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QUANTUM STRIPS IN HIGHER DIMENSIONS

DAVID KREJČIŘÍK ∗ AND KATEŘINA ZAHRADOVÁ

Abstract. We consider the Dirichlet Laplacian in unbounded strips on ruled surfaces in any space
dimension. We locate the essential spectrum under the condition that the strip is asymptotically
flat. If the Gauss curvature of the strip equals zero, we establish the existence of discrete spec-
trum under the condition that the curve along which the strip is built is not a geodesic. On the
other hand, if it is a geodesic and the Gauss curvature is not identically equal to zero, we prove
the existence of Hardy-type inequalities. We also derive an effective operator for thin strips,
which enables one to replace the spectral problem for the Laplace-Beltrami operator on the two-
dimensional surface by a one-dimensional Schrödinger operator whose potential is expressed in
terms of curvatures.

In the appendix, we establish a purely geometric fact about the existence of relatively
parallel adapted frames for any curve under minimal regularity hypotheses.

1. Introduction

The interplay between the geometry of a Euclidean domain or a Riemannian man-
ifold and spectral properties of underlying differential operators constitute one of the
most fascinating problems in mathematical sciences over the last centuries. A special
allure is without doubts due to the emotional impacts the shape of objects has over
a person’s perception of the world, while the spectrum typically admits direct physi-
cal interpretations. With the advent of nanoscience, new layouts like unbounded tubes
have become highly attractive in the context of guided quantum particles and brought
unprecedented spectral-geometric phenomena.

Let us demonstrate the attractiveness of the subject on the simplest non-trivial
model of two-dimensional waveguides that we nicknamed quantum strips on surfaces
in [20].

• The spectrum of the Laplacian in a straight strip Ω0 := R×(−a,a) of half-width
a > 0, subject to uniform boundary conditions, was certainly known to Helmholtz
if not already to Laplace. For Dirichlet boundary conditions, the spectrum coin-
cides with the semi-axis [E1,∞) , where the spectral threshold E1 := ( π

2a )2 is
positive, indicating thus an interpretation in terms of a semiconductor.

• In 1989, Exner and Šeba [11] demonstrated that bending the strip locally in the
plane does not change the essential spectrum but generates discrete eigenvalues
below E1 . In other words, realising the bent strip as a tubular neighbourhood of
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radius a of an unbounded curve in the plane, the curvature of the curve induces
a sort of attractive interaction, which diminishes the spectral threshold and leads
to quantum bound states (without classical counterparts). We refer to [25] for a
survey on the bent strips.

• What is the effect of the curvature of the ambient space on the spectrum? More
specifically, embedding the strip in a two-dimensional Riemannian manifold in-
stead of R

2 , how does the spectrum of the Dirichlet Laplacian change? In 2003,
it was demonstrated by one of the present authors [20] that positive curvature of
the ambient manifold still acts as an attractive interaction, even if the (geodesic)
curvature of the underlying curve is zero.

• On the other hand, in 2006, the same author [21] showed that the effect of nega-
tive ambient curvature is quite opposite in the sense that it now acts as a sort of
repulsive interaction. More specifically, if the Gauss curvature vanishes at infinity
and the underlying curve is a geodesic, the spectrum is [E1,∞) like in the straight
strip, but the Dirichlet Laplacian additionally satisfies Hardy-type inequalities.

• As a matter of fact, the presence of Hardy-type inequalities was proved in [21]
only for strips on ruled surfaces, but the robustness of the result for general neg-
atively curved surfaces was further confirmed in [19]. Now, a strip on a ruled
surface can be alternatively realised as a twisted (and possibly also bent) strip
in R

3 , so the repulsiveness effect is analogous to the presence of Hardy-type
inequalities in solid waveguides [10] (see also [22]).

The primary objective of this paper is to extend the results for strips on ruled
surfaces to higher dimensions, meaning that the twisted and bent two-dimensional strip
is embedded in R

d with any d � 3. A secondary goal is to improve and unify the known
results even in dimension d = 3 by considering more general underlying curves. More
specifically, we consider strips built with help of a relatively parallel adapted frame
(which always exists) instead of the customary Frenet frame (which does not need to
exist). Since this purely geometric construction, which we have decided to present in
the appendix, does not seem to be well known (definitely not for higher-dimensional
curves), we believe that the material will be of independent interest (not only) for the
quantum-waveguide community.

The structure of the paper is as follows. In Section 2 we introduce the Dirichlet
Laplacian in strips on ruled surfaces in any space dimension under minimal regularity
hypotheses. The essential spectrum of asymptotically flat strips is located in Section 3.
The effects of bending and twisting are investigated in Sections 4 and 5, respectively. In
Section 6 we show that, in the limit when the width of the strip tends to zero, the Dirich-
let Laplacian converges in a norm resolvent sense to a one-dimensional Schrödinger
operator whose potential contains information about the deformations of twisting and
bending. Appendix A is devoted to the construction of a relatively parallel adapted
frame for an arbitrary curve.
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Figure 1: A simultaneously bent and twisted strip.

2. Definition of quantum strips

2.1. The reference curve

Given any positive integer n , let Γ : R → R
n+1 be a curve of class C1,1 which

is (without loss of generality) parameterised by its arc-length (i.e. |Γ′(s)| = 1 for all
s ∈ R). By the regularity hypothesis, the tangent vector field T := Γ′ is differentiable
almost everywhere. Moreover, in Appendix A, we show that there exist n almost-
everywhere differentiable normal vector fields N1, . . . ,Nn such that

⎛
⎜⎜⎜⎝

T
N1
...

Nn

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

0 k1 . . . kn

−k1 0 . . . 0
...

...
. . .

...
−kn 0 . . . 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T
N1
...

Nn

⎞
⎟⎟⎟⎠ , (2.1)

where k1, . . . ,kn : R → R are locally bounded functions. Introducing the n -tuple k :=
(k1, . . . ,kn) and calling it the curvature vector, we have k2

1 + . . .+ k2
n = κ2 with κ :=

|Γ′′| being the curvature of Γ .
Since the derivative N′

j is tangential for every j ∈ {1, . . . ,n} , the normal vectors
rotate along the curve Γ only whatever amount is necessary to remain normal. In fact,
each normal vector Nj is translated along Γ as close to a parallel transport as possible
without losing normality. For this reason, and in analogy with the three-dimensional
setting [2], each vector field Nj is called relatively parallel and the (n + 1)-tuple
(T,N1, . . . ,Nn) is called a relatively parallel adapted frame. Notice that contrary to the
standard Frenet frame which requires a higher regularity Cn+1 and the non-degeneracy
condition κ > 0, the relatively parallel adapted frame always exists under the minimal
hypothesis C1,1 .

2.2. The strip as a surface in the Euclidean space

Recall the definition Ω0 := R× (−a,a) for a straight strip. Isometrically embed-
ding Ω0 to R

n+1 , we can think of Ω0 as a surface in R
n+1 obtained by parallelly trans-

lating the segment (−a,a) along a straight line. We define a general curved strip Ω
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in R
n+1 as the ruled surface obtained by translating the segment (−a,a) along Γ with

respect to a generic normal field

NΘ := Θ1N1 + . . .+ ΘnNn , (2.2)

where Θ j : R → R with j ∈ {1, . . . ,n} are such scalar functions that Θ j ∈C0,1(R) and

Θ2
1 + . . .+ Θ2

n = 1 . (2.3)

More specifically, we set

Ω :=
{

Γ(s)+NΘ(s)t : (s,t) ∈ Ω0
}

. (2.4)

In this way, Ω can be clearly understood as a deformation of the straight strip Ω0 , see
Figure 1.

We construct the n -tuple Θ := (Θ1, . . . ,Θn) and call it the twisting vector. We
naturally write |Θ′| := (Θ′2

1 + . . . + Θ′2
n )1/2 . If the twisting vector Θ is constant, i.e.

Θ′ = 0, so that the vector field NΘ is relatively parallel, we say that the strip Ω is
untwisted or purely bent (including the trivial situation κ = 0 when Ω can be identified
with the straight strip Ω0 ). See Figure 2 for a purely bent planar strip and Figure 5
(middle) for a purely bent non-planar strip.

Figure 2: A purely bent (planar) strip.

On the other hand, if the scalar product of the curvature and twisting vectors van-
ishes, i.e. k ·Θ := k1Θ1+ . . .+knΘn = 0, we say that the strip is unbent or purely twisted
(including again the trivial situation κ = 0 and Θ′ = 0 when Ω can be identified with
the straight strip Ω0 ). See Figure 3 for a purely twisted strip along a straight line and
Figure 5 (right) for a purely twisted strip along a space curve.

Figure 3: A purely twisted strip.
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Notice that unbent and untwisted does not necessarily mean that Ω and Ω0 are
isometric (think of a planar non-straight curve Γ in R

3 and choose for NΘ the binormal
vector field), see Figure 4.

Figure 4: An unbent untwisted strip.

Finally, Figure 5 provides an example of a (non-planar) bent strip, which is twisted
or untwisted according to whether NΘ is relatively parallel or not, respectively.

k ·Θ �= 0 ∧ Θ′ �= 0 k ·Θ �= 0 ∧ Θ′ = 0 k ·Θ = 0 ∧ Θ′ �= 0

Figure 5: Strips built along a helix. Left: simultaneously bent and twisted version (the principal
normal of the Frenet frame is used). Middle: bent and untwisted version (a relatively parallel
frame is used). Right: unbent and twisted version (a sum of the principal normal and binormal of
the Frenet frame is used).

