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SCHRÖDINGER OPERATORS WITH POTENTIAL

WAVEGUIDES ON PERIODIC GRAPHS

OLAF POST AND NATALIA SABUROVA ∗

Abstract. We consider discrete Schrödinger operators with periodic potentials on periodic graphs
perturbed by guided positive potentials, which are periodic in some directions and finitely sup-
ported in other ones. The spectrum of the unperturbed operator is a union of a finite number of
non-degenerate bands and eigenvalues of infinite multiplicity. It is known that the spectrum of
the perturbed operator consists of the spectrum of the unperturbed one and the additional guided
spectrum, which is also a union of a finite number of bands. We estimate the positions of the
guided bands in gaps of the unperturbed operator in terms of eigenvalues of Schrödinger oper-
ators on some finite graphs. We also determine sufficient conditions for the guided potentials
under which the guided bands do not appear in gaps of the unperturbed problem.

1. Introduction

Discrete Laplace and Schrödinger operators on periodic graphs have attracted a lot
of attention due to their applications to the study of electronic properties of real crys-
talline structures, see, e.g., [11], [12], [34] and the survey [7]. However, the arrange-
ment of atoms or molecules in most crystalline materials is not perfect. The regular
patterns are interrupted by crystalline defects. The defects may have different dimen-
sions: point, linear, volume defects. These defects are the most important features for
engineering material and are manipulated to control its behavior. In particular they al-
low one to obtain conductivity of the material for those frequencies (energies) at which
it was not in purely periodic structure. Such effects have a lot of applications, for exam-
ple waveguides in photonic crystal structures (see e.g. in [10], [24], [25] and references
therein).

It is well known that the spectrum of the Laplacian on periodic discrete graphs has
band structure with a finite number of flat bands (eigenvalues of infinite multiplicity)
[16], [20], [26], [36]. The spectrum of the Schrödinger operators with finitely supported
potentials on periodic graphs consists of the spectrum of the Laplacian and a finite num-
ber of eigenvalues of finite multiplicity. The discrete spectrum of Schrödinger operators
with finitely supported potentials on the d -dimensional lattice Z

d , the simplest peri-
odic graph, was studied in [15], [21]. The absence of eigenvalues embedded in the
essential spectrum of the operators was proved in [3] for some kind of graphs including
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the square, triangular, diamond and Kagome lattices. The inverse scattering problem for
discrete Schrödinger operators with finitely supported potentials was considered in [23]
on the lattice Zd and in [2] on the hexagonal lattice, where a reconstruction procedure
for the potential from the scattering matrix for all energies was derived.

Discrete Schrödinger operators with periodic potentials on periodic graphs per-
turbed by guided non-positive potentials, which are periodic in some directions and
finitely supported in other ones were considered in [28]. For example, on the lattice Z2

the support of a (non-trivial) guided potential is a strip. It was shown that the spectrum
of the perturbed Schrödinger operator consists of the spectrum of the unperturbed one
and the so-called guided spectrum. The additional guided spectrum is a union of a finite
number of bands and the corresponding wave-functions are located along the support
of the guided potentials and decrease in perpendicular directions. The authors studied
the guided spectrum below the spectrum of the unperturbed operator. They estimated
the position of guided bands and their lengths in terms of some geometric parameters
of graphs. They determined asymptotics of the guided spectrum for large guided poten-
tials and showed that the possible number of guided bands, their length and positions
can be rather arbitrary for some specific potentials. But in [28] there are no results about
the guided spectrum which may appear in gaps of the unperturbed problem. It seems
that, in general, this is a much more difficult problem, see also the discussion in [14]
about similar problems for continuous models.

We should also mention a series of papers [31] – [33], where the author considered
discrete periodic operators with different kinds of defects (localized, parallel, perpen-
dicular) and derived an algorithm of finding the spectrum based on algebraic operations
on the finite matrix-valued functions and integration. Note that the structure with an
infinite line defect embedded in the square lattice was considered in [35]. In this case
the dispersion relations for defect modes generated by a line defect can be computed in
explicit form.

In this paper we consider discrete Schrödinger operators with periodic potentials
on periodic graphs perturbed by guided positive potentials. We estimate the positions
of the guided bands lying in gaps of the unperturbed operator in terms of eigenvalues of
Schrödinger operators on some finite graphs. We also determine sufficient conditions
for the guided potentials under which the guided bands do not appear in gaps of the
unperturbed problem. It should be mentioned that the obtained results also hold true
in the case of finitely supported potentials and even in this simplest case the results are
new to the best of our knowledge.

1.1. Schrödinger operators with periodic potentials

Let G = (V ,E ) be a connected infinite graph, possibly having loops and multiple

edges, and embedded1 into the space Rd̃ . Here V is the set of its vertices and E is the
set of its unoriented edges. From the set E we construct the set A of oriented edges

1Note that the embedding of G into Rd̃ plays no role in the analysis of Δ , H0 , H etc. as only the
incidence structure of the graph matters. Nevertheless, the embedding simplifies some notation, and allows
e.g. a simple definition of edge indices, see Section 3.
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by considering each edge in E to have two orientations. An edge starting at a vertex u
and ending at a vertex v from V will be denoted by the ordered pair (u,v) ∈ A .2 We
define the degree κv of the vertex v ∈ V as the number of all edges from A starting
at v .

Let Γ̃ be a lattice of rank d̃ in Rd̃ with basis a1, . . . ,ad̃ , i.e.,

Γ̃ =

{
a : a =

d̃

∑
s=1

nsas, ns ∈ Z, s ∈ Nd̃

}
, Nd̃ = {1, . . . , d̃ },

and let

Ω =

{
x ∈ R

d̃ : x =
d̃

∑
s=1

tsas, 0 � ts < 1, s ∈ Nd̃

}
(1.1)

be the fundamental cell of the lattice Γ̃ . We define an equivalence relation on Rd̃ as
follows:

x ≡ y (mod Γ̃) ⇔ x− y ∈ Γ̃ ∀x,y ∈ R
d̃ .

We consider locally finite Γ̃-periodic graphs G , i.e., graphs satisfying the follow-
ing conditions:

1) G = G+a for any a ∈ Γ̃ ;

2) the quotient graph G∗ = (V∗,E∗) = G/Γ̃ is finite.

The basis vectors a1, . . . ,ad̃ of the lattice Γ̃ are called the periods of G . Below the

coordinates of all vectors of Rd̃ will be given with respect to the basis a1, . . . ,ad̃ . The

quotient graph G∗ is a graph on the d̃ -dimensional torus Rd̃/Γ̃ .
Edges of the periodic graph G connecting the vertices from a fundamental cell Ω

with the vertices outside Ω will be called bridges. Bridges always exist and provide
the connectivity of the periodic graph. Edges of the quotient graph corresponding to
bridges of the periodic one will be also called bridges.

Let �2(V ) be the Hilbert space of all functions f : V → C equipped with the
norm

‖ f‖2
�2(V ) = ∑

v∈V

| f (v)|2 < ∞.

We consider a discrete Schrödinger operator H0 with a periodic potential W on
f ∈ �2(V ) as an unperturbed operator defined by

H0 = Δ +W, (1.2)

where Δ is the discrete combinatorial Laplace operator given by(
Δ f
)
(v) = ∑

(v,u)∈A

(
f (v)− f (u)

)
, ∀ f ∈ �2(V ), ∀v ∈ V , (1.3)

2This is a slight abuse of notation as the two vertices u and v do not determine multiple edges. Neverthe-
less, this abuse allows us to avoid introducing initial and terminal functions associating to an edge its initial
and terminal vertex.
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and the sum in (1.3) is taken over all oriented edges starting at the vertex v ∈ V . The
potential W is real-valued and Γ̃-periodic, i.e.,

(W f )(v) = W (v) f (v), W (v+a) = W (v), ∀(v,a) ∈ V × Γ̃.

It is known that H0 is self-adjoint and has the following decomposition into a
constant fiber direct integral for some unitary operator Ũ : �2(V ) → H̃ [26]:

H̃ =
∫ ⊕

Td̃
�2(V∗)

dϑ
(2π)d̃

, ŨH0Ũ
−1 =

∫ ⊕

Td̃
H̃0(ϑ)

dϑ
(2π)d̃

, H̃0(ϑ) = Δ̃(ϑ)+W,

(1.4)
where Td̃ = Rd̃/(2πZ)d̃ , the fiber Schrödinger operator H̃0(ϑ) acts on the fiber space
�2(V∗) , the fiber Laplacian Δ̃(ϑ) is given by(

Δ̃(ϑ) f
)
(v) = ∑

e=(v,u)∈A∗

(
f (v)− ei〈τ̃(e),ϑ 〉 f (u)

)
, f ∈ �2(V∗). (1.5)

Here τ̃(e) ∈ Z
d̃ is the index of the edge e ∈ A∗ of the quotient graph G∗ = (V∗,E∗)

defined by (3.5) as n = 0; 〈· , ·〉 is the inner product in Rd̃ . Note that Δ̃(0) is the
Laplacian on the quotient graph G∗ .

For a self-adjoint operator A , σ(A) , σess(A) , σac(A) , σp(A) , and σfb(A) de-
note its spectrum, essential spectrum, absolutely continuous spectrum, point spectrum
(eigenvalues of finite multiplicity), and the set of all its flat bands (eigenvalues of infi-
nite multiplicity), respectively.

Let #M denote the number of elements in a set M . Each fiber operator H̃0(ϑ) ,
ϑ ∈Td̃ , has p eigenvalues λk(ϑ) , k ∈Np := {1,2, . . . , p} , p = #V∗ , which are labeled
(counting multiplicities) by

λ1(ϑ) � . . . � λp(ϑ).

Each λk(·) , k ∈ Np , is a real and piecewise analytic function on the torus Td̃ and
creates the spectral band σk ≡ σk(H0) given by

σk ≡ σk(H0) = [λ−
k ,λ +

k ] = λk(Td̃ ). (1.6)

Note that if λk(·) = Λk = const on some subset of Td̃ of positive Lebesgue measure,
then Λk is an eigenvalue of H0 on G of infinite multiplicity. We call {Λk} a flat band.
Thus, the spectrum of the Schrödinger operator H0 on the periodic graph G has the
form

σ(H0) =
⋃

ϑ∈Td̃

σ
(
H̃0(ϑ)

)
=

p⋃
k=1

σk(H0) = σac(H0)∪σfb(H0). (1.7)

A non-empty interval I ⊂ R such that I∩σ(H0) = ∅ will be called a spectral gap (or
just a gap) of H0 . Note that we do not assume that the gap I is maximal, i.e., if I ⊂ Ĩ ,
then we do not make a statement about the existence of the spectrum inside Ĩ .
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1.2. Schrödinger operators with guided potentials

Let d be an integer satisfying 0 � d < d̃ . We introduce two sublattices Γ and Γ0

of the lattice Γ̃ :

• Γ is a lattice of rank d with basis a1, . . . ,ad ;

• Γ0 is a lattice of rank d0 = d̃−d with basis ad+1, . . . ,ad̃ .

