is formally given by Aα := P + αδΣ . First, we introduce Aα in Sec-
tion 4.1 as an operator in L2(Rn) and show its self-adjointness; in this procedure we
also obtain in Proposition 4.2 the Birman-Schwinger principle to characterize the dis-
crete eigenvalues of Aα via boundary integral equations. Then, in Section 4.2 we dis-
cuss how these boundary integral equations can be used to approximate numerically the
discrete eigenvalues of Aα by boundary element methods. Finally, in Section 4.3 we
show some numerical examples.

4.1. Definition and self-adjointness of Aα

As usual, Ωi ⊂ Rn is a bounded Lipschitz domain, Σ := ∂Ωi , Ωe := Rn \Ωi , and
ν denotes the unit normal to Ωi . Recall the definition of the elliptic partial differen-
tial expression P from (3.2), the Sobolev space H1

P(Ωi/e) from (3.6), and the weak
conormal derivative Bν from (3.4) and (3.7). For a real-valued function α ∈ L∞(Σ)
we define in L2(Rn) the partial differential operator Aα by

Aα f := P fi ⊕P fe,

domAα :=
{

f = fi ⊕ fe ∈ H1
P(Ωi)⊕H1

P(Ωe) : γ fi = γ fe, Bν fe −Bν fi = αγ f
}
.

(4.1)

With the help of (3.8) it is not difficult to show that Aα is symmetric in L2(Rn) :

LEMMA 4.1. Let α ∈ L∞(Σ) be real-valued. Then Aα defined in (4.1) is symmet-
ric in L2(Rn) .

Proof. We show that (Aα f , f )L2(Rn) ∈ R for all f ∈ domAα . Let f ∈ domAα be
fixed. Using (3.8) in Ωi and Ωe and that the normal ν is pointing outside of Ωi and
inside of Ωe we get

(Aα f , f )L2(Rn) = (P fi, fi)L2(Ωi) + (P fe, fe)L2(Ωe)

= ΦΩi [ fi, fi]− (Bν fi,γ fi)+ ΦΩe [ fe, fe]+ (Bν fe,γ fe).

Since f ∈ domAα we have γ fi = γ fe . This implies, in particular, f ∈ H1(Rn) and
hence ΦΩi [ fi, fi]+ΦΩe [ fi, fe] = ΦRn [ f , f ] . With the help of the transmission condition
for f ∈ domAα along Σ we conclude

(Aα f , f )L2(Rn) = ΦRn [ f , f ]+ (Bν fe −Bν fi,γ f ) = ΦRn [ f , f ]+ (αγ f ,γ f ).

Since the sesquilinear form ΦRn is symmetric and α is real valued, the latter number
is real and therefore, the claim is shown.

In the following proposition we show how the discrete eigenvalues of Aα can
be characterized with the help of boundary integral operators. First, we determine
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the eigenfunctions in ker(Aα −λ )�ker(A0−λ ) with the Birman-Schwinger principle
for Aα , where the linear eigenvalue problem for the unbounded partial differential op-
erator Aα is translated to the nonlinear eigenvalue problem for a family of boundary in-
tegral operators which are related to the single layer boundary integral operator S (λ ) .
The eigenfunctions of Aα in ker(Aα −λ )∩ker(A0−λ ) are characterized with the help
of Theorem 3.8. To formulate the result below recall for λ ∈ ρ(A0)∪σdisc(A0) the
definition of the single layer potential SL(λ ) from (3.17), the set Mλ from (3.18), the
single layer boundary integral operator S (λ ) from (3.23), S0(λ ) := S (λ ) � L2(Σ) ,
and RA (λ0) from (3.35). The following result allows us later in Section 4.2 to apply
boundary element methods to compute all discrete eigenvalues of Aα numerically.

PROPOSITION 4.2. Let α ∈ L∞(Σ) be real-valued and let Aα be defined by (4.1).
Then the following is true for any λ ∈ ρ(A0)∪σdisc(A0):

(i) ker(Aα −λ )�ker(A0−λ ) = {0} if and only if there exists 0 = ϕ ∈Mλ ∩L2(Σ)
such that (I + αS0(λ ))ϕ = 0 . Moreover,

ker(Aα −λ )�ker(A0−λ ) =
{
SL(λ )ϕ : ϕ ∈Mλ ∩L2(Σ),(I +αS0(λ ))ϕ = 0

}
.

(4.2)

(ii) If λ ∈ ρ(A0) , then λ ∈ σp(Aα) if and only if −1 ∈ σp(αS0(λ )) .

(iii) ker(Aα −λ )∩ker(A0−λ ) = {0} if and only if there exists (ϕ ,ψ)� ∈ ranRA (λ0)
such that αϕ = 0 .

(iv) If λ /∈ σp(Aα)∪ σ(A0) , then I + αS0(λ ) admits a bounded and everywhere
defined inverse in L2(Σ) .

Proof. (i) Assume first that ker(Aα −λ )�ker(A0−λ ) = {0} and take an arbitrary
f ∈ ker(Aα −λ )�ker(A0−λ ) . Then by Lemma 3.3 (i) there exists ϕ ∈ Mλ such that
f = SL(λ )ϕ . Since f ∈ domAα one has with Lemma 3.3 (ii)

αγ f = Bν fe −Bν fi = Bν (SL(λ )ϕ)e −Bν(SL(λ )ϕ)i = −ϕ .

In particular, we deduce ϕ ∈ L2(Σ) and with γ f = S (λ )ϕ = S0(λ )ϕ this can be
rewritten as −ϕ = αS0(λ )ϕ . Moreover, the above considerations show

ker(Aα −λ )�ker(A0−λ )⊂ {
SL(λ )ϕ : ϕ ∈ Mλ ,(I + αS0(λ ))ϕ = 0

}
. (4.3)

Conversely, assume that there exists a nontrivial element ϕ ∈ Mλ ∩L2(Σ) such
that (I + αS0(λ ))ϕ = 0. Then f := SL(λ )ϕ ∈ H1

P(Rn \Σ)∩H1(Rn) and it follows
from Lemma 3.3 (ii) that f is nontrivial. Using the jump properties of SL(λ )ϕ from
Lemma 3.3 (ii) we conclude further

Bν fe −Bν fi = −ϕ = αS0(λ )ϕ = αγ f ,

where it was used that ϕ belongs to the kernel of I + αS0(λ ) . Hence, f ∈ domAα .
With Lemma 3.3 (i) we conclude, as ϕ ∈ Mλ , that

(Aα −λ ) f = (P −λ )(SL(λ )ϕ)i ⊕ (P −λ )(SL(λ )ϕ)e = 0,
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which shows λ ∈ σp(Aα) and{
SL(λ )ϕ : ϕ ∈ Mλ ,(I + αS0(λ ))ϕ = 0

} ⊂ ker(Aα −λ ). (4.4)

Note that (4.3) and (4.4) give (4.2). Hence, all claims in item (i) are proved.
Assertion (ii) is a simple consequence of item (i), as for λ /∈ σ(A0) we have

ker(A0−λ ) = {0} and Mλ = H−1/2(Σ) .
Statement (iii) follows from Theorem 3.8. Note that f ∈ domAα ∩ domA0 if

and only if f ∈ H2(Rn) and αγ f = Bν fe −Bν fi = 0. This implies together with
Theorem 3.8 that f ∈ ker(Aα − λ )∩ ker(A0 − λ ) if and only if there exists a pair
(ϕ ,ψ)� = (γ f ,Bν f )� ∈ ranRA (λ ) such that αϕ = 0.

(iv) Since S0(λ ) is compact in L2(Σ) by Lemma 3.4 (i), it follows from Fred-
holm’s alternative that I+αS0(λ ) is bijective in L2(Σ) and admits a bounded inverse,
if 0 /∈ σp(I +αS0(λ )) . According to item (ii) this is fulfilled, if λ /∈ σp(Aα)∪σ(A0) .