REMARK 2.1. Let us provide geometrical interpretations to the crucial quantities
k ·Θ and Θ′ and supporting in this way the terminology introduced above. Interpret-
ing Γ as a curve on the surface Ω , it is easily seen that k · Θ is just the geodesic
curvature of Γ . Hence, the strip is unbent if, and only if, Γ is a geodesic on Ω . At
the same time, the Gauss curvature of the surface Ω equals −|Θ′|2/ f 4 , where f is
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given in (2.6) below. In accordance with a general result for ruled surfaces (cf. [18,
Prop. 3.7.5]), we observe that this intrinsic curvature of the ambient manifold Ω is al-
ways non-positive. Moreover, the strip is untwisted if, and only if, the surface Ω is flat
in the sense that the Gauss curvature is identically equal to zero.

2.3. The strip as a Riemannian manifold

Further conditions must be imposed on the geometry of Ω in order to identify the
curved strip with a Riemannian manifold. To this aim, let us introduce the mapping
L : R

2 → R
n+1 defined by (cf. (2.4))

L (s,t) := Γ(s)+NΘ(s)t , (2.5)

so that Ω = L (Ω0) . The blue segments in the figures represent the geodesics t �→
L (s, t) for various choices of s , while the black lines correspond to the curves s �→
L (s, t) parallel to Γ at distance |t| .

Consider the metric g := ∇L · (∇L )T , where the dot denotes the matrix multi-
plication in R

n+1 . A simple computation using (2.1) yields

g =
(

f 2 0
0 1

)
with f (s,t) :=

√[
1− t k(s) ·Θ(s)

]2 + t2 |Θ′(s)|2 . (2.6)

Let us now strengthen our standing hypotheses.

ASSUMPTION 1. Let Γ ∈ C1,1(R;Rn+1) and Θ ∈ C0,1(R;Rn) . Suppose (2.3),
k ·Θ ∈ L∞(R) and

a‖k ·Θ‖L∞(R) < 1 .

It follows from Assumption 1 that the Jacobian f never vanishes, namely

f (s,t) � 1−a‖k ·Θ‖L∞(R) > 0 (2.7)

for almost every (s, t) ∈ Ω0 . If Γ and Θ were smooth functions, the inverse function
theorem would immediately imply that L : Ω0 → Ω is a local smooth diffeomorphism,
so that Ω could be identified with the Riemannian manifold (Ω0,g) , with L realising
an immersion in R

n+1 . Under our minimal regularity assumptions, however, we have
to be rather careful.

PROPOSITION 2.2. Suppose Assumption 1. Then L : Ω0 → Ω is a local C0,1 -
diffeomorphism.

Proof. Given any bounded interval I ⊂ R , let s1,s2 ∈ I and t1,t2 ∈ (−a,a) . Let
us look at the difference

L (s2, t2)−L (s1,t1)
=Γ(s2)−Γ(s1)+NΘ(s2)t2 −NΘ(s1)t1

=
∫ s2

s1
T (ξ )dξ +(t2− t1)NΘ(s1)+ t2

∫ s2

s1
N′

Θ(ξ )dξ

=
∫ s2

s1

([
1− t2 (k ·Θ)(ξ )

]
T (ξ )+

[
t2 (Θ′ ·N)(ξ )

])
dξ +(t2− t1)NΘ(s1) ,
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where we have used (2.2) and (2.1) and abbreviated Θ′ ·N := Θ′
1N1 + . . .+Θ′

nNn . From
the identity on the last line, we immediately conclude that

|L (s2, t2)−L (s1,t1)| �
[
(1+a‖k ·Θ‖∞)+a‖Θ′‖∞

] |s2− s1|+ |t1− t1| ,
where ‖ · ‖∞ denotes the supremum norm of L∞(I) and ‖Θ′‖∞ := ‖|Θ′|‖∞ . Since the
choice of the interval I has been arbitrary, we conclude that L is a locally Lipschitz
function.

To show that L is a locally bi-Lipschitz function, i.e. also the inverse L −1 is a
Lipschitz function on I× (−a,a) , we further improve the expansions above to

Γ(s2)−Γ(s1) = T (s1)(s2 − s1)+
∫ s2

s1

∫ ξ

s1
(k ·N)(η)dη dξ ,

∫ s2

s1
N′

Θ(ξ )dξ = N(s1) ·
∫ s2

s1
Θ′(ξ )dξ −T (s1)

∫ s2

s1
(k ·Θ)(ξ )dξ

+
∫ s2

s1

∫ ξ

s1
Θ′(ξ ) ·N′(η)dη dξ −

∫ s2

s1

∫ ξ

s1
(k ·Θ)(ξ )T ′(η)dη dξ .

That is, we can write L (s2,t2)−L (s1,t1) = A+B with

A := T (s1)
[
(s2 − s1)− t2

∫ s2

s1
(k ·Θ)(ξ )dξ

]

+N(s1) ·
[
(t2 − t1)Θ(s1)+ t2

∫ s2

s1
Θ′(ξ )dξ

]
,

B :=
∫ s2

s1

∫ ξ

s1
(k ·N)(η)dη dξ + t2

∫ s2

s1

∫ ξ

s1
Θ′(ξ ) ·N′(η)dη dξ

− t2

∫ s2

s1

∫ ξ

s1
(k ·Θ)(ξ )T ′(η)dη dξ .

For every δ1,δ2 ∈ (0,1) , we have

|A|2 =
[
(s2 − s1)− t2

∫ s2

s1
(k ·Θ)(ξ )dξ

]2

+
[
(t2 − t1)Θ(s1)+ t2

∫ s2

s1
Θ′(ξ )dξ

]2

� δ1 (s2 − s1)2 − δ1

1− δ1
a2 ‖k ·Θ‖2

∞ (s2 − s1)2 + δ2 (t2− t1)2

− δ2

1− δ2
a2 ‖Θ′‖2

∞ (s2 − s1)2

= δ1 (s2 − s1)2
[
1− 1

1− δ1
a2‖k ·Θ‖2

∞− δ2/δ1

1− δ2
a2 ‖Θ′‖2

∞

]
+ δ2 (t2− t1)2 .

By Assumption 1, we can choose δ1 so small that 1− 1
1−δ1

a2 ‖k ·Θ‖2
∞ is positive.

Then we choose δ2 so small that the square bracket in the last line above is positive.
Altogether we can assure that there is a positive constant c , depending exclusively on
the choice of the interval I , such that

|A| � c
√

(s2 − s1)2 +(t2− t1)2 .
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At the same time, using (2.1), we have

|B| � (s2 − s1)2 (‖κ‖∞ +a‖Θ′‖∞‖κ‖∞ +a‖κ‖2
∞
)
.

Notice that ‖κ‖∞ is finite by Assumption 1, although κ is not supposed to be necessar-
ily bounded on R . That is, there exists a positive constant C , depending exclusively on
the choice of the interval I , such that |B| � C|I||s2 − s1| , where |I| denotes the length
of the interval I . Consequently,

|L (s2, t2)−L (s1,t1)| � (c−C|I|)
√

(s2 − s1)2 +(t2− t1)2

for all s1,s2 ∈ I and t1,t2 ∈ (−a,a) . Choosing |I| sufficiently small, we see that L is
invertible on I× (−a,a) and that the inverse L −1 is a locally Lipschitz function. �

As a consequence of this proposition, the restriction L � Ω0 is a C0,1 -immersion.
Assuming additionally that L � Ω0 is injective, then it is actually an embedding and Ω
has a geometrical meaning of a non-self-intersecting strip. For our purposes, however,
it is enough to assume that Ω is an immersed submanifold. Even less, disregarding
the ambient space R

n+1 completely, instead of Ω we shall consider (Ω0,g) as an
abstract Riemannian manifold. From now on, we thus assume the minimal hypotheses
of Assumption 1 and nothing more.

REMARK 2.3. It is worth noticing that, contrary to the geodesic curvature k ·Θ ,
the curvature κ is not assumed to be (globally) bounded by Assumption 1. In particular,
Γ is allowed to be a spiral with κ(s) → ∞ as s →±∞ .

2.4. The strip as a quantum Hamiltonian

The word “quantum” refers to that we consider the Hamiltonian of a free quantum
particle constrained to Ω . As usual, we model the Hamiltonian by the Laplace-Beltrami
operator in L2(Ω) , subject to Dirichlet boundary condition. Since we think of Ω as part
of an abstract manifold (not necessarily embedded in R

n+1 ), we disregard the presence
of extrinsic potentials occasionally added to the Laplace-Beltrami operator in order to
justify quantisation on submanifolds (cf. [13]).

Using the identification Ω ∼= (Ω0,g) with the metric g given by (2.6), the operator
of our interest is thus the self-adjoint operator H in the Hilbert space

H := L2(Ω0, |g(s,t)|1/2 dsdt) = L2(Ω0, f (s,t)dsdt) (2.8)

that acts as

−Δg := −|g|1/2∂μ |g|1/2gμν∂ν = − f−1 ∂1 f−1 ∂1− f−1 ∂2 f ∂2 (2.9)

in Ω0 and the functions in the operator domain vanish on ∂Ω0 . Here we employ the
standard notations |g| := det(g) and (gμν ) = g−1 together with the Einstein summation
convention with the range of indices being μ ,ν ∈ {1,2} . As usual we introduce H
as the Friedrichs extension of the operator −Δg initially defined on C∞

0 (Ω0) . More



QUANTUM STRIPS 643

specifically, H is defined as the self-adjoint operator associated in H (in the sense of
the representation theorem [16, Thm. VI.2.1]) with the quadratic form

h[ψ ] := ‖ f−1/2∂1ψ‖2
H +‖ f 1/2∂2ψ‖2

H

=
∫

Ω0

|∂1ψ(s,t)|2
f (s,t)

dsdt +
∫

Ω0

|∂2ψ(s,t)|2 f (s, t)dsdt ,

Dom(h) := C∞
0 (Ω0)

‖·‖H1 , where ‖ψ‖H1
:=

√
h[ψ ]+‖ψ‖2

H .