We consider a family of guided Schrödinger operators Ht , t > 0, on the periodic
graph G = (V ,E ) given by

Ht = H0 + tQ,
(
Qf
)
(v) = Q(v) f (v), f ∈ �2(V ),

where H0 is the unperturbedSchrödinger operator given by (1.2), and Q � 0 is a guided
potential if it fulfills the following properties:

1) the support of Q satisfies:

suppQ ⊂ R
d × [0,1)d0, d0 = d̃−d;

2) Q is Γ-periodic, i.e.,

Q(v+a) = Q(v), ∀(v,a) ∈ V ×Γ.

REMARK 1.1. i) Recall that the coordinates of all vectors of Rd̃ are given with
respect to the basis a1, . . . ,ad̃ of the lattice Γ̃ (the periods of the graph G). In other
words, the guided potential Q is periodic in the directions a1, . . . ,ad and finitely sup-
ported in the directions ad+1, . . . ,ad̃ .

ii) Note that one might need to choose a sublattice of the original lattice Γ̃ in order
to make sure that Q is supported in Rd × [0,1)d0 and periodic with respect to Γ .

iii) If d = 0, then the potential Q has finite support containing in the fundamental

cell Ω = [0,1)d̃ .

Let d > 0. We define the infinite fundamental graph C = G/Γ of the Γ̃-periodic

graph G , which is a graph on the cylinder Rd̃/Γ . We also call the fundamental graph
C a discrete cylinder or just a cylinder. The cylinder C = (Vc,Ec) has the vertex set
Vc = V /Γ , the set Ec = E /Γ of unoriented edges and the set Ac = A /Γ of oriented
edges. Note that C is a Γ0 -periodic graph with periods ad+1, . . . ,ad̃ .

We identify the vertices of the cylinder C with the vertices of the periodic graph G
from the strip S = [0,1)d ×Rd0 . We denote this infinite vertex set by the same symbol
Vc :

Vc = V ∩S, S = [0,1)d ×R
d0 , d0 = d̃−d.
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Figure 1: a) The square lattice L2 ( d̃ = 2); the fundamental cell Ω is shaded; the big
black vertices are support of the guided potential Q (d = 1); b) the discrete cylinder
C = L

2/Γ (the vertices on the left and right side of the strip S are identified).

EXAMPLE 1.2. For the square lattice L2 with periods a1,a2 (see Fig. 1a), the
discrete cylinder C = L2/Γ = (Vc,Ec) is shown in Fig. 1b, Γ is the lattice generated by
the vector a1 . The support of the guided potential Q is shown by big black vertices of
the graph; Q is periodic in the direction a1 and has finite support in the direction a2 .

For d > 0 we define the torus Td = Rd/(2πZ)d and describe the basic spectral
properties of the guided Schrödinger operators [28].

PROPOSITION 1.3. i) The guided Schrödinger operator Ht = H0 + tQ, t > 0 ,
has the following decomposition into a constant fiber direct integral for some unitary
operator U : �2(V ) → H :

H =
∫ ⊕

Td
�2(Vc)

dϑ
(2π)d

, UHtU
−1 =

∫ ⊕

Td
Ht(ϑ)

dϑ
(2π)d

, Ht(ϑ) = H0(ϑ)+ tQ,

(1.8)
where the fiber Schrödinger operator Ht(ϑ) acts on the fiber space �2(Vc) ,

H0(ϑ) = Δ(ϑ)+W, ϑ ∈ T
d ,

is the fiber operator for H0 , the fiber Laplacian Δ(ϑ) is given by(
Δ(ϑ) f

)
(v) = ∑

e=(v,u)∈Ac

(
f (v)− ei〈τ(e),ϑ 〉 f (u)

)
, f ∈ �2(Vc), (1.9)

and the potential Q on �2(Vc) has finite support. Here τ(e) ∈ Zd is the vector con-

sisting of the first d components of the index τ̃(e) ∈ Zd̃ of the edge e ∈ Ac , defined by
(3.2), (3.4); 〈· , ·〉 is the inner product in Rd .

ii) For each (ϑ ,t) ∈ Td ×R>0 the spectrum of the fiber operator Ht(ϑ) has the
form

σ
(
Ht(ϑ)

)
= σac

(
Ht(ϑ)

)∪σfb
(
Ht(ϑ)

)∪σp
(
Ht(ϑ)

)
,

σac
(
Ht(ϑ)

)
= σac

(
H0(ϑ)

)
, σfb

(
Ht(ϑ)

)
= σfb

(
H0(ϑ)

)
,

σp
(
Ht(ϑ)

)
is the set of all eigenvalues λ1(ϑ ,t) � λ2(ϑ ,t) � . . . of Ht(ϑ) with finite

multiplicity.
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REMARK 1.4. i) Since σ(H0) =
⋃

ϑ∈Td
σ
(
H0(ϑ)

)
and

σ
(
H0(ϑ)

)
= σess

(
H0(ϑ)

)
= σess

(
Ht(ϑ)

)
,

spectral gaps of the unperturbed Schrödinger operator H0 remain spectral gaps in the
essential spectrum of Ht(ϑ) for all (ϑ ,t) ∈ Td ×R>0 .

ii) The eigenvalues λm(ϑ ,t) , m = 1,2, . . . , of the perturbedfiber operator Ht(ϑ)=
H0(ϑ) + tQ may lie above the spectrum of the unperturbed operator H0(ϑ) , in the
spectrum of H0(ϑ) and in gaps of H0(ϑ) . Since the perturbation Q in (1.8) has finite
support of size ρ = #suppQ�Vc , each gap of H0(ϑ) contains at most ρ eigenvalues
(counting multiplicities) of Ht(ϑ) (see, e.g., [4]).

iii) The fiber Laplacian Δ(ϑ) , ϑ ∈ Td , can be considered as a magnetic Laplacian
with a periodic magnetic potential α(e) = 〈τ(e),ϑ〉 , e ∈ Ac , on the cylinder C (see
e.g. [9, 17, 18, 29]).

Proposition 1.3 and standard arguments (see Theorem XIII.85 in [38]) describe the
spectrum of the guided Schrödinger operator Ht if d > 0. Since Ht(ϑ) is self-adjoint
and analytic in ϑ ∈ Td , each λm(·,t) is a real and piecewise analytic function on the
torus Td and creates the guided band sm(Ht) given by

sm(Ht) = [λ−
m (t),λ +

m (t)] = λm(Td ,t), m = 1,2, . . . .

Thus, the spectrum of the guided Schrödinger operator Ht on the graph G has the form

σ(Ht) =
⋃

ϑ∈Td

σ
(
Ht(ϑ)

)
= σ(H0)∪ s(Ht),

where σ(H0) is the spectrum of the unperturbed Schrödinger operator H0 given by
(1.7), and

s(Ht) =
⋃

ϑ∈Td

σp
(
Ht(ϑ)

)
=
⋃
m

sm(Ht) = sac(Ht)∪ sfb(Ht). (1.10)

Here sac(Ht) and sfb(Ht) are the absolutely continuous part and the flat band part of
the guided spectrum s(Ht) , respectively. The guided spectrum s(Ht) may partly lie
above the spectrum of the unperturbed operator H0 , in the spectrum of H0 and in gaps
of H0 . We will study the guided spectrum s(Ht) lying in gaps of H0 .

The spectrum of Ht(ϑ) inside the gaps of H0 consists of a finite number of iso-
lated eigenvalues λm1(ϑ ,t),λm2(ϑ ,t), . . . of finite multiplicity which are piecewise an-
alytic functions in the parameter t . These functions λmj (ϑ , ·) , j = 1,2, . . . , are called
eigenvalue branches of the operator family Ht(ϑ) , t � 0. Similarly we define guided
band branches smj(t) as guided bands smj (Ht) considering as functions of t :

smj (t) ≡ smj (Ht) = λmj (T
d ,t), j = 1,2, . . . . (1.11)

REMARK 1.5. If d = 0, then for each t > 0 the spectrum of the Schrödinger
operator Ht = H0 + tQ with finitely supported potentials Q on the graph G has the
form

σ(Ht) = σ(H0)∪σp(Ht),
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where σ(H0) is the spectrum of the unperturbed Schrödinger operator H0 given by
(1.7), and σp(Ht) is the set of all eigenvalues λ1(t) � λ2(t) � . . . of Ht with finite
multiplicity.

1.3. Eigenvalue bracketing for periodic Schrödinger operators

Since our goal is to study the guided spectrum of the perturbed Schrödinger op-
erator Ht lying in gaps of the unperturbed operator H0 , we formulate some sufficient
conditions for H0 to have spectral gaps (see also [9] and references therein). In order
to do this we estimate the position of the bands σk(H0) , k ∈ Np , of H0 defined by (1.6)
in terms of eigenvalues of two Schrödinger operators on finite graphs:

• the Schrödinger operator H−
0 on some subgraph G−∗ of the quotient graph G∗ ;

• the Dirichlet Schrödinger operator H+
0 on G∗ .

In order to define these operators we represent the quotient graph G∗ = (V∗,E∗)
as a union of two graphs with the same vertex set V∗ :

G∗ = Gb∪G−
∗ , Gb = (V∗,B∗), G−

∗ = (V∗,E∗ \B∗), (1.12)

where B∗ is the set of all bridges of the quotient graph G∗ . In other words, the graph
G−∗ is obtained from G∗ by deleting all bridges and preserving the vertex set V∗ . Let
Vb ⊂ V∗ be a set of the quotient graph vertices such that each bridge from B∗ is
incident to at least one vertex of the set Vb . For each t � 0 we consider two operators:

• H−
t = Δ− +W + tQ is the Schrödinger operator on the graph G−∗ , where Δ− is

the Laplacian defined by (1.3) on the graph G−∗ ;

• H+
t is the Schrödinger operator Ht = Δ +W + tQ on the quotient graph G∗

with Dirichlet boundary conditions f �Vb
= 0, where f �Vb

is the restriction of
f ∈ �2(V∗) onto Vb .

We label the eigenvalues of the operators H−
t and H+

t in non-decreasing order
(counting multiplicities), respectively,

μ−
1 (t) � . . . � μ−

p (t), p = #V∗,

and
μ+

1 (t) � . . . � μ+
p−r(t), r = #Vb, r � 1.

Since Q � 0, μ±
j (t) are non-decreasing functions of t � 0.

Combining the results from [27] and [30], we obtain the following statement:

PROPOSITION 1.6. i) Each band σk(H0) , k∈Np , of the unperturbed Schrödinger
operator H0 defined by (1.6) satisfies

σk(H0) ⊂
[
μ−

k ,μ+
k

]
, k = 1, . . . , p− r,

σk(H0) ⊂
[
μ−

k ,μ−
k +2b+

]
, k = p− r+1, . . . , p,

(1.13)
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where
μ±

k = μ±
k (0), b+ = max

v∈V∗
bv,

and bv is the number of bridges of G∗ incident to the vertex v ∈ V∗ .
ii) If μ+

k < μ−
k+1 for some k = 1, . . . , p− r , then the interval (μ+

k ,μ−
k+1) �= ∅ is a

gap of H0 .

