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CONVERGENCE OF LAPLACIANS ON SMOOTH SPACES

TOWARDS THE FRACTAL SIERPIŃSKI GASKET

OLAF POST AND JAN SIMMER

Abstract. The purpose of this article is to prove that – under reasonable assumptions – the canon-
ical energy form on a graph-like manifold is quasi-unitarily equivalent with the energy form on
the underlying discrete graph. Then we will apply this to approximate the standard energy form
on the Sierpiński gasket by a family of energy forms on suitable graph-like manifolds.
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