(2.10)

By H1 we shall understand the Hilbert space Dom(h) equipped with the norm ‖·‖H1 .
Under our standing hypotheses of Assumption 1, the crucial bound (2.7) holds

and, moreover, the function f is locally bounded. Consequently, one has

{ψ ∈W 1,2
0 (Ω0) : suppψ ⊂ [−R,R]× [−a,a] for some R > 0} ⊂ Dom(h) . (2.11)

Assuming in addition that
|Θ′| ∈ L∞(R) , (2.12)

then there exists a positive constant C such that even the global bounds

C−1 � f (s,t) � C (2.13)

hold for almost every (s,t) ∈ Ω0 . Consequently, ‖ ·‖H1 is equivalent to the usual norm

of the Sobolev space W 1,2(Ω0) and one has Dom(h) = W 1,2
0 (Ω0) . In this paper, how-

ever, we proceed in a greater generality without assuming the extra hypothesis (2.12).

3. Asymptotically flat strips

If the strip Ω is flat in the sense that its metric (2.6) is Euclidean, i.e. f = 1
(identically), then H coincides with the Dirichlet Laplacian in Ω0 , which we denote
here by H0 . More specifically, H0 is the operator in H0 := L2(Ω0) associated with the
quadratic form h0[ψ ] :=

∫
Ω0

|∇ψ(x)|2 dx , Dom(h0) :=W 1,2
0 (Ω0) . It is well known that

σ(H0) = [E1,∞) with E1 :=
( π

2a

)2

and that the (purely essential) spectrum is in fact purely absolutely continuous.
In this section, we consider quantum strips which are asymptotically flat in the

sense that their metric (2.6) converges to the flat metric at the infinity of Ω0 . More
specifically, we impose the conditions

lim
|s|→∞

(k ·Θ)(s) = 0 and lim
|s|→∞

|Θ′(s)| = 0 . (3.1)

Since quantum propagating states are expected to be determined by the behaviour of
the metric at infinity, the following result is very intuitive.
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THEOREM 3.1. Suppose Assumption 1. If (3.1) holds, then

σess(H) = [E1,∞) .

We establish the theorem as a consequence of two lemmata. First we show that
the energy of the propagating states cannot descend below E1 .

LEMMA 3.2. Suppose Assumption 1. If (3.1) holds, then

infσess(H) � E1 .

Proof. Given any arbitrary positive number s0 , we divide Ω0 into an interior and
an exterior part with respect to s0 as follows:

Ω0,int := (−s0,s0)× (−a,a) , Ω0,ext := Ω0 \Ω0,int .

Imposing Neumann boundary conditions on the segments {±s0}× (−a,a) , one gets
the lower bound

H � HN := HN
int⊕HN

ext (3.2)

in the sense of forms in H . Here HN
int is the operator in the Hilbert space Hint :=

L2(Ω0,int, f (s, t)dsdt) associated with the quadratic form hN
int that acts as h but whose

domain is restricted to Ω0,int . More specifically,

hN
int[ψ ] :=

∫
Ω0,int

|∂1ψ(s,t)|2
f (s,t)

dsdt +
∫

Ω0,int

|∂2ψ(s, t)|2 f (s,t)dsdt ,

Dom(hN
int) :=

{
ψ := ψ̃ � Ω0,int : ψ̃ ∈ Dom(h)

}
.

Note that no boundary conditions are imposed on the parts {±s0}× (−a,a) of the
boundary ∂Ω0,int in the form domain, while Dirichle boundary conditions are consid-
ered on the remaining parts of the boundary. The operator HN

ext , the form hN
ext and the

Hilbert space Hext are defined analogously.
Employing the Neumann bracketing described above, we have

infσess(H) � infσess(HN) = infσess(HN
ext) � infσ(HN

ext) .

Here the first inequality follows from (3.2) via the minimax principle, the equality is
due to the fact that the spectrum of HN

int is purely discrete and the last inequality is
trivial. Hence, it is sufficient to find a suitable lower bound to the spectrum of HN

ext . To
this aim, for every ψ ∈ Dom(hN

ext) , we estimate the quadratic form as follows:

hN
ext[ψ ] �

∫
Ω0,ext

|∂2ψ(s,t)|2 f (s,t)dsdt

�
(
ess inf
Ω0,ext

f
)∫

Ω0,ext

|∂2ψ(s,t)|2 dsdt

� E1
(
ess inf
Ω0,ext

f
)∫

Ω0,ext

|ψ(s,t)|2 dsdt
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� E1
(
ess inf
Ω0,ext

f
)(

esssup
Ω0,ext

f
)−1

∫
Ω0,ext

|ψ(s,t)|2 f (s,t)dsdt

= E1
(
ess inf
Ω0,ext

f
)(

esssup
Ω0,ext

f
)−1‖ψ‖2

Hext
.

Consequently,

infσess(H) � E1
(
ess inf
Ω0,ext

f
)(

esssup
Ω0,ext

f
)−1

.

Taking the limit s0 → ∞ , the asymptotic hypothesis (3.1) ensures that the right-hand
side tends to E1 , while the left-hand side is independent of s0 . This concludes the
proof of the lemma. �

It remains to show that all energies above E1 belong to the essential spectrum.

LEMMA 3.3. Suppose Assumption 1. If (3.1) holds, then

σess(H) ⊃ [E1,∞) .

Proof. Our argument is based on the Weyl criterion adapted to quadratic forms
(see [26, Thm. 5] for the proof of the criterion and [25, Lem. 5.3] for an original appli-
cation to quantum waveguides). It states that to prove that η is in the spectrum of the
operator H , it is enough to find a sequence {ψn}n∈N ⊂ Dom(h) such that

(i) liminf
n→∞

‖ψn‖H > 0,

(ii) lim
n→∞

‖(H−η)ψn‖H−1 = 0,

where H−1 denotes the dual space of H1 . Notice that the mapping H +1 : H1 →H−1

is an isomorphism and that the dual norm is given by

‖ψ‖H−1 = sup
φ∈Dom(h)

φ �=0

|H1(φ ,ψ)H−1 |
‖φ‖H1

,

where H1(·, ·)H−1 denotes the duality pairing between H1 and H−1 . In contrast to the
conventional Weyl criterion, the advantage of this characterisation is that the sequence
is required to lie in the form domain only and the limit in (ii) is taken in the weaker
topology of H−1 .

We parameterise η by setting η = λ 2 +E1 with any λ ∈ R . Note that the differ-
ential equations −Δψ = ηψ is solved by (s,t) �→ χ1 (t)eiλ s , where

χ1(t) :=

√
1
a

cos
(√

E1t
)

(3.3)

denotes the normalised eigenfunction of the Dirichlet Laplacian in (−a,a) correspond-
ing to the eigenvalue E1 . However, this solution does not even belong to H . To get
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an approximate solution which simultaneously belongs to Dom(h) and is “localised at
infinity”, for every n ∈ N := {1,2, . . .} we set

ϕn (s) :=
1√
n

ϕ
( s

n
−n

)
,

where ϕ ∈C∞
0 (R) is any function such that suppϕ ⊂ (−1,1) and ‖ϕ‖L2(R) = 1. The

normalisation factor is chosen in such a way that

‖ϕn‖L2(R) = ‖ϕ‖L2(R) = 1 ,

‖ϕ ′
n‖L2(R) = n−1 ‖ϕ ′‖L2(R) ,

‖ϕ ′′
n ‖L2(R) = n−2 ‖ϕ ′′‖L2(R) .

(3.4)

Notice also that suppϕn ⊂
(
n2−n,n2 +n

)
. We then define

ψn (s,t) := ϕn (s)χ1 (t)eiλ s .

Recalling (2.11), we clearly have ψn ∈ Dom(h) for every n ∈ N . Our aim is to show
that {ψn}n∈N satisfies conditions (i) and (ii) of the modified Weyl criterion.