REMARK 1.7. i) The vertex set Vb is not uniquely defined. In order to get a better
localization of the spectrum in (1.13) we have to choose Vb as small as possible.

ii) We exclude the trivial case when Vb = V∗ . In this case the spectrum of the
operator H+

t is empty for any t � 0.
iii) In [9] the authors also obtained a similar localization of the bands σk(Δ) ,

k ∈ Np , for the Laplacian Δ on periodic graphs, also for other graph weights.

From now on we assume that μ+
k < μ−

k+1 for some k ∈ Np−r , i.e., the interval

Ik = (μ+
k ,μ−

k+1) �= ∅ for some k ∈ Np−r (1.14)

is a spectral gap of the unperturbed Schrödinger operator H0 .
The paper is organized as follows. In Section 2 we formulate our main results:

• a localization of the guided band branches (1.11) of the family of the guided
Schrödinger operators Ht = H0 + tQ , t > 0, in the gap Ik of the unperturbed op-
erator H0 in terms of the eigenvalue branches μ±

j (t) of the Schrödinger operators
H±

t (Theorem 2.1);

• sufficient conditions for the guided potentials Q under which the guided bands
of Ht do not appear in the gap Ik (Theorem 2.3).

The proof of these results is based on the direct integral decomposition (1.8)–
(1.9) for the guided Schrödinger operator Ht , where the fiber operators Ht(ϑ)
act on the infinite fundamental graph C .

In Section 3 we approximate the infinite graph C by a sequence of finite graphs
Cn , n = 0,1,2, . . . , and, using the Birman-Schwinger principle, prove convergence of
spectra of Schrödinger operators on Cn to the spectrum of Ht(ϑ) in gaps of H0(ϑ) .
These results are used in the proofs of Theorems 2.1 and 2.3.

Section 4 is devoted to the proofs of the main results (Theorems 2.1 and 2.3),
where we essentially use the monotonicity and continuity of the eigenvalues of the
fiber operators Ht(ϑ) with respect to the parameter t .

Section 5 is devoted to examples. First we apply the obtained results in the sim-
plest case of the one-dimensional Schrödinger operator with a periodic potential per-
turbed by a finitely supported potential. Next we consider the guided Schrödinger
operator Ht on the hexagonal lattice and the square lattice with four vertices in the
fundamental domain and describe the guided spectrum of Ht .

In the appendix we recall some well-known properties of self-adjoint operators,
needed to prove our results.
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It should be noted that in the proof we also use some ideas from a series of pa-
pers of Alama, Deift and Hempel [1], [8], [13], where the existence of eigenvalues for
Schrödinger operators Ht = H0 + tQ , t ∈ R , on Rd in gaps of H0 was investigated.

2. Main results

In this section we formulate our main results. First we consider the perturbed
Schrödinger operators Ht = H0 + tQ , t > 0, where the guided potential Q has max-
imal support, i.e., V∗ ⊂ suppQ . In this case all eigenvalue branches μ−

j (t) , j ∈ Np ,

and μ+
j (t) , j ∈ Np−r , of the operator families H−

t and H+
t , t � 0, defined in Subsec-

tion 1.3, are strictly increasing functions of t and

μ±
j

(
R�0
)

=
[
μ±

j ,+∞
)
, where μ±

j = μ±
j (0)

(see Lemma 4.1). Denote by t±j :
[
μ±

j ,+∞
)→ R�0 the inverse functions of μ±

j (t) .
In the next theorem we show that the interval Ik defined by (1.14) contains k

guided band branches of Ht , t > 0, and obtain a localization of these branches in terms
of the eigenvalue branches μ±

j (t) of H±
t . We also determine values of t for which the

guided Schrödinger operator Ht has no guided spectrum in Ik .

THEOREM 2.1. Let the gap condition (1.14) be fulfilled, λ ∈ Ik , and assume that
the guided potential Q has maximal support, i.e., V∗ ⊂ suppQ. Then the following
statements hold true.

i) There exist k guided band branches s
(k)
1 (t), . . . ,s(k)

k (t) of the operator family
Ht = H0 + tQ, t > 0 , crossing the level λ . Moreover, in the gap Ik each of these
branches satisfies

s
(k)
j (t) ⊂ [μ−

j (t),μ+
j (t)
]
, j = 1, . . . ,k. (2.1)

ii) For each t ∈ R>0 \T , where

T =
k⋃

j=1

[
t+j (λ ),t−j (λ )

]
,

the level λ does not belong to the guided spectrum s(Ht) of Ht . Here t±j (μ) are the

inverse functions of μ±
j (t) . In particular, if t > t−1 (μ−

k+1) , then there are no guided
bands of Ht in Ik .

REMARK 2.2. i) The guided band branches of the family of the perturbed Schrö-
dinger operators Ht = H0 + tQ , t � 0, with a maximally supported potential Q (i.e.,
V∗ ⊂ suppQ) in gaps of H0 are shown schematically in Fig. 2. The horizontal axis
represents the parameter t and the vertical axis represents the spectrum of Ht . For each

λ ∈ Ik there exist k guided band branches s
(k)
j (t) , j = 1, . . . ,k , crossing the level λ .

In the interval Ik each of these branches s
(k)
j (t) lies between the eigenvalue branches
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2 (t)

s
(1)
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Figure 2: A schematic diagram of the dependence of the guided bands of Ht on t (the
guided band branches) in gaps of H0 .

μ−
j (t) and μ+

j (t) of the Schrödinger operators H−
t and H+

t . But it is valid only in Ik .
The behavior of the guided band branches outside the interval Ik is difficult to control.
In particular, it is good if the gap Ik is maximal.

ii) The spectral localization (2.1) is not very precise as only for some values of t ,
it gives a smaller set than the gap (μ+

k ,μ−
k+1) , see Fig. 2.

iii) The guided spectrum of Ht = H0 + tQ in gaps of the unperturbed operator H0

has quite different properties compared to the guided spectrum above the spectrum of
H0 . It is known [28] that for t large enough there are always #suppQ �V∗ guided bands
of Ht above the spectrum of H0 . On the other hand, by Theorem 2.1.ii), if V∗ ⊂ suppQ ,
then for t large enough there is no guided spectrum of Ht in gaps of H0 .

Now we consider the perturbed Schrödinger operators Ht = H0 + tQ , t > 0, with
a non-maximally supported guided potential Q . Recall that Vb ⊂ V∗ is a vertex set
of the quotient graph G∗ such that each bridge of G∗ is incident to at least one vertex
of the set Vb . We determine sufficient conditions for the guided potentials Q under
which the guided bands of the guided Schrödinger operators Ht = H0 + tQ , t > 0, do
not appear in the gap Ik of the unperturbed operator H0 .

THEOREM 2.3. Let the gap condition (1.14) be fulfilled and let suppQ�V∗⊂ Vb .
Then for each t > 0 the guided Schrödinger operator Ht = H0 + tQ has no guided
spectrum in the gap Ik of H0 , i.e., Ik is also a gap of Ht for all t > 0 .

REMARK 2.4. i) The spectrum of the operator Ht , of course, does not depend on
the choice of the set Vb . But the interval Ik , in general, depends on this choice. In
particular, one could vary Vb in order to get a better spectral localization.

ii) The results similar to Theorems 2.1 and 2.3 hold true for the case d = 0, i.e.,
for the spectrum of the Schrödinger operator Ht = H0 + tQ with finitely supported
potentials Q on the periodic graph G . We only need to replace the words “the guided
band branches of Ht ” and “the guided spectrum of Ht ” by the words “the eigenvalue
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branches of Ht ” and “the point spectrum of Ht ”, respectively. Note that even for the
case of finitely supported potentials Q the results of Theorems 2.1 and 2.3 are new (to
the best of our knowledge).

iii) We consider periodic graphs embedded into Rd̃ . But the obtained results stay
valid for abstract periodic graphs, see also Footnote 1.

3. Operators on approximating graphs

3.1. Approximating graphs and edge indices

We recall that the cylinder C = G/Γ is a Γ0 -periodic graph with periods ad+1, . . . ,
ad̃ . We will approximate an infinite cylinder C = (Vc,Ec) by a sequence of the finite
graphs Cn = (Vn,En) defined by

Cn = C/(2nΓ0), n ∈ N0, N0 = {0,1,2, . . .}.

REMARK 3.1. i) The quotient graph G∗ = G/Γ̃ of the Γ̃-periodic graph G coin-
cides with the graph C0 = C/Γ0 .

ii) The sequence of the approximating graphs Cn , n ∈ N0 , is also called a tower
of covering graphs.

We define an edge index, which was introduced in [26]. The indices are important
to study the spectrum of the Laplacians and Schrödinger operators on periodic graphs,
since fiber operators are expressed in terms of edges indices (see (1.5), (1.9)).

For any vertex v ∈ V of the Γ̃-periodic graph G the following unique representa-
tion holds true:

v = v0 +[v], v0 ∈ Ω, [v] ∈ Γ̃, (3.1)

where Ω is the fundamental cell of the lattice Γ̃ defined by (1.1). In other words, each
vertex v ∈ V can be obtained from a vertex v0 ∈ Ω by the shift by a vector [v] ∈ Γ̃ .
For any oriented edge e = (u,v) ∈A of the periodic graph G we define the edge index
τ̃(e) as the integer vector given by

τ̃(e) = [v]A − [u]A ∈ Z
d̃ , (3.2)

where [v]A is the coordinate vector of [v] with respect to the basis A = {a1, . . . ,ad̃} of

the lattice Γ̃ , and [v]∈ Γ̃ is defined by (3.1). Note that edges connecting vertices inside
the fundamental cell Ω have zero indices.

On the set A of all oriented edges of the periodic graph G we define the surjection

f : A → Ac = A /Γ, (3.3)

which maps each e ∈ A to its equivalence class ec = f(e) which is an oriented edge of
the cylinder C = G/Γ . For an oriented edge ec ∈ Ac we define the edge index τ̃(ec)
by

τ̃(ec) = τ̃(e) for some e ∈ A such that ec = f(e). (3.4)
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In other words, edge indices of the cylinder C are induced by edge indices of the peri-
odic graph G .

Denote by An the set of all oriented edges of the graph Cn , n ∈ N0 . Similarly to
(3.3), on the set Ac of all oriented edges of the cylinder C we define the surjections

fn : Ac → An = Ac/(2nΓ0), n ∈ N0,

which map each e ∈ Ac to its equivalence class en = fn(e) which is an oriented edge
of the approximating graph Cn = C/(2nΓ0) . For the edge en ∈ An we define the edge
index τ̃(en) by

τ̃(en) = τ̃(e) for some e ∈ Ac such that en = fn(e), (3.5)

i.e., edge indices of the approximating graphs are induced by edge indices of the cylin-
der C .

Edge indices, generally speaking, depend on the embedding of G into Rd̃ and
on the choice of the basis A of the lattice Γ̃ . Recall that the fundamental cell Ω is
determined by the basis A , see (1.1). But once the embedding of G into Rd̃ and the
basis of Γ̃ are fixed, edge indices of the cylinder C and the approximating graphs Cn

are uniquely determined by (3.4) and (3.5), respectively, since

τ̃(e+a) = τ̃(e), ∀(e,a) ∈ A × Γ̃.