Now we are prepared to show the self-adjointness of the operator Aα . In the
proof of this result we show also a Krein type resolvent formula, which allows us to
verify that the essential spectrum of Aα coincides with the essential spectrum of the
unperturbed operator A0 . We remark that the resolvent formula in (4.5) is well defined,
as I + αS0(λ ) is boundedly invertible in L2(Σ) for λ ∈ ρ(A0)∩ρ(Aα ) by Proposi-
tion 4.2 (iv).

PROPOSITION 4.3. Let α ∈ L∞(Σ) be real-valued, let the operators A0 , SL(λ ) ,
and S (λ ) , λ ∈ ρ(A0) , be given by (3.9), (3.17), and (3.23), respectively, and let
S0(λ ) = S (λ ) � L2(Σ) . Then the operator Aα defined by (4.1) is self-adjoint in
L2(Rn) and the following is true:

(i) For λ ∈ ρ(A0)∩ρ(Aα) the resolvent of Aα is given by

(Aα −λ )−1 = (A0−λ )−1−SL(λ )
(
I + αS0(λ )

)−1αγ (A0 −λ )−1. (4.5)

(ii) σess(Aα) = σess(A0) .

Proof. To prove that Aα is self-adjoint, we show that ran(Aα −λ ) = L2(Rn) for
λ ∈ C\ (σ(A0)∪σp(Aα)) . Let f ∈ L2(Rn) be fixed and define

g := (A0−λ )−1 f −SL(λ )
(
I + αS0(λ )

)−1αγ (A0 −λ )−1 f .

Note that g is well defined, as I + αS0(λ ) admits a bounded inverse in L2(Σ) for
λ /∈ σ(A0)∪σp(Aα) by Proposition 4.2 (iv). We are going to show that g ∈ domAα
and (Aα −λ )g = f . This shows then ran(Aα −λ ) = L2(Rn) and also (4.5).

Since (A0 −λ )−1 f ∈ H2(Rn) by Proposition 3.2, we get γ (A0 −λ )−1 f ∈ L2(Σ)
and further from Proposition 4.2 (ii) and Lemma 3.3 that

SL(λ )
(
I + αS0(λ )

)−1αγ (A0−λ )−1 f ∈ H1
P(Rn \Σ)∩H1(Rn).
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Therefore, also g ∈ H1
P(Rn \Σ)∩H1(Rn) . Moreover, we have by Lemma 3.3 (ii)

Bνge −Bνgi −αγ g =
(
I + αS0(λ )

)−1αγ (A0−λ )−1 f −αγ (A0−λ )−1 f

+ αS0(λ )
(
I + αS0(λ )

)−1αγ (A0 −λ )−1 f = 0,

which shows g ∈ domAα . Next, we have with ϕ := (I + αS0(λ ))−1αγ (A0 −λ )−1 f

(Aα −λ )g = (P −λ )(A0−λ )−1 f − (P−λ )(SL(λ )ϕ)i ⊕ (P −λ )(SL(λ )ϕ)e = f ,

where (3.19) for λ ∈ ρ(A0) was used in the last step. With the previous considerations
we deduce now the self-adjointness of Aα and (4.5).

It remains to show assertion (ii). Let λ ∈ C\R be fixed. First, due to the mapping
properties of the resolvent of A0 from Proposition 3.2 and the mapping properties of γ
from (3.1) the operator

γ (A0−λ )−1 : L2(Rn) → H3/2(Σ) ↪→ H1/2(Σ)

is bounded. Since H1/2(Σ) is compactly embedded in L2(Σ) we get with Proposi-
tion 4.2 (iv) that (

I + αS0(λ )
)−1αγ (A0 −λ )−1 : L2(Rn) → L2(Σ)

is compact. As L2(Σ) is boundedly embedded in H−1/2(Σ) and as the single layer
potential SL(λ ) : H−1/2(Σ) → L2(Rn) is bounded, we conclude that

(Aα −λ )−1− (A0−λ )−1 = −SL(λ )
(
I + αS0(λ )

)−1αγ (A0−λ )−1

is compact in L2(Rn) . Therefore, with the Weyl theorem we get σess(Aα) = σess(A0) .
By combining the results from Proposition 4.2 and Proposition 4.3 we can prove

now the following proposition about the inverse of I +αS0(λ ) , which will be of great
importance for the numerical calculation of the discrete eigenvalues of Aα via boundary
element methods.

PROPOSITION 4.4. Let α ∈ L∞(Σ) be real-valued and let Aα be defined by (4.1).
Then the map

ρ(Aα)∩ρ(A0) � λ �→ (
I + αS0(λ )

)−1

can be extended to a holomorphic operator-valued function, which is holomorphic in
ρ(Aα) with respect to the norm in B(L2(Σ)) . Moreover, for λ0 /∈ σess(Aα) = σess(A0)
one has ker(Aα −λ0)�ker(A0 −λ0) = {0} if and only if (I + αS0(λ ))−1 has a pole
at λ0 and

ker(Aα −λ0)�ker(A0−λ0) =
{
SL(λ0)ϕ : lim

λ→λ0

(λ −λ0)(I + αS0(λ ))−1ϕ = 0
}
.

(4.6)
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Proof. The proof is split into 4 steps.
Step 1: Define the map

[Bν ]Σ : H1
P(Rn \Σ) → H−1/2(Σ), [Bν ]Σ f := Bν fi −Bν fe,

and let λ ∈ ρ(Aα)∩ρ(A0) be fixed. We show that(
I + αS (λ )

)−1 = [Bν ]Σ(Aα −λ )−1γ �. (4.7)

Note that (I+αS (λ ))−1 is well defined by the same reasons as in Proposition 4.2 (iv),
as αS (λ ) ∈ B(H−1/2(Σ),L2(Σ)) is compact in H−1/2(Σ) . In particular, this implies
that [Bν ]Σ(Aα −λ )−1γ � ∈ B(H−1/2(Σ)) . To show (4.7) we note first that (4.5) yields

γ (Aα −λ)−1 = γ (A0−λ)−1−S (λ )
(
I + αS (λ )

)−1αγ (A0 −λ)−1,

which implies, after taking the dual,

(Aα −λ )−1γ � = SL(λ )−SL(λ )α
(
I +S (λ )α

)−1
S (λ ).

Using

α
(
I +S (λ )α

)−1− (
I + αS (λ )

)−1α

=
(
I + αS (λ )

)−1[(
I + αS (λ )

)
α −α

(
I +S (λ )α

)](
I +S (λ )α

)−1 = 0,

we can simplify the last expression to

(Aα −λ )−1γ � = SL(λ )−SL(λ )
(
I + αS (λ )

)−1αS (λ )

= SL(λ )
(
I + αS (λ )

)−1[(
I + αS (λ )

)−αS (λ )
]

= SL(λ )
(
I + αS (λ )

)−1
.

In particular, by Lemma 3.3 the right hand side belongs to B(H−1/2(Σ),H1
P (Rn \Σ))

and thus, the same must be true for (Aα −λ )−1γ � . Therefore, we are allowed to apply
[Bν ]Σ and the last formula shows, with the help of Lemma 3.3 (ii), the relation (4.7).

Step 2: We show that [Bν ]Σ(Aα − λ )−1γ � ∈ B(H−1/2(Σ)) for any λ ∈ ρ(Aα)
and that ρ(Aα) � λ �→ [Bν ]Σ(Aα −λ )−1γ � is holomorphic in B(H−1/2(Σ)) .

First, we note that domAα ⊂ H1(Rn)∩H1
P(Rn \Σ) implies that

(Aα −λ )−1 ∈ B(L2(Rn),H1(Rn)) and (Aα −λ )−1 ∈ B(L2(Rn),H1
P(Rn \Σ)),

see (3.16) for a similar argument. Hence, by duality also

(Aα −λ )−1 ∈ B(H−1(Rn),L2(Rn)).

