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SCHRÖDINGER OPERATORS WITH POTENTIAL

WAVEGUIDES ON PERIODIC GRAPHS

OLAF POST AND NATALIA SABUROVA

Abstract. We consider discrete Schrödinger operators with periodic potentials on periodic graphs
perturbed by guided positive potentials, which are periodic in some directions and finitely sup-
ported in other ones. The spectrum of the unperturbed operator is a union of a finite number of
non-degenerate bands and eigenvalues of infinite multiplicity. It is known that the spectrum of
the perturbed operator consists of the spectrum of the unperturbed one and the additional guided
spectrum, which is also a union of a finite number of bands. We estimate the positions of the
guided bands in gaps of the unperturbed operator in terms of eigenvalues of Schrödinger oper-
ators on some finite graphs. We also determine sufficient conditions for the guided potentials
under which the guided bands do not appear in gaps of the unperturbed problem.
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