3.2. Schrödinger operators on approximating graphs

For each (ϑ ,n) ∈ Td ×N0 we define the operator Δn(ϑ) on the approximating
graph Cn = (Vn,En) :(

Δn(ϑ) f
)
(v) = ∑

e=(v,u)∈An

(
f (v)− ei〈τ(e),ϑ 〉 f (u)

)
, f ∈ �2(Vn), (3.6)

where τ(e) ∈ Zd is the vector consisting of the first d components of the index τ̃(e) ∈
Zd̃ of the edge e ∈ An , defined by (3.5).

For each (ϑ , t) ∈ Td ×R�0 we consider the sequence of operators

Ht,n(ϑ) = Δn(ϑ)+W + tQ, n ∈ N0, (3.7)

on the approximating graphs Cn . The operator Ht,n(ϑ) has pn eigenvalues λ j
(
Ht,n(ϑ)

)
,

j ∈ Npn , pn = #Vn , which are labeled (counting multiplicities) by

λ1
(
Ht,n(ϑ)

)
� . . . � λpn

(
Ht,n(ϑ)

)
,

pn = #Vn = 2nd0 p, d0 = d̃−d, p = #V∗.

Since Q � 0, for each (ϑ ,n, j) ∈ Td ×N0×Npn the eigenvalue λ j
(
Ht,n(ϑ)

)
is a con-

tinuous piecewise analytic and non-decreasing function of t � 0.
We formulate some properties of the operators Ht,n(ϑ) needed to prove the main

results.
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PROPOSITION 3.2. Let (ϑ ,n) ∈ Td ×N0 . Then:
i) The operator Δn(ϑ) defined by (3.6) is a magnetic Laplacian on the finite graph

Cn = (Vn,En) with magnetic vector potential α(e) = 〈τ(e),ϑ〉 , e ∈ An .
ii) The quadratic form of Δn(ϑ) is given by

〈Δn(ϑ) f , f 〉�2(Vn) = 1
2 ∑

e=(v,u)∈An

∣∣∣ f (v)− ei〈τ(e),ϑ 〉 f (u)
∣∣∣2 , f ∈ �2(Vn). (3.8)

iii) The operator H0,n(ϑ) = Δn(ϑ)+W satisfies

‖H0,n(ϑ)‖ � 2κ+ +max
v∈V∗

|W (v)|, where κ+ = max
v∈V∗

κv < ∞. (3.9)

Proof. i) The discrete magnetic Laplacian Δα on a graph G = (V,E) has the form(
Δα f
)
(v) = ∑

e=(v,u)∈A

(
f (v)− eiα(e) f (u)

)
, f ∈ �2(V ), (3.10)

where A is the set of all oriented edges of G , and the magnetic vector potential α : A→
R satisfies the condition α(e ) =−α(e) for all e∈ A . Here e = (u,v)∈ A is the inverse
edge of e = (v,u) ∈ A .

Comparing (3.6) with (3.10), we obtain the required statement.
ii) The quadratic form 〈Δα f , f 〉�2(V ) associated with the magnetic Laplacian (3.10)

is given by (see [19], [28]):

〈Δα f , f 〉�2(V ) = 1
2 ∑

e=(v,u)∈A

∣∣∣ f (v)− eiα(e) f (u)
∣∣∣2 .

Applying this to the operator Δn(ϑ) , we obtain (3.8).
iii) It is known (see, e.g., [19]) that the magnetic Laplacian (3.10) on a graph G

satisfies ‖Δα‖ � 2κ+ , where κ+ is the maximum vertex degree of G . Then we obtain

‖H0,n(ϑ)‖ = ‖Δn(ϑ)+W‖ � ‖Δn(ϑ)‖+‖W‖ � 2κ+ +max
v∈V∗

|W (v)|. �

PROPOSITION 3.3. Let (ϑ ,n,t)∈Td×N0×R�0 . Then the eigenvalues λ j
(
Ht,n(ϑ)

)
of the operator Ht,n(ϑ) on the approximating graph Cn defined by (3.7) satisfy

λ j(H−
t,n) � λ j

(
Ht,n(ϑ)

)
� λ j(H+

t,n), ∀ j = 1, . . . ,2nd0(p− r), (3.11)

where
H±

t,n = H±
t ⊕H±

0 ⊕ . . .⊕H±
0︸ ︷︷ ︸

2nd0−1

, (3.12)

and the Schrödinger operators H±
t are defined in Subsection 1.3.
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Proof. We equip each unoriented edge e ∈ En of the graph Cn = (Vn,En) with
some orientation and represent Cn as a union of two graphs with the same vertex set
Vn :

Cn = Cn,b ∪C−
n , Cn,b = (Vn,Bn), C−

n = (Vn,En \Bn),

where Bn is the set of all edges e of the graph Cn with nonzero indices τ̃(e) defined
by (3.5). Due to the construction, the graph C−

n consists of 2nd0 connected components
each of which is isomorphic to the graph G−∗ defined in (1.12). Let Vn,b ⊂ Vn be the
set of all vertices of Cn which are Γ0 -equivalent to vertices of the set Vb . Recall that
Vb ⊂ V∗ is the vertex set of the quotient graph G∗ such that each bridge (an edge with
nonzero index) of G∗ is incident to at least one vertex of the set Vb .

Similarly to H±
t , we define two operators:

• H−
t,n = Δ−

n +W + tQ is the Schrödinger operator on the graph C−
n , where Δ−

n is
the Laplacian defined by (1.3) on the graph C−

n ;

• H+
t,n is the operator Ht,n(ϑ) = Δn(ϑ)+W + tQ on the graph Cn with Dirichlet

boundary conditions f �Vn,b
= 0, where f �Vn,b

is the restriction of f ∈ �2(Vn)
to Vn,b .

Due to the definitions, these operators H±
t,n satisfy (3.12).

Since the quadratic form of Ht,n(ϑ) is just an extension of the quadratic form
associated with H+

t,n to a larger domain, we have Ht,n(ϑ) � H+
t,n . This proves the upper

estimate in (3.11).
Now we prove the lower estimate in (3.11). Using (3.7) and (3.8), we obtain

〈Ht,n(ϑ) f , f 〉�2(Vn) =〈(Δn(ϑ)+W + tQ) f , f 〉�2(Vn)

= 1
2 ∑

e=(v,u)∈An

∣∣∣ f (v)− ei〈τ(e),ϑ 〉 f (u)
∣∣∣2 + 〈(W + tQ) f , f 〉�2(Vn)

= 1
2 ∑

(v,u)∈An\Bn

| f (v)− f (u)|2 + 〈(W + tQ) f , f 〉�2(Vn)

+ 1
2 ∑

e=(v,u)∈Bn

∣∣∣ f (v)− ei〈τ(e),ϑ 〉 f (u)
∣∣∣2

� 1
2 ∑

(v,u)∈An\Bn

| f (v)− f (u)|2 + 〈(W + tQ) f , f 〉�2(Vn)

=〈H−
t,n f , f 〉�2(Vn), ∀ f ∈ �2(Vn).

Thus, in the sense of quadratic forms, H−
t,n � Ht,n(ϑ) , and, we obtain the lower estimate

in (3.11). �

REMARK 3.4. i) Let (n,t)∈N0×R�0 . The spectrum of the operator H−
t,n defined

in (3.12) consists of the eigenvalues μ−
m , m ∈ Np , of H−

0 each of which is repeated
2nd0 − 1 times and the eigenvalues μ−

m (t) , m ∈ Np , of H−
t . Then the eigenvalues
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λ1(H−
t,n) � . . . � λ2nd0 p(H

−
t,n) of H−

t,n labeled in non-decreasing order satisfy

λ2nd0(m−1)+1(H
−
t,n) = . . . = λ2nd0m−m(H−

t,n) = μ−
m , m ∈ Np,

λ2nd0m−(m−l)(H
−
t,n) = min

{
max
{

μ−
l (t),μ−

m

}
,μ−

m+1

}
, m ∈ Np−1, l ∈ Nm,

λ2nd0 p−(p−l)(H
−
t,n) = max

{
μ−

l (t),μ−
p

}
, l ∈ Np.

(3.13)

Similarly, the spectrum of the operator H+
t,n defined in (3.12) consists of the eigenvalues

μ+
m , m∈Np−r , of H+

0 each of which is also repeated 2nd0−1 times and the eigenvalues
μ+

m (t) , m ∈ Np−r , of H+
t . Then the eigenvalues λ1(H+

t,n) � . . . � λ2nd0 (p−r)(H
+
t,n) of

H+
t,n satisfy

λ2nd0 (m−1)+1(H
+
t,n) = . . . = λ2nd0m−m(H+

t,n) = μ+
m , m ∈ Np−r,

λ2nd0m−(m−l)(H
+
t,n) = min

{
max
{

μ+
l (t),μ+

m

}
,μ+

m+1

}
, m ∈ Np−r−1, l ∈ Nm,

λ2nd0 (p−r)−(p−r−l)(H
+
t,n) = max

{
μ+

l (t),μ+
p−r

}
, l ∈ Np−r.

(3.14)

�

�

t

μ−
1

μ+
1

μ−
2

μ+
2

λ

μ−
3

μ+
3

σ
(
Ht,n(ϑ)

)
μ+

3 (t) λ3·2nd0 μ−
3 (t) μ+

2 (t) λ3·2nd0−1 μ−
2 (t) μ+

1 (t) λ3·2nd0−2 μ−
1 (t)

gap I1 of H0

gap I2 of H0

I1

I2
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t+2 (λ ) t−2 (λ ) t+1 (λ ) t−1 (λ )
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λ2·2nd0

λ2nd0

λ2nd0+1, . . . ,λ2·2nd0−2

λ2·2nd0+1, . . . ,λ3·2nd0−3

Figure 3: A schematic diagram of the dependence of the eigenvalues λ j ≡ λ j
(
Ht,n(ϑ)

)
,

j = 1, . . . ,2nd0(p− r) , of Ht,n(ϑ) on t (the eigenvalue branches).

ii) From (3.11) it follows that for all (ϑ ,n)∈Td×N0 the graph of each eigenvalue
branch λ j(t) ≡ λ j

(
Ht,n(ϑ)

)
, j = 1, . . . ,2nd0(p− r) , of the operator family Ht,n(ϑ) ,

t � 0, lies between the graphs of the corresponding eigenvalue branches λ j(H±
t,n) of the

operator families H±
t,n , t � 0. The behavior of the functions λ j(t) is shown schemati-

cally in Fig. 3 for the case when p− r = 3 and Ik = (μ+
k ,μ−

k+1) �= ∅ , k = 1,2. Due to
the first identities in (3.13) and (3.14), for each m = 1,2,3 the graphs of the eigenvalue
branches

λ2nd0(m−1)+1(t), . . . ,λ2nd0m−m(t)
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lie in the half-strip R�0× [μ−
m ,μ+

m ] . The graphs of the remaining eigenvalue branches
are shown in the figure. For example, by the second identities in (3.13) and (3.14) as
m = 2 and l = 1, the eigenvalue branch λ2·2nd0−1(t) satisfies

min
{

max
{

μ−
1 (t),μ−

2

}
,μ−

3

}
� λ2·2nd0−1(t) � min

{
max
{

μ+
1 (t),μ+

2

}
,μ+

3

}
.