First of all, notice that, due to (2.7) and the normalisations of ϕ and χ1 , we have

‖ψn‖2
H � 1−a‖k ·Θ‖L∞(R) > 0 ,

so the condition (i) clearly holds. Next, for every φ ∈ Dom(h) , we have

|H1(φ ,(H −η)ψn)H−1 | = |h(φ ,ψn)−η(φ ,ψn)H |
� |h1(φ ,ψn)−λ 2(φ ,ψn)H |+ |h2(φ ,ψn)−E1(φ ,ψn)H | ,

where, recalling (2.10), h1[ψ ] := ‖ f−1/2∂1ψ‖2
H , h2[ψ ] := ‖ f 1/2∂2ψ‖2

H , Dom(h1) :=
Dom(h) =: Dom(h2) . Integrating by parts and using that −χ ′′

1 = E1χ1 together with
the normalisations of ϕ and χ1 , we have

|h2(φ ,ψn)−E1(φ ,ψn)H | =
∣∣∣∣
∫

Ω0

φ(s,t)∂2ψn(s,t)∂2 f (s,t)dsdt

∣∣∣∣
� ‖φ‖H ‖∂2ψn‖H0

∥∥∥∥∂2 f√
f

∥∥∥∥
∞,n

� ‖φ‖H1

√
E1

∥∥∥∥∂2 f√
f

∥∥∥∥
∞,n

,

(3.5)

where ‖ · ‖∞,n := ‖ · ‖L∞(suppϕn×(−a,a)) . At the same time, we have

h1(φ ,ψn) =
∫

Ω0

∂1φ (s,t)∂1ψn(s,t)
[

1
f (s,t)

−1

]
dsdt−

∫
Ω0

φ(s,t)∂ 2
1 ψn(s,t)dsdt ,

(φ ,ψn)H =
∫

Ω0

φ (s,t)ψn(s,t) [ f (s,t)−1]dsdt +
∫

Ω0

φ (s,t)ψn(s,t)dsdt .
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Consequently, using that −∂ 2
1 ψn(s,t)−λ 2ψn(s,t)= [−ϕ ′′

n (s)−2iλ ϕ ′
n(s)]e

iλ s χ1(t) and
the normalisations of ϕ and χ1 again, we get

|h1(φ ,ψn)−λ 2(φ ,ψn)H | � ‖ f−1/2φ‖H ‖∂1ψn‖H0

∥∥∥∥ 1√
f
−

√
f

∥∥∥∥
∞,n

+ λ 2‖φ‖H ‖ψn‖H0

∥∥∥∥√
f − 1√

f

∥∥∥∥
∞,n

+‖φ‖H ‖ϕ ′′
n +2iλ ϕ ′

n‖L2(R)

∥∥∥∥ 1√
f

∥∥∥∥
∞,n

� ‖φ‖H1 ‖ϕ ′
n + iλ ϕn‖L2(R)

∥∥∥∥ 1√
f
−

√
f

∥∥∥∥
∞,n

+ λ 2‖φ‖H1

∥∥∥∥√
f − 1√

f

∥∥∥∥
∞,n

+‖φ‖H1 ‖ϕ ′′
n +2iλ ϕ ′

n‖L2(R)

∥∥∥∥ 1√
f

∥∥∥∥
∞,n

.

(3.6)

Putting (3.5) and (3.6) together, we finally arrive at

‖(H−η)ψn‖H−1 �
√

E1

∥∥∥∥∂2 f√
f

∥∥∥∥
∞,n

+
(‖ϕ ′

n + iλ ϕn‖L2(R) + λ 2)∥∥∥∥ 1√
f
−

√
f

∥∥∥∥
∞,n

+‖ϕ ′′
n +2iλ ϕ ′

n‖L2(R)

∥∥∥∥ 1√
f

∥∥∥∥
∞,n

.

Here the first line on the right-hand side tends to zero as n → ∞ due to (3.1), while
the second line vanishes as n → ∞ due to (3.4). This establishes (ii) and the lemma is
proved. �

Theorem 3.1 follows as a direct consequence of Lemmata 3.2 and 3.3.

4. Purely bent strips

In this section, we consider strips constructed in such a way that the twisting vec-
tor Θ is constant, so that NΘ is relatively parallel and Ω is untwisted. We show that the
geodesic curvature k ·Θ acts as an attractive interaction in the sense that it diminishes
the spectrum. Recall that k ·Θ can be equal to zero even if κ �= 0 (like, for instance, in
Figure 5, right).

THEOREM 4.1. Suppose Assumption 1. If Θ′ = 0 and k ·Θ �= 0 , then

infσ(H) < E1 .

Proof. The proof is based on the variational strategy of finding a trial function
ψ ∈ Dom(h) such that

h1[ψ ] := h[ψ ]−E1‖ψ‖2
H < 0 . (4.1)
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Following [20], we shall achieve the strict inequality by mollifying the first transverse
eigenfunction χ1 introduced in (3.3).

Let ϕ1 ∈C∞
0 (R) be a real-valued function such that 0 � ϕ1 � 1, ϕ1 = 1 on [−1,1]

and ϕ1 = 0 on R\ [−2,2] . Setting ϕn(s) := ϕ1(s/n) for every n ∈ N , we get a family
of functions from W 1,2(R) such that ϕn → 1 pointwise as n → ∞ and

‖ϕ ′
n‖2

L2(R) = n−1‖ϕ ′
1‖2

L2(R) −−−→n→∞
0 . (4.2)

Defining
ψn(s,t) := ϕn(s)χ1(t)

and integrating by parts with help of −χ ′′
1 = E1χ1 , we have

h1[ψn] =
∫

Ω0

|∂1ψn(s,t)|2
f (s,t)

dsdt +
1
2

∫
Ω0

|ψn(s,t)|2 ∂ 2
2 f (s,t)dsdt

=
∫

Ω0

|ϕ ′
n(s)|2|χ1(t)|2

f (s,t)
dsdt .

Here the second equality follows from the fact that the Jacobian f of the metric (2.6)
reduces to

f (s,t) = 1− t k(s) ·Θ(s)

provided that Θ is constant, so it is linear in the second variable and ∂ 2
2 f = 0. Us-

ing (2.7) and (4.2), we therefore conclude that

lim
n→∞

h1[ψn] = 0 . (4.3)

It follows that the functional h1 vanishes at χ1 in a generalised sense. The next
(and last) step in our strategy is to show that χ1 does not correspond to the minimum
of the functional. To this purpose, we add the following asymmetric perturbation

ψn,ε(s, t) := ψn(s,t)+ ε φ(s,t) , where φ(s,t) := η(s)t χ1(t) ,

with ε ∈ R and η ∈C∞
0 (R) being a non-zero real-valued function to be specified later.

Plugging it into the functional, we obviously have

h1[ψn,ε ] = h1[ψn]+2ε h1(ψn,φ)+ ε2 h1[φ ] . (4.4)

Since ϕn = 1 on suppη for all sufficiently large n , the central term is in fact indepen-
dent of n and equals

h1(ψn,φ) =
∫

Ω0

η(s)χ ′
1(t) [t χ1(t)]′ f (s,t)dsdt −E1

∫
Ω0

η(s)t |χ1(t)|2 f (s, t)dsdt

= −
∫

Ω0

η(s)χ ′
1(t)tχ1(t)∂2 f (s,t)dsdt

=
1
2

∫
Ω0

η(s) |χ1(t)|2 ∂2 f (s,t)dsdt = −1
2

∫
R

η(s)(k ·Θ)(s)ds .
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Here the second and third equalities follow by integrations by parts using that −χ ′′
1 =

E1χ1 and ∂ 2
2 f = 0. Since k ·Θ is not identically equal to zero by the hypothesis of

the theorem, it is possible to choose η in such a way that the last integral is positive.
Summing up, h1(ψn,φ) equals a negative number for all sufficiently large n . Coming
back to (4.4), it is thus possible to choose a positive ε so small that sum of the last two
terms on the right-hand side of (4.4) is negative. Then, recalling (4.3), we can choose n
so large that h1[ψn,ε ] < 0. Hence, infσ(H) < 0 by the Rayleigh-Ritz variational char-
acterisation of the lowest point in the spectrum of H . �

As a consequence of Theorem 4.1, if the strip is in addition asymptotically flat
in the sense of (3.1) (of course, just the first limit is relevant under the hypotheses
of Theorem 4.1), then the essential spectrum starts by E1 (cf. Theorem 3.1) and the
spectral threshold infσ(H) necessarily corresponds to a discrete eigenvalue.

COROLLARY 4.2. In addition to the hypotheses of Theorem 4.1, let us assume
(3.1). Then

σdisc(H)∩ (0,E1) �= ∅ .

This is a generalisation of the celebrated result [11] about the existence of quantum
bound states in curved planar quantum waveguides.

5. Purely twisted strips

In this section, we consider strips constructed in such a way that k ·Θ = 0, so
that Ω is unbent. Recall that this hypothesis does not necessarily mean that Γ is a
straight line (for instance, the setting in Figure 5, right, is admissible). We show that
the twisting vector Θ acts as a repulsive interaction in the sense that it induces Hardy-
type inequalities whenever Θ′ is not identically equal to zero (but it is not too large).

THEOREM 5.1. Suppose Assumption 1. If k ·Θ = 0 and Θ′ �= 0 satisfies

a‖Θ′‖L∞(R) �
√

2 , (5.1)

then there exists a positive constant c such that the inequality

H −E1 � cρ (5.2)

holds in the sense of quadratic forms in H , where ρ(s, t) := 1/(1+ s2) .

To prove the theorem, we follow the strategy of [21]. The main idea is to introduce
a function λ : R → R by setting

λ (s) := inf
ψ∈W 1,2

0 ((−a,a))
ψ �=0

∫ a

−a
|ψ ′(t)|2 f (s,t) dt∫ a

−a
|ψ(t)|2 f (s,t) dt

−E1 . (5.3)
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We keep the same notation for the function λ ⊗1 on R× (−a,a) . Note that under the
assumption k ·Θ = 0 of this section, the Jacobian f of the metric (2.6) reduces to

f (s,t) =
√

1+ t2 Θ′(s)2 . (5.4)

The following lemma is the crucial ingredient in the proof of Theorem 5.1.

LEMMA 5.2. Under the assumptions of Theorem 5.1, λ is a non-negative non-
trivial function.