With the resolvent identity this implies for any λ0 ∈ ρ(Aα) and λ ∈ ρ(Aα)∩ρ(A0) , in
a similar way as in the proof of Proposition 3.2, first that

[Bν ]Σ(Aα−λ0)−1γ �−[Bν ]Σ(Aα−λ )−1γ � = (λ0−λ )[Bν ]Σ(Aα−λ0)−1(Aα−λ )−1γ �,
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which yields first with (4.7) that [Bν ]Σ(Aα − λ0)−1γ � ∈ B(H−1/2(Σ)) and in a sec-
ond step, that [Bν ]Σ(Aα −λ0)−1γ � is holomorphic in B(H−1/2(Σ)) , which shows the
claim of this step.

Step 3: By (4.7) and the result from Step 2 we know that (I + αS (λ ))−1 can
be extended to a holomorphic map in B(H−1/2(Σ)) for λ ∈ ρ(Aα) . By duality we
deduce that (I + αS (λ ))−1 is holomorphic in B(H1/2(Σ)) for λ ∈ ρ(Aα) . Finally,
by interpolation we conclude that (I + αS (λ ))−1 is also holomorphic in B(L2(Σ))
for λ ∈ ρ(Aα) .

Step 4: It follows from Proposition 4.2 (i) that ker(Aα −λ0)�ker(A0−λ0) = {0}
if and only if there exists ϕ ∈ Mλ0

such that (I + αS0(λ0))ϕ = 0, i.e. if and only if
λ �→ (I + αS0(λ ))−1 has a pole at λ0 . This shows immediately (4.6).

4.2. Numerical approximation of discrete eigenvalues of Aα

For the numerical approximation of the discrete eigenvalues of Aα and the cor-
responding eigenfunctions we consider boundary element methods. These require the
knowledge of an explicit integral representation of the paramatrix G (λ ) of P −λ or
at least a good approximation of the boundary integral operator S0(λ ) . This is for
example the case when P has constant coefficients.

We restrict ourselves to three-dimensional domains Ωi ⊂ R3 in order to keep the
presentation simple. The presented procedure and the obtained convergence results can
be straightforwardly transfered to domains with general space dimensions.

The discrete eigenvalues of Aα split into the eigenvalues of the nonlinear eigen-
value problem

(I + αS0(λ ))ϕ = 0 (4.8)

in ρ(A0) and into distinct discrete eigenvalues of A0 , which can be characterized on
the one hand as poles of the operator-valued functions A (·) having the property spec-
ified in Proposition 4.2 (iii) and on the other hand as poles of [I + αS0(·)]−1 lying in
σdisc(A0) .

In the following we will first consider the case that there are no discrete eigen-
values of A0 , that means that all discrete eigenvalues of Aα can be characterized as
eigenvalues of the nonlinear eigenvalue problem (4.8). This is for example the case
when P has constant or periodic coefficients. Afterwards the general case will be
treated. For both cases we will present convergence results of the boundary element
approximations of the discrete eigenvalues of Aα . In the first situation a complete nu-
merical analysis is provided, whereas in the general case for the approximation of the
eigenvalues in σdisc(A0) the convergence theory of Section 2 can not be applied.

We will also address the numerical solution of the discretized problems which
results in the determination of the poles of matrix-valued functions. For that the so-
called contour integral method is suggested [11] which is a reliable method for finding
all poles of a meromorphicmatrix-valued function inside a given contour in the complex
plane.
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4.2.1. Approximation of discrete eigenvalues of Aα for the case σdisc(A0) = ∅

If σdisc(A0) = ∅ , then, by Proposition 4.2 (ii), λ0 ∈ C \ σess(Aα) is a discrete
eigenvalue of Aα if and only if it is an eigenvalue of the nonlinear eigenvalue prob-
lem (4.8). Any conforming Galerkin method for the approximation of the eigenvalue
problem (4.8) is according to the abstract results in Section 2 a convergent method
since ρ(A0) � λ �→ (I + αS0(λ )) is by Lemma 3.4 (iii) holomorphic in B(L2(Σ))
and (I + αS0(λ )) satisfies for λ ∈ ρ(A0) Gårding’s inequality of the form (2.1) be-
cause αS0(λ ) : L2(Σ) → L2(Σ) is compact, see Lemma 3.4 (i).

For the presentation of the boundary element method for the approximation of
the discrete eigenvalues of Aα we want to consider first the case that Ωi ⊂ R3 is a
bounded polyhedral Lipschitz domain. The general case is commented in Remark 4.1.
Let (TN)N∈N be a sequence of quasi-uniform triangulations of the boundary Σ of Ωi ,
see e. g. [30, Chapter 4] or [32, Chapter 10], such that

TN = {τN
1 , . . . ,τN

n(N)} and Σ =
n(N)⋃
j=1

τN
j , (4.9)

where we assume that for the mesh-sizes h(N) of the triangulations TN the rela-
tion h(N) → 0 holds as N → ∞ . We choose the spaces of piecewise constant func-
tions S0(TN) with respect to the triangulations TN as spaces for the approximations
of eigenfunctions of the eigenvalue problem (4.8). For a finite-dimensional subspace
V ⊂ Hs(Σ) , s ∈ [0,1] , we have the following approximation property of S0(TN) with
respect to ‖ · ‖L2(Σ) [32, Thm. 10.1]:

δL2(Σ)(V,S0(TN)) = sup
v∈V

‖v‖L2(Σ)=1

inf
ϕN∈S0(TN)

‖v−ϕN‖L2(Σ) = O(h(N)s). (4.10)

The Galerkin approximation of the eigenvalue problem (4.8) reads as: find eigen-
pairs (λN ,ϕN) ∈ C×S0(TN)\ {0} such that

((I + αS0(λN))ϕN ,ψN) = 0 ∀ψN ∈ S0(TN). (4.11)

All abstract convergence results from Theorem 2.1 can be applied to the approximation
of the eigenvalue problem (4.8) by the Galerkin eigenvalue problem (4.11). In the fol-
lowing theorem we only state the asymptotic convergence order of the approximations
of the eigenvalues and the corresponding eigenfunctions.

THEOREM 4.5. Let D⊂ ρ(A0) be a compact and connected set in C with a sim-
ple rectifiable boundary ∂D. Suppose that λ ∈ D̊ is the only eigenvalue of I +αS0(·)
in D and that ker(I + αS0(λ )) ⊂ Hs(Σ) for some s ∈ (0,1] . Then there exist an
N0 ∈ N and a constant c > 0 such that for all N � N0 we have:

(i) For all eigenvalues λN of the Galerkin eigenvalue problem (4.11) in D

|λ −λN | � c(h(N))1+s (4.12)

holds.
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(ii) If (λN ,ϕN) is an eigenpair of (4.11) with λN ∈ D and ‖ϕN‖L2(Σ) = 1 , then

inf
ϕ∈ker(I+αS0(λ ))

‖ϕ −ϕN‖L2(Σ) � c(|λN −λ |+(h(N))s) .

Proof. The abstract convergence result in Theorem 2.1 (iii) (a) implies

|λ −λN |
� cδL2(Σ)

(
G(I + αS0(·),λ ),S0(TN)

)1/�δL2(Σ)
(
G((I + αS0(·))�,λ ),S0(TN)

)1/�
.

Since λ is by (4.6) a pole of first order of (I + αS0(·))−1 we get from [25, The-
orem A.10.2] that � = 1 and that G(I + αS0(·),λ ) = ker(I + αS0(λ )) as well as
G((I + αS0(·))�,λ ) = ker((I + αS0(λ ))�) . The error estimates follow then from the
approximation property (4.10) of S0(TN) and the fact, that the eigenfunctions of the
adjoint problem are more regular than those of (I +αS0(·)) . To see the last claim, we
note that a solution of the adjoint eigenproblem

(I + αS0(λ ))�ϕ = (I +S0(λ )α)ϕ = 0

belongs by Lemma 3.4 (i) to H1(Σ) and hence, by (4.10)

δL2(Σ)
(
ker((I + αS0(λ ))�,S0(TN)

)
� ch(N)

holds.