3.3. Convergence of Birman-Schwinger kernels

Let the gap condition (1.14) be fulfilled, and λ ∈ Ik . For each (ϑ ,n) ∈ Td ×N0

we define the Birman-Schwinger kernels K(ϑ) and Kn(ϑ) associated with H0(ϑ) and
H0,n(ϑ) , respectively:

K(ϑ) := Q1/2(H0(ϑ)−λ
)−1

Q1/2, Kn(ϑ) := Q1/2(H0,n(ϑ)−λ
)−1

Q1/2, (3.15)

where we think of
(
H0,n(ϑ)−λ

)−1
as being extended by 0 on �2(Vc \Vn) .

In this subsection we obtain a convergence result for the Birman-Schwinger ker-
nels (3.15).

PROPOSITION 3.5. Let the gap condition (1.14) be fulfilled, λ ∈ Ik and ϑ ∈ Td .
Then the following statements hold true.

i) The sequence of the Birman-Schwinger kernels Kn(ϑ) , n∈ N0 , associated with
H0,n(ϑ) converges in norm to the Birman-Schwinger kernel K(ϑ) for H0(ϑ) as n →
∞ .

ii) The spectra of K(ϑ) and Kn(ϑ) , n ∈ N0 , satisfy

σ
(
K(ϑ)

)
= lim

n→∞
σ
(
Kn(ϑ)

)
. (3.16)

REMARK 3.6. The identity (3.16) is understood in the following sense: for any
t ∈ σ

(
K(ϑ)

)
there exists a sequence tn ∈ σ

(
Kn(ϑ)

)
, n∈N0 , such that lim

n→∞
tn = t and,

conversely, if tn ∈ σ
(
Kn(ϑ)

)
, n ∈ N0 , and lim

n→∞
tn = t for some t , then t ∈ σ

(
K(ϑ)

)
.

In order to prove this proposition we need the following lemma.

LEMMA 3.7. Let (ϑ ,t)∈Td ×R�0 . Then the sequence of the operators Ht,n(ϑ) ,
n ∈ N0 , on the approximating graphs Cn = (Vn,En) (when �2(Vn) is naturally embed-
ded in �2(Vc)) converges strongly to the operator Ht(ϑ) on the cylinder C = (Vc,Ec)
as n → ∞ .

Proof. First we prove this statement for t = 0. Denote by �2
fin(Vc) the set of all

finitely supported functions f ∈ �2(Vc) . For each f ∈ �2
fin(Vc) and sufficiently large

n ∈ N0 , Vn contains the support of f and, consequently, H0(ϑ) f = H0,n(ϑ) f . Then
we have ∥∥H0,n(ϑ) f −H0(ϑ) f

∥∥→ 0 as n → ∞, ∀ f ∈ �2
fin(Vc).
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The set �2
fin(Vc) is dense in �2(Vc) and, due to (3.9), H0,n(ϑ) are uniformly bounded.

Then, by Proposition A.1.i), we deduce that∥∥H0,n(ϑ) f −H0(ϑ) f
∥∥→ 0 as n → ∞, ∀ f ∈ �2(Vc).

Now let t > 0. Then, using the identity Ht,n(ϑ) = H0,n(ϑ)+ tQ , we have∥∥Ht,n(ϑ) f −Ht(ϑ) f
∥∥ =
∥∥H0,n(ϑ) f −H0(ϑ) f

∥∥→ 0 as n → ∞, ∀ f ∈ �2(Vc). �

Proof of Proposition 3.5. i) Lemma 3.7 and the boundedness of the operators
H0(ϑ) and H0,n(ϑ) , n ∈ N0 , give that H0,n(ϑ) → H0(ϑ) in strong resolvent sense
as n → ∞ . Then for any f ∈ �2(Vc) we have∥∥(H0,n(ϑ)−λ

)−1
f − (H0(ϑ)−λ

)−1
f
∥∥→ 0 as n → ∞. (3.17)

Using (3.15), we obtain∥∥Kn(ϑ)−K(ϑ)
∥∥=
∥∥Q1/2(H0,n(ϑ)−λ

)−1
Q1/2−Q1/2(H0(ϑ)−λ

)−1
Q1/2
∥∥

�
∥∥Q1/2

∥∥ ·∥∥(H0,n(ϑ)−λ
)−1

Q1/2− (H0(ϑ)−λ
)−1

Q1/2
∥∥.

Since Q1/2 is a compact operator, applying Proposition A.1.ii) to (3.17), we deduce
that
∥∥Kn(ϑ)−K(ϑ)

∥∥→ 0 as n → ∞ .
ii) This item follows directly from the previous one and Proposition A.1.iii). �

4. Proof of the main results

4.1. Localization of the guided bands

We consider the case when the guided potential Q has maximal support, i.e., it
satisfies the condition V∗ ⊂ suppQ , and prove Theorem 2.1 about a localization of the
guided bands of Ht = H0 + tQ . We need the following lemma.

LEMMA 4.1. Let V∗ ⊂ suppQ. Then all eigenvalue branches μ±
j (t) of the oper-

ator families H±
t , t � 0 , are strictly increasing functions of t and

μ±
j

(
R�0
)

=
[
μ±

j ,+∞
)
, where μ±

j = μ±
j (0).

Proof. Since Q � 0, then, due to the perturbation theory, each eigenvalue μ±
j (t)

of H±
t is a continuous piecewise analytic and non-decreasing function of t � 0.
First, we show that μ±

j (t) is strictly increasing on R�0 . Indeed, let t1 > t2 � 0.
Then, by the identity H±

t = H±
0 + tQ and Proposition A.1.vi), we have for each j

μ−
j (t1) � μ−

j (t2)+ (t1− t2)min
v∈V∗

Q(v), μ+
j (t1) � μ+

j (t2)+ (t1− t2) min
v∈V∗\Vb

Q(v).

Since t1 > t2 and V∗ ⊂ suppQ , these inequalities yield μ±
j (t1) > μ±

j (t2) .
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Second, we prove that μ±
j

(
R�0
)
=
[
μ±

j ,+∞
)

for each j . We rewrite the sequence
Q(v),v ∈ V∗ in the form

0 < Q•
1 � Q•

2 � . . . � Q•
p,

where Q•
j = Q(v j) , j ∈Np , for some distinct vertices v1,v2, . . . ,vp ∈ V∗ . Using Propo-

sition A.1.vi), we obtain

μ−
j (t) � tQ•

j + μ−
1 , j ∈ Np.

Since Q•
j > 0, j ∈Np , for t large enough the eigenvalue μ−

j (t) can be arbitrarily large.
The same is true for μ+

j (t) , since μ+
j (t) � μ−

j (t) . This and continuity of the functions

μ±
j (t) give that μ±

j

(
R�0
)

=
[
μ±

j ,+∞
)
. �

PROPOSITION 4.2. Let the gap condition (1.14) be fulfilled, λ ∈ Ik = (μ+
k ,μ−

k+1) ,
and (ϑ ,n)∈T

d×N0 . We assume that Q has maximal support, i.e., V∗ ⊂ suppQ. Then
there exist exactly k values tn,1(ϑ), . . . ,tn,k(ϑ) ∈ R>0 of t such that λ ∈ σ

(
Ht,n(ϑ)

)
and these values satisfy

tn, j(ϑ) ⊂ [t+j ,t−j ], t±j = (μ±
j )−1(λ ), j = 1, . . . ,k. (4.1)

Proof. Since V∗ ⊂ suppQ , then, due to Lemma 4.1, all eigenvalue branches μ±
j (t)

of the operator families H±
t , t � 0, are strictly increasing functions of t and μ±

j

(
R�0
)
=[

μ±
j ,∞
)
. Then for each j = 1, . . . ,k there exist

• a unique t−j ∈ R�0 such that μ−
j (t−j ) = λ ;

• a unique t+j ∈ R�0 such that μ+
j (t+j ) = λ .

The remaining eigenvalue branches μ±
j (t) , j > k , lie above λ . Thus, each of the

operator families H−
t,n and H+

t,n , t � 0, defined by (3.12) has exactly k eigenvalue
branches crossing the level λ at the points t±j , j = 1, . . . ,k . Then, from (3.11) it follows
that the operator family Ht,n(ϑ) , t � 0, also has exactly k eigenvalue branches crossing
the level λ at some points tn, j(ϑ) , j = 1, . . . ,k , satisfying the conditions (4.1). �

REMARK 4.3. The dependence of the eigenvalues

λ j(t) ≡ λ j
(
Ht,n(ϑ)

)
, j = 1, . . . ,2nd0(p− r),

of the operators Ht,n(ϑ) = H0,n(ϑ)+ tQ on the parameter t for the guided potential Q
satisfying the condition V∗ ⊂ suppQ is shown in Fig. 3. The horizontal axis represents
the parameter t and the vertical axis represents the spectrum of Ht,n(ϑ) . For each
λ ∈ Ik exactly k eigenvalue branches

λ2nd0k−(k−1)(t), λ2nd0k−(k−2)(t), . . . , λ2nd0k(t)

cross the level λ . In the gap Ik each of these eigenvalue branches λ2nd0k−(k− j) , j ∈ Nk ,

lies between the eigenvalue branches μ−
j (t) and μ+

j (t) of the Schrödinger operators

H−
t and H+

t .
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PROPOSITION 4.4. Let the gap condition (1.14) be fulfilled, λ ∈ Ik = (μ+
k ,μ−

k+1)
and ϑ ∈ Td . We assume that V∗ ⊂ suppQ. Then the following statements hold true.

i) There exist k eigenvalue branches λ (k)
1 (ϑ ,t), . . . ,λ (k)

k (ϑ ,t) of the operator fam-
ily Ht(ϑ) , t � 0 , crossing the level λ . Moreover, in the gap Ik each of these branches
satisfies

λ (k)
j (ϑ ,t) ⊂ [μ−

j (t),μ+
j (t)
]
, j ∈ Nk. (4.2)

ii) For each t ∈ R>0 \T , where

T =
k⋃

j=1

[
t+j (λ ),t−j (λ )

]
, t±j = (μ±

j )−1(λ ),

λ does not belong to the spectrum of Ht(ϑ) .