Proof. Fix any s ∈ R . Employing the change of the test function φ :=
√

f ψ and
by integrating by parts, we obtain

λ (s) = inf
φ∈W1,2

0 ((−a,a))
φ �=0

∫ a

−a

(|φ ′(t)|2−E1 |φ(t)|2 +V(s,t) |φ(t)|2) dt∫ a

−a
|φ(t)|2 dt

(5.5)

with

V (s,t) :=
Θ′(s)2

(
2− t2 Θ′(s)2

)
4 f (s,t)4 .

We note that λ (s) is the spectral threshold of the self-adjoint operator L in the Hilbert
space L2((−a,a)) associated with the closed form

l[φ ] :=
∫ a

−a

(|φ ′(t)|2−E1 |φ(t)|2 +V(s,t) |φ(t)|2) dt , Dom(l) := W 1,2
0 ((−a,a)) .

Since the resolvent of L is compact, λ (s) is the lowest eigenvalue of L . Let us denote
by φ1 a corresponding eigenfunction. By standard arguments (cf. [14, Thm. 8.38]),
the eigenvalue is simple and φ1 can be chosen to be positive. The infimum in (5.5) is
clearly achieved by φ1 . Due to the hypothesis (5.1), the function V is non-negative. At
the same time, one has the Poincaré inequality

∀φ ∈W 1,2
0 ((−a,a)) ,

∫ a

−a
|φ ′(t)|2 dt � E1

∫ a

−a
|φ(t)|2 dt . (5.6)

Consequently, λ (s) is clearly non-negative. Now, assume that λ (s) = 0. Then neces-
sarily V (s, t) = 0 for every t ∈ (−a,a) , which implies Θ′(s) = 0. Since Θ′ is supposed
not to be identically equal to zero, we necessarily have λ �= 0 as well. �

Using just the definition (5.3) in (2.10), we immediately get the inequality

H−E1 � λ . (5.7)

By Lemma 5.2, it is a Hardy-type inequality whenever the assumptions of Theorem 5.1
hold true. We call it a local Hardy inequality because the defect of (5.7) is that the right-
hand side might not be positive everywhere in Ω0 (like, for instance, if Θ′ is compactly
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supported). To transfer it into the global Hardy inequality (5.2) of Theorem 5.1, we use
the longitudinal kinetic energy that we have neglected when deriving (5.7).

Proof of Theorem 5.1. Let ψ ∈C∞
0 (Ω0) . Under the hypotheses of the theorem, it

follows from Lemma 5.2 that λ is non-negative and non-trivial. Let us fix any bounded
open interval I ⊂R on which λ is non-trivial. Let us abbreviate ΩI

0 := I× (−a,a) and
HI := L2(ΩI

0, f (s, t)dsdt) . We shall widely use the bounds

1 � f (s,t) �
√

1+a2‖Θ′‖2
L∞(I) =: C

valid for almost every (s,t) ∈ ΩI
0 . Recall the definition of the shifted form h1 given

in (4.1). By using the definition (5.3) in (2.10), we get

h1[ψ ] �
∫

Ω0

|∂1ψ(s,t)|2
f (s,t)

dsdt +
∫

Ω0

λ (s) |ψ(s,t)|2 f (s,t)dsdt

�
∫

ΩI
0

|∂1ψ(s,t)|2
f (s,t)

dsdt +
∫

ΩI
0

λ (s) |ψ(s,t)|2 f (s,t)dsdt

� C−1
∫

ΩI
0

(|∂1ψ(s,t)|2 + λ (s) |ψ(s, t)|2)dsdt

� C−1λ0

∫
ΩI

0

|ψ(s,t)|2 dsdt

� C−2λ0 ‖ψ‖2
HI

,

(5.8)

where λ0 > 0 is the lowest eigenvalue of the Schrödinger operator −∂ 2
s + λ (s) in

L2(I) , subject to Neumann boundary conditions.
Let us denote by s0 the middle point of I . Let η ∈ C∞(R) be such that 0 �

η � 1, η = 0 in a neighbourhood of s0 and η = 1 outside I . Let us denote by the
same symbol η the function η ⊗1 on R× (−a,a) , and similarly for its derivative η ′ .
Writing ψ = ηψ +(1−η)ψ , we have∫

Ω0

|ψ(s,t)|2
1+(s− s0)2 dsdt

�2
∫

Ω0

|(ηψ)(s,t)|2
(s− s0)2 dsdt +2

∫
Ω0

|((1−η)ψ)(s,t)|2 dsdt

�8
∫

Ω0

|∂1(ηψ)(s,t)|2 dsdt +2
∫

ΩI
0

|ψ(s,t)|2 dsdt

�16
∫

Ω0

|∂1ψ(s,t)|2 dsdt +(16‖η ′‖2
L∞(R) +2)

∫
ΩI

0

|ψ(s,t)|2 dsdt

�16C
∫

Ω0

|∂1ψ(s,t)|2
f (s,t)

dsdt +(16‖η ′‖2
L∞(R) +2)‖ψ‖2

HI

�16C h1[ψ ]+ (16‖η ′‖2
L∞(R) +2)‖ψ‖2

HI
.

(5.9)

Here the second estimate follows from the classical Hardy inequality

∀ϕ ∈W 1,2
0 (R\ {0}) ,

∫
R

|ϕ ′(x)|2 dx � 1
4

∫
R

|ϕ(x)|2
x2 dx ,
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and the last inequality employs (5.3) and Lemma 5.2. Denoting K := 16‖η ′‖2
L∞(R) +2

and interpolating between (5.8) and (5.9), we get

h1[ψ ] � δ (16C)−1
∫

Ω0

|ψ(s,t)|2
1+(s− s0)2 dsdt +[(1− δ )C−2λ0− δ (16C)−1K]‖ψ‖2

HI

=
λ0

C(16λ0 +CK)

∫
Ω0

|ψ(s,t)|2
1+(s− s0)2 dsdt

� λ0

C2(16λ0 +CK)

∫
Ω0

|ψ(s,t)|2
1+(s− s0)2 f (s,t)dsdt

� λ0

C2(16λ0 +CK)

(
inf
s∈R

1+ s2

1+(s− s0)2

)
‖ρ1/2ψ‖2

H .

Here the first inequality holds with any δ ∈ R and the equality is due to the choice for
which the square bracket vanishes. The theorem is proved with a constant

c � λ0

C2(16λ0 +CK)

(
inf
s∈R

1+ s2

1+(s− s0)2

)
,

where the right-hand side depends on the half-width a and properties of the func-
tion |Θ′| . �

As an immediate consequence of Theorems 3.1 and 5.1, we get the following
stability result.

COROLLARY 5.3. In addition to the hypotheses of Theorem 5.1, let us assume
(3.1). Then

σ(H) = σess(H) = [E1,∞) .

However, if Θ′ does not vanish at the infinity of the strip Ω0 , there are situations
where the right-hand side of (5.2) (represented by a positive function vanishing at in-
finity) can be replaced by a positive constant (cf. [24]). In other words, the repulsive
effect of twisting is so strong that the Hardy inequality turns to a Poincaré inequality
and even the threshold of the essential spectrum grows up.

An obvious application of Theorem 5.1 is the stability of the spectrum against
attractive additive perturbations. Indeed, in addition to the hypotheses of Theorem 5.1,
let us assume that Θ′ vanishes at infinity in the sense of (3.1). Then, given any bounded
function of compact support V : Ω0 → R , there exists a positive number ε0 such that
σ(H + εV ) = σ(H) = [E1,∞) for every |ε| � ε0 . Of course, the compact support can
be replaced by a fast decay at infinity comparable to the asymptotic behaviour of the
Hardy weight ρ . It is less obvious that the same stability property holds against higher-
order perturbations, too. As an example, we establish the stability result for the purely
geometric perturbation of bending.

THEOREM 5.4. Suppose Assumption 1. Let k and Θ be such that Θ′ �= 0 , (5.1)
holds and the inequality

|(k ·Θ)(s)| � ε
1+ s2
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is valid with some non-negative number ε . Then

H � E1

for all sufficiently small ε . If in addition (3.1) holds, then

σ(H) = σess(H) = [E1,∞) .

Proof. The proof is based on the comparison of the Jacobian of the full metric (2.6)
and the Jacobian without bending (5.4). Let us keep the notation f for the former and
write f0 for the latter. Let us denote C := a(2+ a‖κ‖L∞(R)) and ρ(s) := 1/(1+ s2)
and assume that ε < C−1 . Then we have

1−Cερ(s) � f (s,t)
f0(s,t)

� 1+Cερ(s) ,

for almost every (s, t) ∈ Ω0 . In the same manner, let us keep the notation h and H
respectively for the form (2.10) and the Hilbert space (2.8) corresponding to f and let
us write h0 and H0 for the analogous quantities corresponding to f0 . Let ψ ∈C∞

0 (Ω0) ,
a dense subspace of both Dom(h) and Dom(h0) . Using the estimates on the Jacobians
above, we get

h[ψ ]−E1‖ψ‖2
H � 1

1−Cε

∫
Ω0

|∂1ψ(s,t)|2
f0(s,t)

dsdt

+
∫

Ω0

(1−Cερ(s))
(|∂2ψ(s,t)|2 −E1|ψ(s,t)|2) f0(s, t)dsdt

+E1

∫
Ω0

2Cερ(s) |ψ(s,t)|2 f0(s,t)dsdt .