REMARK 4.1. If Ω is a bounded Lipschitz domain with a curved piecewise C2 -
boundary the approximation of the boundary by a triangulation with flat triangles as
described in [30, Chapter 8] still guarantees convergence of the approximations of the
eigenvalues and eigenfunctions with the same asymptotic convergence order as in The-
orem 4.5. This can be shown by using the results of the discretization of boundary
integral operators for approximated boundaries [30, Chapter 8] and the abstract results
of eigenvalue problem approximations [22, 23].

The Galerkin eigenvalue problem (4.11) results in a nonlinear matrix eigenvalue
problem of size n(N)×n(N) , which can be solved by the contour integral method [11].
The contour integral method is a reliable method for the approximation of all eigenval-
ues of a holomorphic matrix-valued function M(·) which lie inside of a given contour
in the complex plane, and for the approximation of the corresponding eigenvectors.
The method is based on the contour integration of the inverse function M(·)−1 and uti-
lizes that the eigenvalues of the eigenvalue problem for M(·) are poles of M(·)−1 . By
contour integration of the inverse M(·)−1 a reduction of the holomorphic eigenvalue
problem for M(·) to an equivalent linear eigenvalue problem is possible such that the
eigenvalues of the linear eigenvalue problem coincide with the eigenvalues of the non-
linear eigenvalue problem inside the contour. For details of the implementation of the
method we refer to [11].
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4.2.2. Approximation of discrete eigenvalues of Aα for the case σdisc(A0) = ∅

If σdisc(A0) = ∅ , then Proposition 4.2 and Proposition 4.4 show that the discrete
eigenvalues of Aα are poles of [I + αS0(·)]−1 or the poles of A (·) satisfying the
property specified in Proposition 4.2 (iii). The boundary element approximation of the
discrete eigenvalues of Aα are based on these characterizations.

First we want to consider the approximation of the poles of (I + αS0(·))−1 . For
those poles of (I + αS0(·))−1 which lie in ρ(A0) the abstract convergence results
of Section 2 can be applied with the same reasoning as in the case σdisc(A0) = ∅ ,
since (I +αS0(·)) is holomorphic in ρ(A0) and the poles of (I+αS0(·))−1 in ρ(A0)
coincide with the eigenvalues of the eigenvalue problem for (I + αS0(·)) in ρ(A0) .
If λ0 is a pole of (I + αS0(·))−1 which lies in σdisc(A0) , then (I + αS0(·)) is not
holomorphic in λ0 and therefore the convergence results of Section 2 are not applicable
for the boundary element approximation of λ0 . To the best of our knowledge a rigorous
numerical analysis of the Galerkin approximation of such kind of poles of Fredholm
operator-valued functions for which the inverse is not holomorphic at the poles have not
been considered so far in the literature. However, we expect similar convergence results
also of such kind of poles. If this holds, then this kind of poles of (I + αS0(·))−1 ,
which is holomorphic in ρ(Aα) by Proposition 4.4, are appropriately represented as
poles of the discretized problem and will be identified by the contour integral method.

Finally, we want to discuss the approximation of the discrete eigenvalues of Aα
which are not poles of [I + αS0(·)]−1 . If λ0 is such an eigenvalue, then, by Proposi-
tion 4.2 (iii), it is a pole of A (·) such that a pair (ϕ ,ψ) ∈ ranRA (λ0) defined by (3.35)
exists with αϕ = 0 or equivalently that (λ ,ϕ ,ψ) , (ϕ ,ψ) = (0,0) , satisfies

A (λ )−1
(

ψ
ϕ

)
=

(
0
0

)
and αϕ = 0. (4.13)

The characterization in (4.13) can be used for the numerical approximation of the dis-
crete eigenvalues of Aα which are not poles of [I + αS0(·)]−1 . For the boundary
element approximation of the eigenvalue problem in (4.13) we need in addition to the
space of piecewise constant functions S0(TN) the space of piecewise linear functions
S1(TN) . Formally, the Galerkin eigenvalue problem(

A (λ )−1
(

ψN

ϕN

)
,

(
ψ̃N

ϕ̃N

))
= 0 for all

(
ψ̃N

ϕ̃N

)
∈ S1(TN)×S0(TN) (4.14)

is considered. However, if the contour integral method is used for the computations of
the eigenvalues of the Galerkin eigenvalue problem (4.14), then A (·)−1 does not have
to be computed, since the contour integral method operates on its inverse A (·) . The
abstract convergence results of Section 2 can be applied to the approximation of those
eigenvalues λ0 of the eigenvalue problem (4.13) for which A (·)−1 is holomorphic. In
general it is possible that λ0 is a pole of A (·) and of A (·)−1 . In this case, as men-
tioned before, a rigorous analysis of the Galerkin approximation has not been provided
so far.
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4.3. Numerical examples

We present two numerical examples for P = −Δ ; as in Section 4.2 before we
consider the three dimensional case n = 3. In this case A0 is the free Laplace opera-
tor and σ(A0) = σess(A0) = [0,∞) , and the fundamental solution for P −λ is given

by G(λ ;x,y) = ei
√

λ‖x−y‖(4π‖x− y‖)−1 [27, Chapter 9]. In particular, the operator
A0 has no discrete eigenvalues and therefore the eigenvalues of Aα coincide with the
eigenvalues of the eigenvalue problem for I + αS0(·) . The Galerkin eigenvalue prob-
lem (4.11) is used for the computation of approximations of discrete eigenvalues of Aα
and corresponding eigenfunctions. In all numerical experiments the open-source library
BEM++ [31] is employed for the computations of the boundary element matrices.

4.3.1. Unit ball

As first numerical example we consider as domain Ωi ⊂ R3 the unit ball and a
constant α . The eigenvalues of Aα for constant α have an analytical representation
[2, Theorem3.2] which are used to show that in the numerical experiments the predicted
convergence order (4.12) is reflected. Let l ∈ N0 be such that 2l +1 < −α . Then λ (l)

is an eigenvalue of Aα of multiplicity 2l +1 if

1+ αIl+1/2
(√−λ (l)

)
Kl+1/2

(√−λ (l)
)

= 0,

where Il+1/2 and Kl+1/2 denote the modified Bessel functions of the first and second
kind, respectively, of order l +1/2. Conversely, all eigenvalues of Aα are of the above
form.

For the numerical experiments we choose α = −6. In Table 1 the errors of the
approximations of the eigenvalues of Aα with α = −6 for three different mesh sizes
h are given. For multiple eigenvalues λ (l) , l = 1,2, we have used the mean value of

the approximations, denoted by λ̂ (l)
h = 1

2l+1 ∑2l+1
j=1 λ (l)

h , for the computation of the error.
The experimental convergence order (eoc) reflects the predicted quadratic convergence
order (4.12). In Figure 1 plots of computed eigenfunctions of Aα in the xy-plane are
given where for each exact eigenvalue one approximated eigenfunction is selected.

h

∣∣∣λ (0)
h −λ (0)

∣∣∣
|λ (0)| eoc

∣∣∣λ̂ (1)
h −λ (1)

∣∣∣
|λ (1)| eoc

∣∣∣λ̂ (2)
h −λ (2)

∣∣∣
|λ (2)| eoc

0.2 1.203e-2 - 2.837e-2 - 1.666e-1 -
0.1 2.473e-3 2.28 6.968e-3 2.02 3.969e-2 2.07
0.05 4.344e-4 2.48 1.781e-3 1.95 9.593e-3 2.06

Table 1: Error of the approximations of the eigenvalues of Aα , α = −6, of the unit
sphere for different mesh-sizes h .
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Figure 1: Computed eigenfunctions of Aα , α = −6, in the xy-plane for the unit ball.