Proof. i) By Proposition 4.2, for each n∈ N0 there exist exactly k values tn,1(ϑ) ,
. . . ,tn,k(ϑ) ∈ R>0 of t such that λ ∈ σ

(
Ht,n(ϑ)

)
and these values satisfy (4.1). Then

for each j ∈ Nk there exists a subsequence also denoted by
(
tn, j(ϑ)

)
n∈N0

converging

to some t j(ϑ) ∈ [t+j ,t−j ] , where t±j = (μ±
j )−1(λ ) . Let K(ϑ) and Kn(ϑ) , n ∈ N0 , be

defined by (3.15). By Proposition A.1.v), for each n ∈ N0 , the values
(− tn, j(ϑ)

)−1
,

j ∈ Nk , are eigenvalues of Kn(ϑ) . Since Kn(ϑ) → K(ϑ) in norm and tn, j(ϑ) → t j(ϑ)
as n→ ∞ , then, by Proposition 3.5.ii),

(− t j(ϑ)
)−1

, j ∈ Nk , are eigenvalues of K(ϑ) .
This and Proposition A.1.v) yield that there exist k values t1(ϑ), . . . ,tk(ϑ) of t such

that λ ∈ σ
(
Ht(ϑ)

)
. Thus, there exist k eigenvalue branches λ (k)

j (ϑ ,t) , j ∈ Nk , of the

operator family Ht(ϑ) , t � 0, crossing the level λ at points t j(ϑ) ∈ [t+j ,t−j ] . Since λ
is any level in the interval Ik , each of these branches satisfies (4.2).

ii) We argue by contradiction. Let t ∈ R>0 \ T and λ ∈ σ
(
Ht(ϑ)

)
. Then, by

Proposition A.1.v), (−t)−1 is an eigenvalue of K(ϑ) and, by Proposition 3.5.ii), there
exists a sequence (tn)n∈N0 such that (−tn)−1 ∈ σ

(
Kn(ϑ)

)
, n ∈ N0 , and lim

n→∞
tn = t .

This yields that λ is an eigenvalue of Htn,n(ϑ) for each n∈ N0 . Using Proposition 4.2,
we have that tn ∈ T for each n ∈ N0 . Thus, we obtain a contradiction

tn ∈ T, ∀n ∈ N0, and lim
n→∞

tn = t /∈ T,

which completes the proof. �

Proof of Theorem 2.1. i)–ii) These items are direct consequences of Proposition
4.4 and the definition (1.11) of the guided band branches and the definition (1.10) of
the guided spectrum. �

4.2. Conditions for nonexistence of the guided spectrum

In this subsection we prove Theorem 2.3, which determines sufficient conditions
for the guided potentials Q under which the guided spectrum of the guided Schrödinger
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operators Ht = H0 + tQ , t > 0, do not appear in the gaps of the unperturbed operator
H0 .

Proof of Theorem 2.3. Since suppQ�V∗⊂Vb , we have H+
t = H+

0 by the definition
of the operator H+

t , t > 0. Then, using Proposition 3.3, we deduce that for each
(ϑ ,n, t) ∈ Td ×N0×R�0 the eigenvalues λ j

(
Ht,n(ϑ)

)
of the operator Ht,n(ϑ) satisfy

λ j(H−
0,n) � λ j(H−

t,n) � λ j
(
Ht,n(ϑ)

)
� λ j(H+

0,n), ∀ j = 1, . . . ,2nd0(p− r), (4.3)

where
H±

0,n = H±
0 ⊕ . . .⊕H±

0︸ ︷︷ ︸
2nd0

. (4.4)

The identity (4.4) gives that the spectrum of the operator H−
0,n consists of the eigenval-

ues μ−
m , m ∈ Np , of H−

0 each of which is repeated 2nd0 times. Similarly, the spectrum
of the operator H+

0,n consists of the eigenvalues μ+
m , m ∈ Np−r , of H+

0 each of which

is also repeated 2nd0 times. Then, from (4.3) it follows that

μ−
m � λ j

(
Ht,n(ϑ)

)
� μ+

m , m ∈ Np−r, j = 2nd0(m−1)+1, . . . ,2nd0 m.

This yields that Ik = (μ+
k ,μ−

k+1) is a gap in the spectrum of Ht,n(ϑ) for each (ϑ ,n,t) ∈
Td ×N0×R�0 .

For each (ϑ ,n, t)∈ Td ×N0×R�0 the operators Ht(ϑ) and Ht,n(ϑ) are bounded
and, by Lemma 3.7, Ht,n(ϑ) converges to Ht(ϑ) strongly as n→∞ . Then, by Proposi-
tion A.1.iv), Ik is a gap in the spectrum of Ht(ϑ) for each (ϑ ,t) ∈ T

d ×R�0 . This and
the definition (1.10) of the guided spectrum give that Ik is also a gap in the spectrum of
Ht for each t > 0. �

5. Examples

We start this section with the simplest example of the one-dimensional Schrödinger
operator with a periodic potential perturbed by a finitely supported potential. Then we
consider the guided Schrödinger operator Ht on the hexagonal lattice and the square
lattice with 4 vertices in the fundamental domain and describe the guided spectrum
of Ht .

5.1. One-dimensional Schrödinger operator

First we consider the unperturbed Schrödinger operator

(H0 f )(n) = 2 f (n)− f (n+1)− f (n−1)+W(n) f (n), n ∈ Z,

acting on f ∈ �2(Z) with a real p -periodic potential W , W (n + p) = W (n) , n ∈ Z ,
p � 3. In this case the quotient graph G∗ is just the cycle graph with p vertices 1, . . . , p ,
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and the fiber Schrödinger operator H̃0(ϑ) , ϑ ∈ T , defined by (1.4), (1.5), on G∗ is
given by the following (p× p)-matrix

H̃0(ϑ) =

⎛⎜⎜⎜⎜⎝
2+w1 −1 0 . . . −e−iϑ

−1 2+w2 −1 . . . 0
0 −1 2+w3 . . . 0
. . . . . . . . . . . . . . .
−eiϑ 0 0 . . . 2+wp

⎞⎟⎟⎟⎟⎠ , wn = W (n), n ∈ Np.

It is well known that the spectrum of the operator H0 consists of p bands σn =
[λ−

n ,λ +
n ] , n ∈ Np , where λ−

1 ,λ +
2 ,λ−

3 ,λ +
4 , . . . are the eigenvalues of the matrix H̃0(0)

and λ +
1 ,λ−

2 ,λ +
3 ,λ−

4 , . . . are the eigenvalues of H̃0(π) . These bands are separated by
gaps (λ +

n ,λ−
n+1) . Some of the gaps may be degenerate, i.e. λ +

n = λ−
n+1 .

Now we describe the operators H±
0 defined in Subsection 1.3. The quotient graph

G∗ has only one bridge-edge (p,1) . The graph G−∗ , obtained from G∗ by deleting
this bridge, is the path on p vertices 1, . . . , p . Then we need to choose the vertex set
Vb ⊂ {1, . . . , p} . Recall that each bridge of G∗ has to be incident to at least one vertex
of Vb and we have to choose Vb as small as possible. Thus, we can take for Vb the set
{p} .

The Schrödinger operator H−
0 with the potential W on the path graph G−∗ is given

by the (p× p)-matrix

H−
0 =

⎛⎜⎜⎜⎜⎝
1+w1 −1 0 . . . 0
−1 2+w2 −1 . . . 0
0 −1 2+w3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1+wp

⎞⎟⎟⎟⎟⎠ . (5.1)

The operator H+
0 is the Schrödinger operator with the potential W on the quotient

graph G∗ with Dirichlet boundary condition at the vertex p . This operator is given by
the (p−1)× (p−1)-submatrix of H̃0(ϑ) , which is obtained from H̃0(ϑ) by deleting
the last row and column (corresponding to the vertex p ):

H+
0 =

⎛⎜⎜⎜⎜⎝
2+w1 −1 0 . . . 0
−1 2+w2 −1 . . . 0
0 −1 2+w3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 2+wp−1

⎞⎟⎟⎟⎟⎠ . (5.2)

We assume that the potential W is such that the eigenvalues μ−
j , j ∈Np , of the operator

H−
0 and the eigenvalues μ+

j , j ∈ Np−1 , of H+
0 satisfy the inequality μ+

j < μ−
j+1 for

all j ∈ Np−1 , i.e. the intervals

I j = (μ+
j ,μ−

j+1) �= ∅, j ∈ Np−1,

are spectral gaps of the unperturbed Schrödinger operator H0 .
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Next we consider the perturbed Schrödinger operators Ht = H0 + tQ , t > 0, on
�2(Z) with a finitely supported potential Q :

Q(n) = qn � 0, n ∈ Np; Q(n) = 0, ∀n /∈ Np.

For each t > 0 the spectrum of Ht consists of the spectrum of the unperturbed operator
H0 and a finite number of eigenvalues with finite multiplicity. In the gaps of H0 we
will approximate the eigenvalues of Ht by eigenvalues of the Schrödinger operators
Ht,n = Δn +W + tQ , n ∈ N0 , where Δn is the Laplacian on the graph Cn = Z/(2npZ) .
The graph Cn is the cycle with 2np vertices 1,2 . . . ,2np . By Proposition 3.3, for each
(n,t) ∈ N0×R�0 the eigenvalues λ j(Ht,n) of Ht,n satisfy

λ j(H−
t,n) � λ j(Ht,n) � λ j(H+

t,n), j = 1, . . . ,2n(p−1),

where the operators H±
t,n are defined similarly to H±

t but only on the approximating
cycle graphs Cn . More precisely, let C−

n be the graph obtained from the cycle graph Cn

with 2np vertices 1,2, . . . ,2np by deleting 2n edges

(p, p+1), (2p,2p+1), (3p,3p+1), . . . , (2np,1),

i.e. the graph C−
n consists of 2n connected components each of which is the path on p

vertices. The operator H−
t,n is the Schrödinger operator with the potential W + tQ on

the graph C−
n and is given by the (2np)× (2np)-matrix

H−
t,n =

⎛⎜⎜⎝
H−

0 + tQ Op . . . Op

Op H−
0 . . . Op

. . . . . . . . . . . .
Op Op . . . H−

0

⎞⎟⎟⎠ ,

where H−
0 is defined by (5.1), and Op is the zero (p× p)-matrix. The operator H+

t,n
is the Schrödinger operator with the potential W + tQ on the graph Cn with Dirichlet
boundary conditions at the vertices p,2p,3p, . . . ,2np and is given by the (2n(p−1)×
2n(p−1))-matrix

H+
t,n =

⎛⎜⎜⎝
H+

0 + tQ Op−1 . . . Op−1

Op−1 H+
0 . . . Op−1

. . . . . . . . . . . .
Op−1 Op−1 . . . H+

0

⎞⎟⎟⎠ ,

where H+
0 is defined by (5.2).

Let suppQ = {1,2, . . . , p} . Then, by Lemma 4.1, all eigenvalue branches μ±
j (t)

of the operator families H±
t = H±

0 + tQ , t � 0, are strictly increasing functions of t
and

μ±
j

(
R�0
)

=
[
μ±

j ,+∞
)
, where μ±

j = μ±
j (0).

By Theorem 2.1.i), in each gap Ik , k ∈ Np−1 of the unperturbed operator H0 there exist

k eigenvalue branches λ (k)
j (t) , j = 1, . . . ,k . In the interval Ik each of these branches
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λ (k)
j (t) lies between the eigenvalue branches μ−

j (t) and μ+
j (t) of the Schrödinger op-

erators H−
t and H+

t .

