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QUANTUM STRIPS IN HIGHER DIMENSIONS

DAVID KREJČIŘÍK AND KATEŘINA ZAHRADOVÁ

Abstract. We consider the Dirichlet Laplacian in unbounded strips on ruled surfaces in any space
dimension. We locate the essential spectrum under the condition that the strip is asymptotically
flat. If the Gauss curvature of the strip equals zero, we establish the existence of discrete spec-
trum under the condition that the curve along which the strip is built is not a geodesic. On the
other hand, if it is a geodesic and the Gauss curvature is not identically equal to zero, we prove
the existence of Hardy-type inequalities. We also derive an effective operator for thin strips,
which enables one to replace the spectral problem for the Laplace-Beltrami operator on the two-
dimensional surface by a one-dimensional Schrödinger operator whose potential is expressed in
terms of curvatures.

In the appendix, we establish a purely geometric fact about the existence of relatively
parallel adapted frames for any curve under minimal regularity hypotheses.
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[19] M. KOLB AND D. KREJČIŘÍK, The Brownian traveller on manifolds, J. Spectr. Theory 4 (2014),

235–281.
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[27] D. KREJČIŘÍK, N. RAYMOND, J. ROYER, AND P. SIEGL, Reduction of dimension as a consequence

of norm-resolvent convergence and applications, Mathematika 64 (2018), 406–429.
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