4.3.2. Screen

For the second numerical example we have chosen a δ -potential supported on
the non-closed surface Γ := [0,1]× [0,1]×{0} ⊂ R3 , which is referred to as screen.
The interaction strength α is defined by α = −15χΓ , where χΓ is the characteristic
function on Γ given as

χΓ(x) :=

{
1, for x ∈ Γ,

0, else.

Such a problem fits in the described theory of this section, as the interaction strength
α ∈ L∞(Σ) is allowed to have jumps. Take for example as domain Ωi the unit cube,
which is a bounded Lipschitz domain as in the theoretical considerations in this section.
Then Γ is identical with one of the faces of Σ = ∂Ωi and α ∈ L∞(Σ) .

In the numerical experiments we have chosen as contour the ellipse given by the
formula g(t) = c + acos(t) + ibsin(t) , t ∈ [0,2π ] , with c = −32.0, a = 31.99 and
b = 0.01. We have got four eigenvalues of the discretized eigenvalue problem inside the

contour, namely λ (1)
h =−43.02, λ (2)

h =−23.93, λ (3)
h =−23.88, and λ (4)

h =−5.59 for
the mesh-size h = 0.0125. Plots of the numerical approximations of the eigenfunctions
in the xy-plane are given in Figure 2.

Figure 2: Computed eigenfunctions of Aα in the xy-plane for α = −15χ[0,1]×[0,1]×{0} .
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5. Elliptic differential operators with δ ′ -interactions supported on compact
Lipschitz smooth surfaces

In this section we study the spectral properties of the partial differential operator
which corresponds to the formal expression Bβ := P +β 〈δ ′

Σ, ·〉δ ′
Σ in a mathematically

rigorous way and study its spectral properties. The considerations are very similar as for
Aα in Section 4. First, in Section 5.1 we show the self-adjointness of Bβ in L2(Rn) and
obtain the Birman-Schwinger principle to characterize the discrete eigenvalues of Bβ
via boundary integral operators in Proposition 5.2. Then, in Section 5.2 we discuss how
these boundary integral equations can be used to approximate numerically the discrete
eigenvalues of Bβ by boundary element methods. Finally, in Section 5.3 we show some
numerical examples.

5.1. Definition and self-adjointness of Bβ

For a real-valued function β with β−1 ∈ L∞(Σ) we define in L2(Rn) the partial
differential operator Bβ by

Bβ f := P fi ⊕P fe,

domBβ :=
{

f = fi ⊕ fe ∈ H1
P (Ωi)⊕H1

P(Ωe) : Bν fi = Bν fe, γ fe − γ fi = βBν f
}
.

(5.1)

With the help of (3.8) it is not difficult to show that Bβ is symmetric in L2(Rn) :

LEMMA 5.1. Let β be a real-valued function on Σ with β−1 ∈ L∞(Σ) . Then the
operator Bβ defined by (5.1) is symmetric in L2(Rn) .

Proof. We show that (Bβ f , f )L2(Rn) ∈ R for all f ∈ domBβ . Let f ∈ domBβ be
fixed. Using (3.8) in Ωi and Ωe and that the normal ν is pointing outside of Ωi and
inside of Ωe we get

(Bβ f , f )L2(Rn) = (P fi, fi)L2(Ωi) + (P fe, fe)L2(Ωe)

= ΦΩi [ fi, fi]− (Bν fi,γ fi)+ ΦΩe[ fe, fe]+ (Bν fe,γ fe).

Since f ∈ domBβ we have Bν fi = Bν fe and βBν f = (γ fe − γ fi) . Therefore, we
conclude

(Bβ f , f )L2(Rn) = ΦΩi [ fi, fi]+ ΦΩe[ fe, fe]+ (Bν f ,γ fe − γ fi)

= ΦΩi [ fi, fi]+ ΦΩe[ fe, fe]+ (Bν f ,βBν f ).

Since the sesquilinear forms ΦΩi/e
are symmetric, the latter number is real and there-

fore, the claim is shown.
The following proposition is the counterpart of Proposition 4.2 to characterize the

discrete eigenvalues of Bβ via boundary integral operators. It is the theoretic basis to
compute these eigenvalues with the help of boundary element methods in Section 5.2.
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To formulate the result below recall for λ ∈ ρ(A0)∪σdisc(A0) the definition of the
double layer potential DL(λ ) from (3.25), the set Nλ from (3.26), the hypersingular
boundary integral operator R(λ ) from (3.31), and RA (λ0) from (3.35).

PROPOSITION 5.2. Let β be a real-valued function on Σ with β−1 ∈ L∞(Σ) and
let Bβ be defined by (5.1). Then the following is true for any λ ∈ ρ(A0)∪σdisc(A0):

(i) ker(Bβ − λ )� ker(A0 − λ ) = {0} if and only if there exists 0 = ϕ ∈ Nλ such
that (β−1 +R(λ ))ϕ = 0 . Moreover,

ker(Bβ −λ )�ker(A0−λ ) =
{
DL(λ )ϕ : ϕ ∈Nλ ,(β−1 +R(λ ))ϕ = 0

}
. (5.2)

(ii) If λ ∈ ρ(A0) , then λ ∈ σp(Bβ ) if and only if 0 ∈ σp(β−1 +R(λ )) .

(iii) ker(Bβ −λ )∩ker(A0−λ ) = {0} if and only if there exists (ϕ ,ψ)� ∈ ranRA (λ0)
such that ψ = 0 .

(iv) If λ /∈ σp(Bβ )∪σ(A0) , then β−1 +R(λ ) : H1/2(Σ) →H−1/2(Σ) has a bounded
and everywhere defined inverse.

Proof. (i) Assume first that ker(Bβ −λ )�ker(A0−λ ) = {0} and take an arbitrary
f ∈ ker(Bβ −λ )�ker(A0−λ ) . Then by Lemma 3.5 (i) there exists ϕ ∈ Nλ such that
f = DL(λ )ϕ . Since f ∈ domBβ one has with Lemma 3.5 (ii)

βBν f = γ fe − γ fi = γ (DL(λ )ϕ)e − γ (DL(λ )ϕ)i = ϕ .

With Bν f = −R(λ )ϕ this can be rewritten as β−1ϕ = −R(λ )ϕ . Hence, the above
considerations show

ker(Bβ −λ )�ker(A0−λ ) ⊂ {
DL(λ )ϕ : ϕ ∈ Nλ ,(β−1 +R(λ ))ϕ = 0

}
. (5.3)

Conversely, assume that there exists ϕ ∈Nλ \{0} such that (β−1 +R(λ ))ϕ = 0.
Then f := DL(λ )ϕ ∈ H1

P(Rn \Σ) is nontrivial by Lemma 3.5 (ii). Using the jump
properties of DL(λ )ϕ from Lemma 3.5 (ii) we conclude further Bν fi = Bν fe and

γ fe − γ fi = γ (DL(λ )ϕ)e − γ (DL(λ )ϕ)i = ϕ = −βR(λ )ϕ = βBν f ,

where β−1(I + βR(λ ))ϕ = 0 was used. Hence, f ∈ domBβ . With Lemma 3.5 (i) we
conclude with ϕ ∈ Nλ eventually

(Bβ −λ ) f = (P −λ )(DL(λ )ϕ)i ⊕ (P −λ )(DL(λ )ϕ)e = 0,

which shows λ ∈ σp(Bβ ) and{
DL(λ )ϕ : ϕ ∈ Nλ ,(β−1 +R(λ ))ϕ = 0

} ⊂ ker(Bβ −λ )�ker(A0−λ ). (5.4)

Note that (5.3) and (5.4) give (5.2). Hence, all claims in item (i) are proved.
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Assertion (ii) is a simple consequence of item (i), as for λ /∈ σ(A0) we have
ker(A0−λ ) = {0} and Nλ = H1/2(Σ) .