�

�

t

σ(Ht)

μ−
1

μ+
1

μ−
2

μ+
2

μ−
3

σ1

σ2

σ3

μ−
1 (t)μ+

1 (t)μ−
2 (t)μ+

2 (t)

gap I2 of H0

gap I1 of H0

λ
(2)
2 (t) λ

(2)
1 (t)

λ
(1)
1 (t)

Figure 4: The numerically obtained dependence (for p = 3, wn = n and qn = n , n =
1,2,3) of the eigenvalues λ (1)

1 (t) , λ (2)
1 (t) , λ (2)

2 (t) of Ht on t (the eigenvalue branches)
in the gaps I1 and I2 of H0 .

For example, if p = 3 and wn = n , n = 1,2,3, then the spectrum of the unper-
turbed Schrödinger operator H0 on Z has the form

σ(H0) = σ1∪σ2 ∪σ3 = [λ−
1 ,λ +

1 ]∪ [λ−
2 ,λ +

2 ]∪ [λ−
3 ,λ +

3 ],

where

λ−
1 = λ1(0) ≈ 1,79; λ−

2 = λ2(π) ≈ 3,46; λ−
3 = λ3(0) ≈ 5,68;

λ +
1 = λ1(π) ≈ 2,32; λ +

2 = λ2(0) ≈ 4,54; λ +
3 = λ3(π) ≈ 6,21.

Eigenvalues μ−
j , j ∈ N3 , of H−

0 and μ+
1 ,μ+

2 of H+
0 are given by

μ−
1 ≈ 1,52; μ−

2 ≈ 3,31; μ−
3 ≈ 5,17; μ+

1 ≈ 2,38; μ+
2 ≈ 4,62.

Thus, μ+
1 < μ−

2 and μ+
2 < μ−

3 , and the intervals

I1 = (μ+
1 ,μ−

2 ) �= ∅ and I2 = (μ+
2 ,μ−

3 ) �= ∅

are gaps in the spectrum of the unperturbed Schrödinger operator H0 on Z . The de-
pendence of the eigenvalues of the perturbed Schrödinger operator Ht = H0 + tQ on t
in the gaps I1 and I2 obtained numerically as Q(n) = n , n = 1,2,3, is schematically
shown in Fig. 4.

5.2. Hexagonal lattice

We consider the hexagonal lattice G = (V ,E ) , shown in Fig. 5a. The periods of
G are the vectors a1 , a2 . The vertex set and the edge set are given by

V = Z
2∪ (Z2 +

(
1
3 , 1

3

))
,
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E =
{(

m,m+
(

1
3 , 1

3

))
,
(
m,m+

(− 2
3 , 1

3

))
,
(
m,m+

(
1
3 ,− 2

3

)) ∀m ∈ Z2
}
.

Recall that the coordinates of all vertices are taken with respect to the basis a1,a2 . The
quotient graph G∗ = (V∗,E∗) , where V∗ = {v1,v2} , consists of two vertices, multiple
edges e1 , e2 , e3 , all with initial and terminal vertices v1 and v2 , respectively (Fig. 5b)
with indices τ̃(e1) = (0,0) , τ̃(e2) = (1,0) , τ̃(e3) = (0,1) .

First we consider the unperturbed Schrödinger operator H0 = Δ +W with a peri-
odic (non-constant) potential W on G . Without loss of generality (add a constant to W
if necessary) we may assume that

W (v1) = w, W (v2) = −w, w > 0.

a)

v2+a2

Ω
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v1 v2+a1

v2

�

�
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v2

v1
v2

v2

v2

a1

a2

�

�

v2

v1

(1,0)

(0,1)

(0,0)
�

�
b)

G
G∗

Ω

Figure 5: a) The hexagonal lattice G ; b) the quotient graph G∗ with edge indices.

The fiber Schrödinger operator H̃0(ϑ) , ϑ = (ϑ1,ϑ2)∈T2 , defined by (1.4), (1.5),
on G∗ has the form

H̃0(ϑ) =
(

3+w −b(ϑ)
−b(ϑ) 3−w

)
, b(ϑ) = 1+ e−iϑ1 + e−iϑ2.

The eigenvalues of H̃0(ϑ) are given by

λn(ϑ) = 3+(−1)n
√

w2 + |b(ϑ)|2, n = 1,2.

Then the spectrum of the unperturbed Schrödinger operator H0 on G has the form (see
Fig. 6)

σ(H0) = σ1∪σ2 = [λ−
1 ,λ +

1 ]∪ [λ−
2 ,λ +

2 ],

where
λ−

1 = λ1(0) = 3−√
9+w2 , λ +

1 = λ1( 2π
3 ,− 2π

3 ) = 3−w,

λ−
2 = λ2( 2π

3 ,− 2π
3 ) = 3+w, λ +

2 = λ2(0) = 3+
√

9+w2 .

a) σ1 σ2

0 3 6

b) σ1
gap σ2

3−
√

9+w2 3−w 3 3+w 3+
√

9+w2

Figure 6: a) The spectrum of Δ ; b) the spectrum of H0 = Δ +W .
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Thus, the periodic potential W opens the gap (3−w,3+w) in the spectrum of the
unperturbed Schrödinger operator H0 = Δ +W on G .

Now we show that for w > 3/4 the gap condition (1.14) is fulfilled. Let Vb =
{v1} . Then the operators H±

0 defined in Subsection 1.3 have the form

H−
0 =
(

1+w −1
−1 1−w

)
, H+

0 = (3−w). (5.3)

The eigenvalues μ−
1 , μ−

2 of H−
0 and μ+

1 of H+
0 are given by

μ−
j = 1+(−1) j

√
1+w2 , j = 1,2, μ+

1 = 3−w.

If w > 3/4, then μ+
1 < μ−

2 and the interval I1 = (μ+
1 ,μ−

2 ) �= ∅ is a gap in the spectrum
of the unperturbed operator H0 . The gap I1 is not maximal, since it is strictly contained
in the maximal gap (λ +

1 ,λ−
2 ) . More precisely, μ+

1 = λ +
1 , but μ−

2 < λ−
2 (see also

Fig.8.b).
Note that if we choose Vb = {v2} , then I1 = ∅ (for positive w).
Next we consider the perturbed Schrödinger operator Ht = H0 + tQ , t > 0, with

the guided potential Q satisfying the conditions

suppQ ⊂ R× [0,1), Q(v+a1) = Q(v), ∀v ∈ V ,

see Fig. 8a.
Let Γ be the lattice generated by the vector a1 , and Γ0 be the lattice gener-

ated by a2 . Due to Proposition 1.3, the operator Ht , t > 0, has the decomposition
(1.8)–(1.9) into a constant fiber direct integral, where the fiber Schrödinger operator
Ht(ϑ) = Δ(ϑ) +W + tQ , ϑ ∈ T = (−π ,π ] , acts on the infinite fundamental graph
C = (Vc,Ec) = G/Γ shown in Fig. 7a and the potential Q has finite support:

Q(v j) = q j � 0, j = 1,2, Q(v) = 0, ∀v ∈ Vc \ {v1,v2}.
The sequence of the approximating graphs Cn = C/(2nΓ0) , n ∈ N0 , of the discrete
cylinder C is shown in Fig. 7b.
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Figure 7: a) The discrete cylinder C = G/Γ (the vertices on the left and right side of
the strip S = [0,1)×R are identified); b) the sequence of its approximating graphs
C0 = G∗,C1,C2, . . . .
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For each (ϑ ,n, t)∈T×N0×R�0 the operator Ht,n(ϑ) defined by (3.6), (3.7), acts
on the finite graph Cn = (Vn,En) and, by Proposition 3.3, its eigenvalues λ j

(
Ht,n(ϑ)

)
satisfy

λ j(H−
t,n) � λ j

(
Ht,n(ϑ)

)
� λ j(H+

t,n), j = 1, . . . ,2n,

where

H±
t,n = H±

t ⊕H±
0 ⊕ . . .⊕H±

0︸ ︷︷ ︸
2n−1

, H±
t = H±

0 + tQ,

and H±
0 are given by (5.3).

We assume that w > 3/4, i.e., the interval I1 = (μ+
1 ,μ−

2 ) �= ∅ is a gap in the
spectrum of H0 , and let λ ∈ I1 .

Case 1. Let suppQ�Ω= {v1,v2} , see Fig. 8a. Then, by Theorem 2.1.i), there exists
a guided band branch s1(t) of the operator family Ht = H0 + tQ , t > 0, crossing the
level λ , and in I1 this branch satisfies

s1(t) ⊂
[
μ−

1 (t),μ+
1 (t)
]
,

where μ±
1 (t) are the eigenvalue branches of the operator families H±

t , t � 0. The
dependence of the guided spectrum of Ht on t in the gap I1 is shown in Fig. 8b. Note
that in this case both eigenvalue branches μ±

1 (t) cross the level μ−
2 .
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Figure 8: a) The hexagonal lattice G ; the fundamental cell Ω is shaded; the support
of the guided potential Q is shown by black vertices; b) the numerically obtained
dependence (for w = 2, q1 = 3, q2 = 1) of the guided spectrum of Ht on t (the guided
band branch s1(t)) in the gap I1 .

Case 2. Let suppQ�Ω= {v1} , see Fig. 9a. Since {v1}= Vb , then, by Theorem 2.3,
for each t > 0 the guided Schrödinger operator Ht = H0 + tQ has no guided spectrum
in the gap I1 of H0 , i.e., I1 is also a gap of Ht for each t > 0 (see Fig. 9b). Note that
in this case the eigenvalue branch μ+

1 (t) is constant. Thus, neither μ+
1 (t) nor μ−

1 (t)
appears in the gap I1 .
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Figure 9: a) The hexagonal lattice G ; the fundamental cell Ω is shaded; the support of
the guided potential Q is shown by black vertices; b) for each t > 0 there is no guided
spectrum of Ht in I1 (w = 2, q1 = 3, q2 = 0).

Case 3. Finally, let suppQ�Ω= {v2} , see Fig. 10a. The dependence of the guided
spectrum of Ht on t in the gap I1 is shown in Fig. 10b. There exists exactly one guided
band branch s1(t) of the operator family Ht = H0 + tQ , t > 0, crossing the level λ ,
and in I1 this branch also satisfies

s1(t) ⊂
[
μ−

1 (t),μ+
1 (t)
]
.

In this case only the eigenvalue branch μ+
1 (t) crosses the level μ−

2 . The eigenvalue
branch μ−

1 (t) stays below this level.
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Figure 10: a) The hexagonal lattice G ; the fundamental cell Ω is shaded; the support
of the guided potential Q is shown by black vertices; b) the numerically obtained
dependence (for w = 2, q1 = 0, q2 = 1) of the guided spectrum of Ht on t (the guided
band branch s1(t)) in the gap I1 .

REMARK 5.1. i) Case 3 is not covered by Theorems 2.1 and 2.3. The guided
spectrum of Ht in the gap I1 and the eigenvalue branches μ±

1 (t) of H±
t schematically

shown in Fig.8b – Fig.10b were obtained numerically as w = 2, q1 = 3 and q2 = 1 in
Case 1, q1 = 3, q2 = 0 in Case 2, and q1 = 0, q2 = 1 in Case 3.
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ii) At the first glance, Case 2 and Case 3 can be seen to be equivalent by some
symmetry, so how can the guided spectrum be so different in these cases. This differ-
ence is explained by the presence of a periodic potential W . For example, if we change
the value w of the periodic potential by −w in Case 3, we obtain the similar behavior
of the guided spectrum as in Case 2.