Since the integrand on the second line is non-negative due to (5.3) and Lemma 5.2, we
get the estimate

h[ψ ]−E1‖ψ‖2
H

� (1−Cε)
(
h0[ψ ]−E1‖ψ‖2

H0

)
+E1

∫
Ω0

2Cερ(s) |ψ(s,t)|2 f0(s, t)dsdt .

Applying the Hardy inequality of Theorem 5.1, we conclude with

h[ψ ]−E1‖ψ‖2
H �

∫
Ω0

(c−E12Cε)ρ(s) |ψ(s, t)|2 f0(s,t)dsdt .

If ε � c/(E12C) , it follows that H � E1 . In fact, we have established the Hardy
inequality

H −E1 � (c−E12Cε)ρ
f0
f

if the strict inequality ε < c/(E12C) holds. Assuming now (3.1), the fact that all
energies [E1,∞) belong to the spectrum of H follows by Theorem 3.1. �
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OPEN PROBLEM 5.5. Is the smallness condition (5.1) necessary for the existence
of the Hardy inequality?

OPEN PROBLEM 5.6. It follows from Corollary 5.3 that H possesses no discrete
eigenvalues. Is it true that, under the hypotheses of Corollary 5.3, there are no (em-
bedded) eigenvalues inside the interval [E1,∞) either? On the other hand, it has been
recently observed in [4, 3] that a local twist of a solid waveguide leads to the appear-
ance of resonances around the thresholds given by the eigenvalues of the cross-section.
Does this phenomenon occurs in the twisted strips as well?

OPEN PROBLEM 5.7. Solid tubes with asymptotically diverging twisting repre-
sent a new class of models which lead to previously unobserved phenomena like the
annihilation of the essential spectrum [23] and establishing a non-standard Weyl’s law
for the accumulation of eigenvalues at infinity remains open (a first step in this direc-
tion has been recently taken in [1] by establishing a Berezin-type upper bound for the
eigenvalue moments). The case of twisted strips with |Θ′(s)| → ∞ as |s| → ∞ is rather
different for some essential spectrum is always present, but related questions about the
accumulation of discrete eigenvalues remain open, too (cf. [24]).

6. Thin strips

In this last section, we consider simultaneously bent and twisted strips in the limit
when the half-width a tends to zero. Since we consider Dirichlet boundary conditions,
it is easily seen that infσ(H) → ∞ as a → 0. However, a non-trivial limit is obtained
for the “renormalised” operator H−E1 . Roughly, we shall establish the limit

H−E1 −−→
a→0

Heff := − d2

ds2 +Veff(s) , (6.1)

where Heff is an operator in L2(R) and the geometric potential Veff provides a valuable
insight into the opposite effects of bending and twisting:

Veff := −1
4

(k ·Θ)2 +
1
2
|Θ′|2 .

That is, the geodesic curvature of Γ as a curve on Ω realises an attractive part of
the potential, while the Gauss curvature of the ambient surface Ω acts as a repulsive
interaction. Since the operators H and Heff are unbounded and, moreover, they act in
different Hilbert spaces, it is necessary to properly interpret the formal limit (6.1).

We start by transferring H into a unitarily operator in the a -independent Hilbert
space L2(Π) with Π := R× (−1,1) . This is achieved by the unitary transform U :
H → L2(Π) defined by

(Uψ)(s,u) :=
√

a f (s,au)ψ(s,au) .

We shall write fa(s,u) := f (s,au) . The unitarily equivalent operator Ĥ := UHU−1 in
L2(Π) is the operator associated with the quadratic form ĥ[φ ] := h[U−1φ ] , Dom(ĥ) :=
UDom(h) . It will be convenient to strengthen Assumption 1.
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ASSUMPTION 2. Let Γ ∈ C2,1(R;Rn+1) and Θ ∈ C1,1(R;Rn) . Suppose (2.3),
a‖k ·Θ‖L∞(R) < 1 and

k ·Θ, (k ·Θ)′, |Θ′|, |Θ′′| ∈ L∞(R) .

The inequality of the assumption does not need to be explicitly assumed, for it will
be always satisfied for all sufficiently small a . Again, neither the curvature κ nor its
derivative κ ′ are assumed to be (globally) bounded, cf. Remark 2.3.

Since Assumption 2 particularly involves (2.12), we have the global bounds (2.13)
to the Jacobian f , and consequently Dom(h) = W 1,2

0 (Ω0) . Given any φ ∈ C∞
0 (Π) ,

the Hölder continuity hypotheses of Assumption 2 ensure that U−1φ ∈ Dom(h) . A
straightforward computation yields

ĥ = ĥ1 + ĥ2

with

ĥ1[φ ] :=
∫

Π

|∂1φ |2
f 2
a

dsdu+
1
4

∫
Π

(∂1 fa)2

f 4
a

|φ |2 dsdu−ℜ
∫

Π

∂1 fa
f 2
a

φ ∂1φ dsdu ,

ĥ2[φ ] :=
1
a2

∫
Π
|∂2φ |2 dsdu+

1
4a2

∫
Π

(∂2 fa)2

f 2
a

|φ |2 dsdu− 1
a2 ℜ

∫
Π

∂2 fa
fa

φ ∂2φ dsdu ,

where we suppress the arguments (s,u) of the integrated functions for brevity. Inte-
grating by parts in the second form, we further get

ĥ2[φ ] =
1
a2

∫
Π
|∂2φ |2 dsdu+

∫
Π

Va |φ |2 dsdu

with

Va := − 1
4a2

(∂2 fa)2

f 2
a

+
1

2a2

∂ 2
2 fa
fa

.

Using (2.13) together with the uniform boundedness hypotheses of Assumption 2, is is
easy to verify that

Dom(ĥ) =W 1,2
0 (Π) .

Using Assumption 2, one has the estimates

‖ fa−1‖L∞(Π) � Ca , ‖∂1 fa‖L∞(Π) � Ca , ‖Va−Veff‖L∞(Π) � Ca , (6.2)

where C is a constant depending on the supremum norms of k ·Θ , (k ·Θ)′ , |Θ′| and
|Θ′′| . It is therefore expected that Ĥ will be, in the limit as a → 0, well approximated
by the operator Ĥ0 associated with the form

ĥ0[φ ] :=
∫

Π
|∂1φ |2 dsdu+

1
a2

∫
Π
|∂2φ |2 dsdu+

∫
Π

Veff |φ |2 dsdu ,

Dom(ĥ0) := W 1,2
0 (Π) ,
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where we keep the same notation Veff for the function Veff ⊗ 1 on R× (−1,1) . Here
we establish the closeness of the operators Ĥ and Ĥ0 in a norm resolvent sense. To
formulate the result, we note that the bound

Veff(s) � −1
4
‖k ·Θ‖2

L∞(R) =: z0 (6.3)

and the Poincaré inequality (5.6) imply that Ĥ0−E1 � z0 . Hence, any z < z0 certainly
belongs to the resolvent set of Ĥ0 .

THEOREM 6.1. Suppose Assumption 2. For every z < z0 there exist positive num-
bers a0 and C such that, for all a � a0 , z ∈ ρ(Ĥ) and

‖(Ĥ−E1− z)−1− (Ĥ0−E1− z)−1‖L2(Π)→L2(Π) � Ca . (6.4)

Proof. Let us write ‖ · ‖ and (·, ·) for the norm and inner product of L2(Π) , re-
spectively. Given any F0 ∈ L2(Π) , let φ0 ∈ Dom(Ĥ0) be the (unique) solution of the
resolvent equation (Ĥ0 −E1− z)φ0 = F0 . Using the Schwarz inequality and (5.6), one
has the estimates

‖∂1φ0‖2 +(z0− z)‖φ0‖2 � ĥ0[φ0]−E1‖φ0‖2− z‖φ0‖2 = (φ0,F0) � ‖φ0‖‖F0‖ .

Consequently,
‖φ0‖ � C‖F0‖ and ‖∂1φ0‖ � C‖F0‖ , (6.5)

where C is a positive constant depending exclusively on z0 − z . From now on, we
denote by C a generic constant (possibly depending on z and the supremum norms of
k ·Θ , (k ·Θ)′ , |Θ′| and |Θ′′|), which might change from line to line.

For every φ ∈W 1,2
0 (Π) and δ ∈ (0,1) , we have

ĥ1[φ ] � δ
∫

Π

|∂1φ |2
f 2
a

dsdu− 1
4

δ
1− δ

∫
Π

(∂1 fa)2

f 4
a

|φ |2 dsdu

� δ C−1 ‖∂1φ‖2− 1
4

δ
1− δ

Ca2 ‖φ‖2 ,

where the second inequality is due to (6.2). At the same time, using additionally (5.6),
we have

ĥ2[φ ] =
1
a2

∫
Π
|∂2φ |2 dsdu+

∫
Π

Veff |φ |2 dsdu+
∫

Π
(Va−Veff) |φ |2 dsdu

� E1 ‖φ‖2 + z0 ‖φ‖2−Ca‖φ‖2 .