Statement (iii) follows from Theorem 3.8. Note that f ∈ domBβ ∩domA0 if and
only if f ∈ H2(Rn) and Bν f = β−1(γ fe − γ fi) = 0. This implies together with
Theorem 3.8 that f ∈ ker(Bβ − λ )∩ ker(A0 − λ ) if and only if there exists a pair
(ϕ ,ψ)� = (γ f ,Bν f )� ∈ ranRA (λ0) such that ψ = 0.

(iv) First, we note that the multiplication with the function β−1 ∈ L∞(Σ) gives
rise to a bounded operator from H1/2(Σ) to L2(Σ) and as L2(Σ) is compactly embed-
ded in H−1/2(Σ) , the operator β−1 : H1/2(Σ) → H−1/2(Σ) is compact. Therefore, we
deduce from [27, Theorem 2.26] that β−1 + R(λ ) : H1/2(Σ) → H−1/2(Σ) is a Fred-
holm operator with index zero, as R(λ ) is a Fredholm operator with index zero by
Lemma 3.6 (ii). Since λ is not an eigenvalue of Bβ by assumption, we deduce from (ii)
that β−1 +R(λ ) is injective and hence, this operator is also surjective. Therefore, it
follows from the open mapping theorem that β−1 +R(λ ) has a bounded inverse from
H−1/2(Σ) to H1/2(Σ) .

In the following proposition we show the self-adjointness of Bβ and a Krein type
resolvent formula for this operator. We remark that the resolvent formula in (5.5) is
well defined, as β−1 + R(λ ) : H1/2(Σ) → H−1/2(Σ) is boundedly invertible for any
λ ∈ ρ(A0)∩ρ(Bβ ) by Proposition 5.2 (iv).

PROPOSITION 5.3. Let β be a real-valued function on Σ with β−1 ∈ L∞(Σ)
and let the operators A0 , DL(λ ) , and R(λ ) , λ ∈ ρ(A0) , be given by (3.9), (3.25),
and (3.31), respectively. Then the operator Bβ defined by (5.1) is self-adjoint in L2(Rn)
and the following is true:

(i) For λ ∈ ρ(A0)∩ρ(Bβ ) the resolvent of Bβ is given by

(Bβ −λ )−1 = (A0−λ )−1 +DL(λ )
(
β−1 +R(λ )

)−1
Bν(A0 −λ )−1. (5.5)

(ii) σess(Bβ ) = σess(A0) .

Proof. To show that Bβ is self-adjoint, we show that ran(Bβ −λ ) = L2(Rn) for
λ ∈ C\ (σ(A0)∪σp(Bβ )) . Let f ∈ L2(Rn) be fixed and define

g := (A0−λ )−1 f +DL(λ )
(
β−1 +R(λ )

)−1
Bν (A0−λ )−1 f .

Note that g is well defined, as β−1 +R(λ ) : H1/2(Σ) → H−1/2(Σ) admits a bounded
inverse for λ /∈ σ(A0)∪σp(Bβ ) by Proposition 5.2 (iv). We are going to show that
g∈ domBβ and (Bβ −λ )g = f . This shows then ran(Bβ −λ ) = L2(Rn) and also (5.5).

Since (A0 −λ )−1 f belongs to H2(Rn) by Proposition 3.2, we have for its conor-
mal derivative that Bν(A0−λ )−1 f ∈ L2(Σ)⊂H−1/2(Σ) , and we conclude from Propo-
sition 5.2 (iv) and Lemma 3.5 that

DL(λ )
(
β−1 +R(λ )

)−1
Bν(A0 −λ )−1 f ∈ H1

P(Rn \Σ).
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Therefore, also g∈H1
P(Rn \Σ) . Moreover, we get with the help of Lemma 3.5 (ii) that

Bνge = Bνgi . Applying once more Lemma 3.5 (ii) we conclude

β−1(γ ge− γ gi)−Bνg =β−1(β−1 +R(λ )
)−1

Bν (A0−λ )−1 f −Bν(A0 −λ )−1 f

+R(λ )
(
β−1 +R(λ )

)−1
Bν (A0−λ )−1 f = 0,

which shows g ∈ domBβ . Next, we have with ϕ := (β−1 +R(λ ))−1Bν (A0−λ )−1 f

(Bβ −λ )g = (P −λ )(A0−λ )−1 f +(P−λ )(DL(λ )ϕ)i ⊕ (P −λ )(DL(λ )ϕ)e = f ,

where (3.27) was used in the last step. With the previous considerations we deduce now
the self-adjointness of Bβ and (5.5).

It remains to show assertion (ii). Let λ ∈ C \R be fixed. Due to the mapping
properties of the resolvent of A0 from Proposition 3.2 and the mapping properties of
Bν from (3.7) the operator

Bν(A0 −λ )−1 : L2(Rn) → L2(Σ) ↪→ H−1/2(Σ)

is bounded. Hence, Proposition 5.2 (iv) yields that(
β−1 +R(λ )

)−1
Bν(A0 −λ )−1 : L2(Rn) → H1/2(Σ)

is bounded. As H1/2(Σ) is compactly embedded in L2(Σ) we conclude that the latter
operator is compact from L2(Rn) to L2(Σ) . Since DL(λ ) : L2(Σ)→ L2(Rn) is bounded
by (3.25), we find eventually that

(Bβ −λ )−1− (A0−λ )−1 = DL(λ )
(
β−1 +R(λ )

)−1
Bν (A0−λ )−1

is compact in L2(Rn) . Therefore, we get with the Weyl theorem σess(Bβ ) = σess(A0) .
The following result is the counterpart of Proposition 4.4 on the inverse of the

Birman-Schwinger operator β−1 + R(λ ) , which will be of great importance for the
numerical calculation of the discrete eigenvalues of Bβ via boundary element methods.

PROPOSITION 5.4. Let β be a real-valued function with β−1 ∈ L∞(Σ) and let
Bβ be defined by (5.1). Then the map

ρ(Bβ )∩ρ(A0) � λ �→ (
β−1 +R(λ )

)−1

can be extended to a holomorphic operator-valued function, which is holomorphic in
ρ(Bβ ) with respect to the toplogy in B(H−1/2(Σ),H1/2(Σ)) . Moreover, for any num-
ber λ0 /∈ σess(Bβ ) = σess(A0) one has ker(Bβ −λ0)�ker(A0 −λ0) = {0} if and only
if (β−1 +R(λ ))−1 has a pole at λ0 and

ker(Bβ −λ0)�ker(A0−λ0) =
{
DL(λ0)ϕ : lim

λ→λ0

(λ −λ0)(β−1 +R(λ ))−1ϕ = 0
}
.

(5.6)
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Proof. The proof is similar as the proof of Proposition 4.4 and split into 3 steps.
Step 1: Define the map

[γ ]Σ : H1
P(Rn \Σ)→ H1/2(Σ), [γ ]Σ f := γ fe − γ fi.

Let λ ∈ ρ(Bβ )∩ρ(A0) be fixed. We show that(
β−1 +R(λ )

)−1 = [γ ]Σ(Bβ −λ )−1[γ ]�Σ. (5.7)

In particular, with Proposition 5.2 (iv) this implies that [γ ]Σ(Bβ − λ )−1[γ ]Σ belongs
to B(H−1/2(Σ),H1/2(Σ)) . To show (5.7) we note first that [γ ]Σ f = βBν f holds for
f ∈ domBβ and hence (5.5) yields

[γ ]Σ(Bβ −λ)−1 = βBν(Bβ −λ)−1

= βBν(A0−λ)−1−βR(λ)
(
β−1 +R(λ)

)−1
Bν(A0 −λ)−1

= β
[(

β−1 +R(λ)
)−R(λ)

](
β−1 +R(λ)

)−1
Bν (A0−λ)−1

=
(
β−1 +R(λ)

)−1
Bν (A0−λ)−1,

which implies, after taking the dual,

(Bβ −λ )−1[γ ]�Σ = DL(λ )
(
β−1 +R(λ )

)−1
.