5.3. Square lattice

We consider the square lattice L2 with periods a1 , a2 , see Fig. 11a. The quotient
graph L2∗ = (V∗,E∗) , where V∗ = {v1,v2,v3,v4} , consists of 4 vertices and 8 edges
(Fig. 11b).
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Figure 11: a) The square lattice L2 ; the fundamental cell Ω is shaded; b) the quotient
graph L2∗ with edge indices.

Let Vb = {v1,v4} . Then the operators H±
0 defined in Subsection 1.3 have the

form

H−
0 =

⎛⎜⎜⎝
2+w1 −1 −1 0
−1 2+w2 0 −1
−1 0 2+w3 −1
0 −1 −1 2+w4

⎞⎟⎟⎠ , H+
0 =
(

4+w2 0
0 4+w3

)
,

where wj = W (v j) , j ∈ N4 . Let

w1 = 8, w2 = 0, w3 = 4, w4 = 10.

Then the eigenvalues μ−
j , j ∈ N4 , of H−

0 and μ+
1 ,μ+

2 of H+
0 are given by

μ−
1 ≈ 1,77; μ−

2 ≈ 5,65; μ−
3 ≈ 10,30; μ−

4 ≈ 12,29; μ+
1 = 4; μ+

2 = 8.

Thus, μ+
1 < μ−

2 and μ+
2 < μ−

3 , and the intervals

I1 = (μ+
1 ,μ−

2 ) �= ∅ and I2 = (μ+
2 ,μ−

3 ) �= ∅

are gaps in the spectrum of the unperturbed Schrödinger operator H0 = Δ +W on L2 .
Let λ1 ∈ I1 and λ2 ∈ I2 .
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Case 1. We consider a guided potential Q on L2 such that suppQ�Ω= V∗ , see

Fig. 12a. Then, by Theorem 2.1.i), there exist a guided band branch s
(1)
1 (t) of the

operator family Ht = H0 + tQ , t > 0, crossing the level λ1 , and guided band branches

s
(2)
1 (t) and s

(2)
2 (t) of Ht , t > 0, crossing the level λ2 , and in I1 and I2 these branches

satisfy

s
(1)
1 (t) ⊂ [μ−

1 (t),μ+
1 (t)
]
, s

(2)
j (t) ⊂ [μ−

j (t),μ+
j (t)
]
, j = 1,2,

where μ±
j (t) are the eigenvalue branches of the operator families H±

t , t � 0. The
dependence of the guided spectrum of Ht on t in the gaps I1 and I2 is shown in
Fig. 12b.
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Figure 12: a) The square lattice L2 ; the fundamental cell Ω is shaded; the support
of the guided potential Q is shown by black vertices; b) the numerically obtained
dependence (for w1 = 8, w2 = 0, w3 = 4, w4 = 10 and qn = n , n ∈ N4 ) of the guided
spectrum of Ht on t (the guided band branches) in the gaps I1 and I2 .
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Figure 13: a) The square lattice L2 ; the fundamental cell Ω is shaded; the support
of the guided potential Q is shown by black vertices; b) for each t > 0 there is no
guided spectrum of Ht in I1 and I2 (w1 = 8, w2 = 0, w3 = 4, w4 = 10 and q1 = 1,
q2 = q3 = 0, q4 = 4).
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Case 2. Let suppQ�Ω= {v1,v4} , see Fig. 13a. Since Vb = {v1,v4} , then, by
Theorem 2.3, for each t > 0 the guided Schrödinger operator Ht = H0 + tQ has no
guided spectrum in the gaps I1 and I2 of H0 , i.e., I1 and I2 are also gaps of Ht for
each t > 0 (see Fig. 13b). Note that in this case the eigenvalue branches μ+

1 (t) and
μ+

2 (t) are constant. Thus, no eigenvalue branches μ±
j (t) of H±

t appear in the gaps I1
and I2 .

Case 3. Finally, let suppQ�Ω= {v2,v3} , see Fig. 14a. The dependence of the
guided spectrum of Ht on t in the gaps I1 and I2 is shown in Fig. 14b. There exist

exactly one guided band branch s
(1)
1 (t) of the operator family Ht = H0 + tQ , t > 0,

crossing the level λ1 , and two guided band branches s
(2)
1 (t) and s

(2)
2 (t) of Ht , t > 0,

crossing the level λ2 , and in I1 and I2 these branches also satisfy

s
(1)
1 (t) ⊂ [μ−

1 (t),μ+
1 (t)
]
, s

(2)
j (t) ⊂ [μ−

j (t),μ+
j (t)
]
, j = 1,2.

In this case the eigenvalue branch μ−
1 (t) stays below the level μ−

3 .
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Figure 14: a) The square lattice L2 ; the fundamental cell Ω is shaded; the support
of the guided potential Q is shown by black vertices; b) the numerically obtained
dependence (for w1 = 8, w2 = 0, w3 = 4, w4 = 10 and q1 = q4 = 0, q2 = 2, q3 = 3)
of the guided spectrum of Ht on t (the guided band branches) in the gaps I1 and I2 .

REMARK 5.2. Case 3 is not covered by Theorems 2.1 and 2.3. The guided spec-
trum of Ht in the gaps I1 and I2 and the eigenvalue branches μ±

j (t) , j = 1,2, of
H±

t schematically shown in Fig.12b – Fig.14b were obtained numerically as qn = n ,
n ∈ N4 , in Case 1; q1 = 1, q2 = q3 = 0, q4 = 4 in Case 2; and q1 = q4 = 0, q2 = 2,
q3 = 3 in Case 3, where qn = Q(vn) , n ∈ N4 .
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A. Appendix: well-known properties of self-adjoint operators

In this section we formulate some well-known properties of self-adjoint operators
needed to prove our results.

PROPOSITION A.1. i) Let An be a sequence of uniformly bounded operators. If
Anψ → Aψ for ψ in some dense subspace, then An converges to A strongly (see,
Lemma 1.14 in [39], pp.50–51).

ii) Let A and An be bounded operators, and let C be a compact operator. If An

converges to A strongly, then AnC converges to AC in norm (see, e.g., Problem 32 in
[6], p.91).

iii) Let A and An be bounded self-adjoint operators. If An converges to A strongly,
then σ(A) ⊂ lim

n→∞
σ(An) . If An converges to A in norm, then σ(A) = lim

n→∞
σ(An) (see,

e.g., Theorem 6.38 in [39], p.156).
iv) Let A and An be bounded self-adjoint operators and An converges to A strongly.

Then if a,b∈ R , a < b, and (a,b)∩σ(An) = ∅ for all n , then (a,b)∩σ(A) = ∅ (see,
e.g., Theorem VIII.24 in [37], p.290).

v) The Birman-Schwinger principle. Let H0 be a self-adjoint operator, and
λ ∈ R \σ(H0) . Suppose Q � 0 is a bounded operator with Q1/2(H0 − λ )−1 com-
pact. Then the Birman-Schwinger kernel K := Q1/2(H0 − λ )−1Q1/2 is compact and
the following are equivalent:

1) λ is an eigenvalue of H0− tQ of multiplicity m;
2) t−1 is an eigenvalue of K of multiplicity m

(see, e.g., Proposition 1.5 in [5], p.63).
vi) Let A,B be self-adjoint (p× p)-matrices. Then for each n ∈ Np we have

λn(A)+ λ1(B) � λn(A+B) � λn(A)+ λp(B),

where λ1(A) � . . . � λp(A) are the eigenvalues of A arranged in non-decreasing order,
counting multiplicities (see Theorem 4.3.1 in [22], p.181).
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Ann. Henri Poincaré 13 (2012), 751–788.
[24] S. G. JOHNSON, P. R. VILLENEUVE, S. FAN, J. D.JOANNOPOULOS,Linear waveguides in photonic

crystal slabs, Phys. Rev. B 62 (2000), 8212–8222.
[25] S. G. JOHNSON, J. D. JOANNOPOULOS,Photonic crystals. The road from theory to practice, Springer

US, 2002.
[26] E. KOROTYAEV, N. SABUROVA, Schrödinger operators on periodic discrete graphs, J. Math. Anal.

Appl. 420, 1 (2014), 576–611.
[27] E. KOROTYAEV, N. SABUROVA, Spectral band localization for Schrödinger operators on periodic

graphs, Proc. Amer. Math. Soc. 143 (2015), 3951–3967.
[28] E. KOROTYAEV, N. SABUROVA, Schrödinger operators with guided potentials on periodic graphs,

Proc. Amer. Math. Soc. 145, 11 (2017), 4869–4883.
[29] E. KOROTYAEV, N. SABUROVA, Magnetic Schrödinger operators on periodic discrete graphs, J.

Funct. Anal., 272 (2017), 1625–1660.
[30] E. KOROTYAEV, N. SABUROVA, Invariants for Laplacians on periodic graphs, Math. Ann., 377

(2020), 723–758.
[31] A. KUTSENKO, Wave propagation through periodic lattice with defects, Comput. Mech. 54 (2014),

1559–1568.
[32] A. KUTSENKO, Algebra of multidimensional periodic operators with defects, J. Math. Anal. Appl.

428, 1 (2015), 217–226.
[33] A. KUTSENKO, Algebra of 2D periodic operators with local and perpendicular defects, J. Math. Anal.

Appl. 442, 2 (2016), 796–803.
[34] K.S. NOVOSELOV, A.K. GEIM ET AL, Electric field effect in atomically thin carbon films, Science

306, 5696 (2004), 666–669.
[35] G.G. OSHAROVICH, M.V. AYZENBERG-STEPANENKO, Wave localization in stratified square-cell

lattices: The antiplane problem, J. Sound Vib. 331 (2012), 1378–1397.



634 O. POST AND N. SABUROVA

[36] V.S. RABINOVICH, S. ROCH, Essential spectra of difference operators on Zn -periodic graphs, J.
Phys. A 40, 33 (2007), 10109–10128.

[37] M. REED, B. SIMON, Methods of modern mathematical physics, vol.I. Functional analysis, Academic
Press, New York, 1980.

[38] M. REED, B. SIMON, Methods of modern mathematical physics, vol.IV. Analysis of operators, Aca-
demic Press, New York, 1978.

[39] G. TESCHL, Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Opera-
tors, American Mathematical Society, Graduate Studies in Mathematics, Volume 99, 2009.

(Received August 6, 2020) Olaf Post
Fachbereich 4 – Mathematik

Universität Trier
54286 Trier, Germany

e-mail: olaf.post@uni-trier.de

Natalia Saburova
Department of Mathematical Analysis, Algebra and Geometry

Northern (Arctic) Federal University
Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia

e-mail: n.saburova@narfu.ru

Operators and Matrices
www.ele-math.com
oam@ele-math.com