Consequently, Ĥ −E1 − z � z0 − z−Ca (with a possibly different constant C ). Since
z0 − z is positive, it follows that there exists a positive number a0 such that, for all
a � a0 , the number z belongs to the resolvent set of Ĥ . Given any F ∈ L2(Π) , let
φ ∈ Dom(Ĥ) be the (unique) solution of the resolvent equation (Ĥ −E1 − z)φ = F .
The above estimates imply

‖φ‖ � C‖F‖ and ‖∂1φ‖ � C‖F‖ . (6.6)
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Now we write (
F, [(Ĥ−E1− z)−1− (Ĥ0−E1− z)−1]F0

)
=

(
φ ,(Ĥ0 −E1− z)φ0

)− (
(Ĥ−E1− z)φ ,φ0

)
=ĥ0(φ ,φ0)− ĥ(φ ,φ0) ,

where the last equality follows from the fact that the operators Ĥ and Ĥ0 have the same
form domains. Using the structure of the forms ĥ and ĥ0 , we estimate the difference
of the sesqulinear forms as follows:

|ĥ0(φ ,φ0)− ĥ(φ ,φ0)| � ‖1− f−2
a ‖L∞(Π)‖∂1φ‖‖∂1φ0‖+

1
4
‖ f−4

a (∂1 fa)2‖L∞(Π)‖φ‖‖φ0‖

+
1
2
‖ f−2

a (∂1 fa)‖L∞(Π)(‖∂1φ‖‖φ0‖+‖φ‖‖∂1φ0‖)
+‖Va−Veff‖L∞(Π)‖φ‖‖φ0‖ .

Using (6.2) and (6.5)–(6.6), it follows that∣∣(F, [(Ĥ−E1− z)−1− (Ĥ0−E1− z)−1]F0
)∣∣ � Ca‖F‖‖F0‖ .

Dividing by ‖F‖‖F0‖ and taking the supremum over all F,F0 ∈ L2(Π) , we arrive
at (6.4). �

As a particular consequence of Theorem 6.1, we get a certain convergence of the
spectrum of Ĥ to the spectrum of the one-dimensional operator Heff . Indeed, by a
separation of variables, the spectrum of Ĥ0 decouples as follows:

σ(Ĥ0 −E1) =
∞⋃

j=1

[σ(Heff)+Ej −E1] ,

where Ej :=
(

jπ
2a

)2
are the eigenvalues of the Dirichlet Laplacian in L2((−a,a)) . It

follows that the spectrum of Ĥ0 −E1 converges to the spectrum of Heff in the sense
that, given any positive number L , there is another positive number aL such that, for
all a � aL , one has

σ(Ĥ0 −E1)∩ (−∞,L) = σ(Heff)∩ (−∞,L) .

Theorem 6.1 particularly implies that for any discrete eigenvalue of Heff , there is a
discrete eigenvalue of Ĥ−E1 (and therefore of H−E1 ) which converges to the former
as a → 0. A convergence in norm of corresponding spectral projections also follows.

What is more, the spectral convergence follows as a consequence of a norm resol-
vent convergence again. To see it, we define the orthogonal projection

(Pψ)(s,u) := χ̂1(u)
∫ 1

−1
ψ(s,η) χ̂1(η)dη ,
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where χ̂1(u) :=
√

aχ1(au) with χ1 being the first eigenfunction of the Dirichlet Lapla-
cian in L2((−a,a)) , see (3.3). The closed subspace PL2(Π) obviously consists of func-
tions of the form (s,u) �→ ϕ(s)χ1(u) , where ϕ ∈ L2(R) . The mapping π : L2(R) →
PL2(Π) defined by (πϕ)(s,u) := ϕ(s)χ1(u) is an isometric isomorphism. In this way,
we may canonically identify any operator T acting in L2(R) with the operator πTπ−1

in PL2(Π) ⊂ L2(Π) . In particular, we use the same symbol Heff for the correspond-
ing operator in PL2(Π) , and similarly for its resolvent. With these preliminaries, the
desired result reads as follows.

PROPOSITION 6.2. Suppose Assumption 2. For every z < z0 one has

‖(Ĥ0−E1− z)−1− (Heff − z)−1⊕0‖L2(Π)→L2(Π) � 3
2π

a , (6.7)

where 0 denotes the zero operator on L2(Π)�PL2(Π) .

Proof. Defining P⊥ := I−P , we have the identity

(Ĥ0−E1− z)−1 = P(Ĥ0−E1− z)−1P+P⊥(Ĥ0 −E1− z)−1P⊥

+P(Ĥ0−E1− z)−1P⊥ +P⊥(Ĥ0−E1− z)−1P

= (Heff − z)−1P+P⊥(Ĥ0−E1− z)−1P⊥ .

Given any F ∈ L2(Π) , let ψ be the (unique) solution of the resolvent equation (Ĥ0 −
E1− z)ψ = P⊥F . That is, ψ ∈ Dom(Ĥ0) ⊂ Dom(ĥ0) and, for every φ ∈ Dom(ĥ0) ,

ĥ0(φ ,ψ)− (E1 + z)(φ ,ψ) = (φ ,P⊥F) � ‖φ‖‖P⊥F‖ .

Choosing φ := P⊥ψ and using (6.3) together with the facts that (∂1P⊥ψ ,∂1ψ) =
‖∂1P⊥ψ‖2 � 0 and (∂2P⊥ψ ,∂2ψ) = ‖∂2P⊥ψ‖2 � E2‖P⊥ψ‖2 , we therefore get

‖P⊥ψ‖ � 1
E2−E1

‖P⊥F‖ =
a2

3π2 ‖P⊥F‖ .

Consequently,

∣∣(F,P⊥(Ĥ0−E1− z)−1P⊥F
)∣∣ � a2

3π2 ‖P⊥F‖2 � a2

3π2 ‖F‖2 .

In view of the resolvent identity above, this proves the desired claim. �
Combining Theorem 6.1 and Proposition 6.2 and recalling the unitary equivalence

of H and Ĥ , we have just justified the formal statement (6.1) in a rigorous way of a
norm resolvent convergence.

COROLLARY 6.3. Suppose Assumption 2. For every z < z0 there exist positive
numbers a0 and C such that, for all a � a0 , z ∈ ρ(Ĥ) and

‖(Ĥ−E1− z)−1− (Heff − z)−1⊕0‖L2(Π)→L2(Π) � Ca .
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We note that this result has been previously established by Verri [34] in the special
setting of purely twisted strips. In fact, in recent years there has been an exponential
growth of interest in effective models for thin waveguides under various geometric and
analytic deformations, see [12, 15, 17, 29, 32, 9, 8, 31, 30, 35, 6, 34, 7] and further
references therein. We refer to [27] for a unifying approach to this type of problems.

OPEN PROBLEM 6.4. Following [30], locate the band gaps in thin periodically
twisted and bent strips.

A. Relatively parallel frame

In this appendix we establish a purely geometric fact about the existence of a rel-
atively parallel adapted frame for any curve Γ : I → R

n+1 , where n � 1 and I ⊂ R is
an arbitrary open interval (bounded or unbounded). Our primary motivation is to gen-
eralise the approach of Bishop [2] for n+1 = 3 to any space dimension. Secondarily,
and contrary to Bishop who assumes that the curve Γ is of class C2 , we proceed under
the minimal hypothesis

Γ ∈C1,1(I;Rn+1) , (A.1)

which is natural for applications (like, for instance, in the theory of quantum waveg-
uides considered in this paper). For three-dimensional curves, the latter generalisation
has been already performed in [28].

Without loss of generality, we assume that Γ is parameterised by its arc-length,
i.e. |Γ′(s)| = 1 for all s ∈ R . Then T := Γ′ defines a unit tangent vector field along Γ ,
which is locally Lipschitz continuous and as such it is differentiable almost everywhere
in I . The non-negative number κ := |Γ′′| is called the curvature of Γ . It is worth
noticing that the curvature κ is not assumed to be (globally) bounded by (A.1). In
particular, Γ is allowed to be a spiral with κ(s) → ∞ as s →±∞ .

An adapted frame of Γ is the (n+1)-tuple (T,N1, . . . ,Nn) of orthonormal vector
fields along Γ , which are differentiable almost everywhere in I . We say that a normal
vector field N along Γ is relatively parallel if N is differentiable almost everywhere
in I and the derivative N′ is tangential (i.e. there exists a locally bounded function
k : I → R such that N′ = kT ). Notice that any relatively parallel vector field N along Γ
has a constant length (indeed, N2′ = 2N ·N′ = 0). By a relatively parallel adapted
frame of Γ we then mean an adapted frame (T,N1, . . . ,Nn) such that the normal vector
fields N1, . . . ,Nn are relatively parallel. Consequently, the relatively parallel adapted
frame satisfies the equation

⎛
⎜⎜⎜⎝

T
N1
...

Nn

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

0 k1 . . . kn

−k1 0 . . . 0
...

...
. . .

...
−kn 0 . . . 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T
N1
...

Nn

⎞
⎟⎟⎟⎠ , (A.2)

where k1, . . . ,kn ∈ L∞
loc(I) . Necessarily, k2

1 + . . .+ k2
n = κ2 .
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EXAMPLE 1. (Frenet frame) If Γ∈C1,1(I;R2) , then the Frenet frame (T,N) with
N := (−Γ′

2,Γ′
1) is a relatively parallel adapted frame of Γ . Indeed, one has the Frenet-

Serret formulae (
T
N

)′
=

(
0 k
−k 0

)(
T
N

)
,

where the signed curvature k := −Γ′′
1Γ′

2 + Γ′
1Γ′′

2 satisfies |k| = κ .
Let Γ ∈ C2,1(I;R3) and assume that κ > 0, so that the principal normal M1 :=

Γ′′/|Γ′′| is well defined. Defining the binormal M2 := T ×M1 , it is customary to con-
sider the Frenet frame (T,M1,M2) . The Frenet-Serret equations read

⎛
⎝ T

M1

M2

⎞
⎠

′

=

⎛
⎝ 0 κ 0
−κ 0 τ
0 −τ 0

⎞
⎠

⎛
⎝ T

M1

M2

⎞
⎠ ,

where τ := det(Γ′,Γ′′,Γ′′′)/κ2 is the torsion of Γ . Consequently, the Frenet frame is a
relatively parallel adapted frame if, and only, if τ = 0, i.e., Γ lies in a plane.