In particular, by Lemma 3.5 and Proposition 5.2 (iv) the right hand side belongs to
B(H−1/2(Σ),H1

P (Rn \Σ)) and thus the same must be true for (Bβ −λ )−1[γ ]�Σ . There-
fore, we may apply [γ ]Σ and the last formula shows, with the help of Lemma 3.5 (ii),
the relation (5.7).

Step 2: It is shown that [γ ]Σ(Bβ − λ )−1[γ ]�Σ ∈ B(H−1/2(Σ),H1/2(Σ)) for any
λ ∈ ρ(Bβ ) and that the mapping ρ(Bβ ) � λ �→ [γ ]Σ(Bβ −λ )−1[γ ]�Σ is holomorphic in
the space B(H−1/2(Σ),H1/2(Σ)) .

First, we note that domBβ ⊂ H1
P(Rn \Σ) implies that

(Bβ −λ )−1 ∈ B(L2(Rn),H1
P (Rn \Σ)),

see (3.16) for a similar argument. Hence, by duality also

(Bβ −λ )−1 ∈ B((H1
P (Rn \Σ))�,L2(Rn)).

With the resolvent identity this implies for any λ0 ∈ ρ(Bβ ) and λ ∈ ρ(Bβ )∩ρ(A0) , in
a similar way as in the proof of Proposition 3.2, that

[γ ]Σ(Bβ −λ0)−1[γ ]�Σ − [γ ]Σ(Bβ −λ )−1[γ ]�Σ
= (λ0−λ )[γ ]Σ(Bβ −λ0)−1(Bβ −λ )−1[γ ]�Σ,

which shows first with (5.7) that [γ ]Σ(Bβ − λ0)−1[γ ]�Σ ∈ B(H−1/2(Σ),H1/2(Σ)) and
in a second step, that [γ ]Σ(Bβ −λ )−1[γ ]�Σ is holomorphic in B(H−1/2(Σ),H1/2(Σ)) ,
which shows the claim of this step.

Step 3: It follows from Proposition 5.2 (i) that ker(Bβ −λ0)�ker(A0−λ0) = {0}
if and only if there exists ϕ ∈ Nλ0

such that (β−1 +R(λ0))ϕ = 0, i.e. if and only if
λ �→ (β−1 +R(λ ))−1 has a pole at λ0 . This shows immediately (5.6).
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5.2. Numerical approximation of discrete eigenvalues of Bβ

The approximation of the discrete eigenvalues of Bβ by boundary element meth-
ods is based on the same principles as those for the discrete eigenvalues of Aα described
in Section 4.2. As there, we discuss the three dimensional case n = 3 here. In order to
apply boundary element methods for the approximation of the discrete eigenvalues of
Bβ it is necessary to have an integral representation of the paramatrix G (λ ) of P −λ
or at least a good approximation of the boundary integral operator R(λ ) . We use the
characterization of the discrete eigenvalues of Bβ in terms of boundary integral oper-
ators given in Proposition 5.2 and Proposition 5.4. The discrete eigenvalues split into
the eigenvalues of the nonlinear eigenvalue problem

(β−1 +R(λ ))ψ = 0 (5.8)

in ρ(A0) and into distinct discrete eigenvalues of A0 which are either the poles of A (·)
satisfying the properties specified in Proposition 5.2 (iii) or poles of (β−1 +R(·))−1 in
σdisc(A0) .

In the following presentation of the boundary element method we want to con-
sider first the case that σdisc(A0) = ∅ and then the general case. If σdisc(A0) = ∅ , then
the discrete eigenvalues of Bβ coincide with the eigenvalues of the nonlinear eigen-
value problem (5.8) in ρ(A0) as shown in Proposition 5.2 (ii). In this situation a com-
plete convergence analysis is provided by the theory of Section 2. For the general case
the convergence of the approximations of the discrete eigenvalues of Bβ which lie in
σdisc(A0) is an open issue.

The discretized problems for the approximation of the discrete eigenvalues of Bβ
which result from the approximations of the boundary integral operators by boundary
element methods are problems for the determination of poles of meromorphic matrix-
valued functions. For this kind of problems we use the contour integral method [11],
which was discussed in Section 4.2.1.

5.2.1. Approximation of discrete eigenvalues of Bβ for the case σdisc(A0) = ∅

For σdisc(A0) = ∅ the discrete eigenvalues of Bβ coincide by Proposition 5.2 (ii)
with the eigenvalues of the operator-valued function (β−1 + R(·)) . Lemma 3.6 (iii)
shows that ρ(A0) � λ �→ (β−1 + R(λ )) is holomorphic in B(H1/2(Σ),H−1/2(Σ)) .
Moreover, by Lemma 3.6 (i) the operators β−1+R(λ ) satisfy for λ ∈ ρ(A0) Gårding’s
inequality of the form (2.1). Hence, any conforming Galerkin method for the approxi-
mation of the eigenvalue problem (5.8) is a convergent method, which follows from the
theory in Section 2.

For the boundary element approximation of the eigenvalue problem (5.8) we first
assume that Ωi is a polyhedral Lipschitz domain. The case of general Lipschitz do-
mains is addressed in Remark 5.1. Let (TN)N∈N be a sequence of quasi-uniform tri-
angulations of Ωi with the properties specified in (4.9). As approximation space for
the approximation of the eigenfunctions of the eigenvalue problem (5.8) we choose the
space S1(TN) of piecewise linear functions with respect to the triangulation TN . The
approximation property of S1(TN) depends on the regularity of the functions which are
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approximated. In order to measure the regularity of functions defined on a piecewise
smooth boundary Σ , partitioned by open sets Σ1, . . . ,ΣJ such that

Σ =
J⋃

j=1

Σ j, Σ j ∩Σi = ∅ for i = j,

so-called piecewise Sobolev spaces of order s > 1 defined by

Hs
pw(Σ) := {v ∈ H1(Σ) : v � Σ j ∈ Hs(Σ j) for j = 1, . . . ,J}

are used, see [30, Definition 4.1.48]. For s ∈ [0,1] the space Hs
pw(Σ) is defined by

Hs
pw(Σ) := Hs(Σ) . If W is a finite dimensional subspace of H1/2+s

pw (Σ) for s ∈ (0, 3
2 ] ,

then

δH1/2(Σ)(W,S1(TN)) = sup
w∈W

‖w‖
H1/2(Σ)

=1

inf
ψN∈S1(TN)

‖w−ψN‖H1/2(Σ) = O(h(N)s) (5.9)

holds [30, Proposition 4.1.50].
The Galerkin approximation of the eigenvalue problem (5.8) reads as follows: find

eigenvalues λN ∈ C and corresponding eigenfunctions ψN ∈ S1(TN)\ {0} such that(
(β−1 +R(λN))ψN ,χN

)
= 0 ∀χN ∈ S1(TN). (5.10)

We can apply all convergence results from Theorem 2.1 to the Galerkin eigenvalue
problem (5.10). In the following theorem the asymptotic convergence order of the
approximations of the eigenvalues and the corresponding eigenfunctions are specified.

THEOREM 5.5. Let D ⊂ ρ(A0) be compact and connected with a simple recti-
fiable boundary ∂D. Suppose that λ ∈ D̊ is the only eigenvalue of (β−1 + R(·)) in

D and that ker(β−1 +R(λ )) ⊂ H1/2+s
pw (Σ) for some s ∈ (0, 3

2 ] . Then there exist an
N0 ∈ N and a constant c > 0 such that for all N � N0 we have:

(i) For all eigenvalues λN of the Galerkin eigenvalue problem (5.10) in D

|λ −λN | � c(h(N))2s (5.11)

holds.

(ii) If (λN ,uN) is an eigenpair of (5.10) with λN ∈ D and ‖ψN‖H1/2(Σ) = 1 , then

inf
ψ∈ker(β−1+R(λ ))

‖ψ −ψN‖H1/2(Σ) � c(|λN −λ |+(h(N))s) . (5.12)

Proof. By Lemma 3.6 (iii) the map ρ(A0) � λ �→ (β−1 +R(λ )) is holomorphic
in B(H1/2(Σ),H−1/2(Σ)) . Moreover, by Lemma 3.6 (i), the operators β−1 + R(λ )
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satisfy for λ ∈ ρ(A0) Gårding’s inequality of the form (2.1). Since λ is by (5.6) a pole
of first order of (β−1 +R(·))−1 we obtain from [25, Theorem A.10.2] that

G(β−1 +R(·),λ ) = ker(β−1 +R(λ ))

and
G((β−1 +R(·))�,λ ) = ker((β−1 +R(λ))�)

as well as that the maximal length � of a Jordan chain of λ is 1. The Galerkin approxi-
mation (5.10) of the eigenvalue problem for (β−1 +R(·)) is a conforming approxima-
tion because S1(TN) is a subspace of H1/2(Σ) . Hence, we can use Theorem 2.1(iii) (a)
and get

|λ −λN |
� cδH1/2(Σ)

(
ker(β−1 +R(λ )),S1(TN)

)
δH1/2(Σ)

(
ker((β−1 +R(λ))�,S1(TN)

)
.

The error estimates follows from the approximation property (5.9) of S1(TN) and the
fact, that the eigenfunctions of the adjoint eigenvalue problem are as regular as those
for (β−1 +R(·)) .

REMARK 5.1. If Ω is a bounded Lipschitz domain with a curved piecewise C2 -
boundary the approximation of the boundary by a triangulation with flat triangles as
described in [30, Chapter 8] reduces the maximal possible convergence order s for the
error of the eigenvalues in (5.11) and for the error of the eigenfunctions in (5.12) from
s = 3

2 to s = 1. This follows from the results of the discretization of boundary integral
operators for approximated boundaries [30, Chapter 8] and from the abstract results of
eigenvalue problem approximations [22, 23].

5.2.2. Approximation of discrete eigenvalues of Bβ for the case σdisc(A0) = ∅

If σdisc(A0) = ∅ , then Proposition 5.2 and Proposition 5.4 imply that the discrete
eigenvalues of Bβ are poles of (β−1 + R(·))−1 or poles of A (·) with the property
given in Proposition 5.2 (iii). These characterizations are used for the approximation of
the discrete eigenvalues of Bβ . We will separately discuss both cases.

Let λ0 be a discrete eigenvalue of Bβ and in addition be a pole of (β−1+R(·))−1 .
Then (β−1 +R(·)) is either holomorphic in λ0 , which is the case for λ0 ∈ ρ(A0) , or
λ0 is a pole of (β−1 +R(·)) . A pole λ0 ∈ ρ(A0) of (β−1 +R(·))−1 can be considered
as an eigenvalue of the eigenvalue problem for the homomorphic Fredholm operator-
valued function (β−1 +R(·)) in ρ(A0) and the convergence results of Section 2 can be
applied with the same reasoning as in the case of σdisc(A0) = ∅ . If λ0 ∈ σdisc(A0) is a
pole of (β−1+R(·)) , then the convergence theory of Section 2 is not applicable for λ0 .
We expect convergence of the approximations for this kind of poles of (β−1 +R(·))−1 ,
but a rigorous numerical analysis has not been established so far.

The approximation of a discrete eigenvalue λ0 of Bβ which is not a pole of the
operator-valued function (β−1 +R(·))−1 is based on Proposition 5.2 (iii): λ0 is a pole
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of A (·) and there exist (0,0) = (ψ ,ϕ) ∈ H1/2(Σ)×H−1/2(Σ) such that

A (λ )−1
(

ψ
ϕ

)
=

(
0
0

)
and ψ = 0. (5.13)

For the approximation of the eigenvalues of the nonlinear eigenvalue problem in (5.13)
formally the Galerkin problem in S1(TN)× S0(TN) as given in (4.14) is considered.
If the contour integral method is used for the computations of the approximations of
the eigenvalues for A (·)−1 , then A (·)−1 does not have to be computed, but instead its
inverse A (·) . The convergence theory of Section 2 can be applied to the approximation
of those eigenvalues of A (·)−1 for which A (·)−1 is holomorphic. If λ0 is a pole A (·)
and of A (·)−1 , we again expect convergence, but a numerical analysis for such kind
of poles has not been provided so far.

5.3. Numerical examples

For the numerical examples of the approximation of discrete eigenvalues of Bβ
we choose P = −Δ and n = 3. In this case σess(A0) = [0,∞) , σdisc(A0) = ∅ , the

fundamental solution is given by G(λ ;x,y) = ei
√

λ‖x−y‖(4π‖x−y‖)−1 , and the discrete
eigenvalues of Bβ coincide with the eigenvalues of the nonlinear eigenvalue problem
for (β−1 +R(·)) . The Galerkin eigenvalue problem (5.10) is used for the computation
of approximations of discrete eigenvalues of Bβ and corresponding eigenfunctions.

5.3.1. Unit ball

h

∣∣∣λ (0)
h −λ (0)

∣∣∣
|λ (0)| eoc

∣∣∣λ̂ (1)
h −λ (1)

∣∣∣
|λ (1)| eoc

∣∣∣λ̂ (2)
h −λ (2)

∣∣∣
|λ (2)| eoc

0.2 3.232e-3 - 1.885e-3 - 6.745e-3 -
0.1 7.099e-4 2.19 3.926e-4 2.26 1.406e-3 2.26
0.05 1.635e-4 2.11 8.958e-5 2.13 3.054e-4 2.20

Table 2: Error of the approximations of the eigenvalues of Bβ , β−1 =−1.5, of the unit
ball for different mesh-sizes h .

We consider for the first numerical example as domain Ωi ⊂ R
3 again the unit

ball. Analytical representations for the discrete eigenvalues of Bβ are known in this
case [2, Section 6] and are used to compute the errors of the approximations and to
check the predicted asymptotic error estimate (5.11). The errors of the approximations
of the eigenvalues of Bβ with β−1 = −1.5 which lie inside the contour described by
g(t) = c+ acos(t)+ ibsin(t) , t ∈ [0,2π ] , with c = −6.0, a = 5.99 and b = 0.01 are

given in Table 2 for three different mesh sizes h . We denote by λ̂ (l)
h , l = 1,2, the

mean value of the approximations of the multiple eigenvalues λ (l) . A quadratic ex-
perimental convergence order (eoc) can be observed which is according to Remark 5.1
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the best possible convergence order if flat triangles are used for the triangulation of a
curved boundary as it has been done in our experiments. In Figure 3 plots of computed
eigenfunctions of Bβ in the xy-plane are given where for each exact eigenvalue one
approximated eigenfunction is selected.

Figure 3: Computed eigenfunctions of Bβ , β−1 = −1.5, in the xy-plane for the unit
ball.

5.3.2. L-shape domain

In the second numerical example we have chosen as domain Ωi ⊂ R3 a so-called
L-shape domain with Ωi = (−1,1)3 \ ([0,1]2× [−1,1]) and we have set β−1 = −0.75.
In the numerical experiments the ellipse g(t) = c+acos(t)+ ibsin(t) , t ∈ [0,2π ] , with
c = −4.0, a = 3.99 and b = 0.01, is taken as contour for the contour integral method.
We have got three eigenvalues of the discretized eigenvalue problem inside this contour,

namely λ (0)
h = −5.54, λ (1)

h = −4.41 and λ (2)
h = −2.94 for the mesh-size h = 0.1.

Plots of the numerical approximations of the eigenfunctions in the xy-plane are given
in Figure 4.

Figure 4: Computed eigenfunctions of Bβ , β−1 = −0.75, for the L-shape domain
Ωi = (−1,1)3 \ ([0,1]2× [−1,1]) in the xy-plane.
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