In general, let Γ ∈ Cn,1(I;Rn+1) with n � 1 and assume that the vector fields
Γ′,Γ′′, . . . ,Γ(n) are linearly independent. By applying the Gram-Schmidt orthogonali-
sation process to Γ′,Γ′′, . . . ,Γ(n) , it is easily seen (see, e.g., [18, Prop. 1.2.2]) that there
exists a Frenet frame (T,M1, . . . ,Mn) satisfying the equations

⎛
⎜⎜⎜⎝

T
M1
...

Mn

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎝

0 κ1 0
−κ1

. . .
. . .

. . .
. . . κn

0 −κn 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T
M1
...

Mn

⎞
⎟⎟⎟⎠

with some locally bounded functions κ1, . . . ,κn actually defined by these formulae.
Again, the Frenet frame is a relatively parallel adapted frame if, and only, if all the
higher curvatures κ2, . . . ,κn equal to zero, i.e., Γ lies in a plane. We refer to [5] for a
construction of the Frenet frame under weaker hypotheses about Γ .

The defect of working with the Frenet frame is that it requires at least the reg-
ularity Γ ∈ Cn,1(I;Rn+1) . Moreover, the non-degeneracy condition that the vector
fields Γ′,Γ′′, . . . ,Γ(n) are linearly independent is indeed necessary in general (cf. [33,
Chapt. 1]). Fortunately, its alternative given by the relatively parallel adapted frame
always exists, and moreover the minimal hypothesis (A.1) is enough.

THEOREM A.1. Suppose (A.1). Let (T (s0),N0
1 , . . . ,N0

n ) be an orthonormal basis
of the tangent space TΓ(s0)R

n+1 for some s0 ∈ I . Then there exists a unique rela-
tively parallel adapted frame (T,N1, . . . ,Nn) of Γ such that Nj(s0) = N0

j for every
j ∈ {1, . . . ,n} .

Proof. We divide the proof into several steps.
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Uniqueness. Assume that there exists another relatively parallel adapted frame
(T,M1, . . . ,Mn) of Γ such that Nj(s0)= Mj(s0) for every j ∈{1, . . . ,n} . Then (T,N1−
M1, . . . ,Nn −Mn) is also a relatively parallel adapted frame of Γ . The uniqueness fol-
lows by the general fact that the length of any relatively parallel vector field is preserved
and by the hypothesis that the length of the difference Ni −Mi at s0 is zero.

Local existence of an adapted frame. Let s0 be an arbitrary point of I and let us set
d0 := dist(s0,∂ I) . From the identity 1 = |T |2 = T 2

1 + . . .+T 2
n+1 on I , it follows that

there exists at least one index j ∈ {1, . . . ,n+1} such that

Tj(s0)2 � 1
n+1

.

Without loss of generality, we can assume that j = n+1. Since T is continuous, there
must exist some ε ∈ (0,d0] such that |T |> 0 on (s0−ε,s0 +ε)⊂ I . More specifically,
using the identity

T (s)−T (s0) =
∫ s

s0
T ′(ξ )dξ

together with the fact that ‖T ′‖ = κ and that the curvature is locally bounded, we may
take

ε := min

{
d0

2
,

1√
n+1‖κ‖L∞((s0−d0/2,s0+d0/2))

}
(A.3)

(with the convention that the minimum equals d0/2 if the supremum norm of the cur-
vature equals zero). Defining

M̃1 :=
1√

T 2
n+1 +T 2

1

(Tn+1,0,0, . . . ,0,0,−T1) ,

M̃2 :=
1√

T 2
n+1 +T 2

2

(0,Tn+1,0, . . . ,0,0,−T2) ,

...

M̃n :=
1√

T 2
n+1 +T 2

n

(0,0,0, . . . ,0,Tn+1,−Tn) ,

it is clear that, on (s0− ε,s0 + ε) , these vector fields are linearly independent, orthogo-
nal to the tangent vector T and of unit length. However, they do not need to be mutually
orthogonal. The desired adapted frame (T,M1, . . . ,Mn) on (s0 − ε,s0 + ε) is obtained
by applying the Gram-Schmidt orthogonalisation procedure to (T,M̃1, . . . ,M̃n) .

Local existence of the relatively parallel adapted frame. Let s0 be the given point of I
from the statement of the theorem. By the preceding construction, we have an adapted
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frame (T,M1, . . . ,Mn) of Γ � (s0 − ε,s0 + ε) . It satisfies the equation

⎛
⎜⎜⎜⎝

T
M1
...

Mn

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

a00 a01 . . . a0n

a10 a11 . . . a1n
...

...
. . .

...
an0 an1 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T
M1
...

Mn

⎞
⎟⎟⎟⎠ ,

where aμν ∈ L∞((s0 − ε,s0 + ε)) are such that aμν = −aνμ with μ ,ν ∈ {0, . . . ,n} .
Hence the matrix-valued function A := (aμν)n

μ,ν=0 is skew-symmetric. It will be con-
venient to express it as follows:

A =
(

0 aT

−a Ã

)
,

where Ã := (a jk)n
j,k=1 and aT := (a01, . . . ,a0n) . Let us consider a generic orthogonal

matrix-valued function R̃ := (r jk)n
j,k=1 satisfying r jk ∈C0,1([s0− ε,s0 + ε]) and define

R :=
(

1 0
0 R̃

)
.

We introduce a generic n -tuple (N1, . . . ,Nn) of Lipschitz continuous vector fields along
Γ � (s0 − ε,s0 + ε) by setting

⎛
⎜⎝

N1
...

Nn

⎞
⎟⎠ := R̃

⎛
⎜⎝

M1
...

Mn

⎞
⎟⎠ . (A.4)

Because of the orthogonality relation R̃−1 = R̃T , the vector fields N1, . . . ,Nn are or-
thonormal. Their derivatives satisfy the equations

⎛
⎜⎝

N1
...

Nn

⎞
⎟⎠

′

= B

⎛
⎜⎝

N1
...

Nn

⎞
⎟⎠

with

B := R′R−1 +RAR−1 =
(

0 aT R̃T

−R̃a (R̃′ + R̃Ã)R̃T

)
.

Comparing this matrix with the matrix appearing in (A.2), it follows that the tuple
(T,N1, . . . ,Nn) will be the desired relatively parallel adapted frame of Γ � (s0−ε,s0 +ε)
(with aT R̃T = (k1, . . . ,kn)) provided that R̃ is a solution of the initial value problem{

R̃′ + R̃Ã = 0 on (s0 − ε,s0 + ε) ,
R̃ = R̃0 at s0 ,

(A.5)
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where R̃0 is an orthogonal matrix such that⎛
⎜⎝

N0
1
...

N0
n

⎞
⎟⎠ = R̃0

⎛
⎜⎝

M1(s0)
...

Mn(s0)

⎞
⎟⎠ .

By standard results (see, e.g., [36, Thm. 1.2.1]), it follows that (A.5) has a unique
absolutely continuous solution R̃ . From the differential equation in (A.5), we deduce
that R̃ is actually Lipschitz continuous under our hypotheses and that it is orthogonal.

Global existence of the relatively parallel adapted frame. Let J be any open precompact
subinterval of I containing the point s0 . Since the curvature is bounded in J , the
interval can be covered by a finite number of open intervals of equal length (cf. (A.3)),
for each of which there exists a family of relatively parallel adapted frames by the local
construction above. To get the global relatively parallel adapted frame on J satisfying
the desired initial condition at s0 , we can patch together the local ones by employing
the local frame already constructed on (s0 − ε,s0 + ε) and the freedom of choosing
the initial condition in the problem analogous to (A.5) for the covering subintervals.
Smoothness at the point where they link together is a consequence of the uniqueness
part. Since there is the desired relatively parallel adapted frame on any open precompact
subinterval J of I , the result follows. �

REMARK A.2. Let Γ : I → R
3 be a space curve for which the Frenet frame

(T,M1,M2) exists, see Example 1. Let (T,N1,N2) denote a relatively parallel adapted
frame of Γ . Let us parameterise the rotation matrix R̃ from (A.4) as follows:(

N1

N2

)
=

(
cosϑ −sinϑ
sinϑ cosϑ

)(
M1

M2

)
,

where ϑ : I →R is a differentiable function. It follows from (A.5) that ϑ ′ = τ . That is,
the normal vectors of any relatively parallel adapted frame of Γ are rotated with respect
to the Frenet frame with the angle being a primitive of the torsion.
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[33] M. SPIVAK, A comprehensive introduction to differential geometry, vol. I, Publish or Perish, Houston,

Texas, 2005.
[34] A. A. VERRI, Dirichlet Laplacian in a thin twisted strip, Int. J. Math. 30 (2019), 1950006.



QUANTUM STRIPS 665

[35] T. YACHIMURA, Two-phase eigenvalue problem on thin domains with Neumann boundary condition,
Differ. Integral. Equ. 31 (2018), 735–760.

[36] A. ZETTL, Sturm-Liouville theory, Amer. Math. Soc., 2010.

(Received August 7, 2020) David Krejčiřı́k
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