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CONVERGENCE OF LAPLACIANS ON SMOOTH SPACES

TOWARDS THE FRACTAL SIERPIŃSKI GASKET

OLAF POST AND JAN SIMMER

Abstract. The purpose of this article is to prove that – under reasonable assumptions – the canon-
ical energy form on a graph-like manifold is quasi-unitarily equivalent with the energy form on
the underlying discrete graph. Then we will apply this to approximate the standard energy form
on the Sierpiński gasket by a family of energy forms on suitable graph-like manifolds.

1. Introduction

In [9] the first author introduced the notion of quasi-unitary equivalence, which
generalises the concept of norm resolvent convergence to the case of energy forms
resp. their associated linear operators defined in different Hilbert spaces. The conse-
quences (such as convergence of spectra, of operator functions etc.) are basically the
same as in the case of the classical norm resolvent convergence. It turns out in many
applications (see e.g. [7, 11, 1, 14]) that the setting is tailor-made for these kind of linear
approximation problems on varying spaces and might even be easier to apply than the
weaker notion of strong (or Mosco-)convergence. We briefly introduce the notion of
quasi-unitary equivalence in Appendix A and refer the interested reader to [9, 10, 13]
for more details.

The aim of the article is to apply the aforementioned convergence schema to ap-
proximate the standard energy form on the Sierpiński gasket by the (scaled) canonical
energy forms on a sequence of shrinking graph-like manifolds. We first introduce the
notion of a graph-like manifold in Subsection 2.1. Then in Subsection 2.2 we link
the data of a graph-like manifold with the weights of the discrete graph, called uni-
form compatibility here (see Definitions 2.4 and 2.6). In Subsection 2.3 we prove that
a properly rescaled energy form on a graph-like manifold and the energy form on a
suitable underlying discrete weighted graph are quasi-unitarily equivalent provided the
data are uniformly compatible. In order to prove this result for the transversally scaled
graph-like manifold (Corollary 2.10) it is enough to deal with the transversally unscaled
manifold (Theorem 2.9).

The results presented here appeared already in [12] in a more general way. Here,
in contrast, we would like to give a concrete and straightforward presentation, taking
the prototype of a post-critically finite fractal, the Sierpiński gasket, as an example.
Moreover, we also simplified several steps in the proofs.
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The idea for the proof in our application to the Sierpiński gasket in Section 3 is
to use the transitivity of the notion of quasi-unitary equivalence (Proposition A.3) and
the main result from [11] which states that the standard energy form on the Sierpiński
gasket and the energy forms on the underlying family of discrete weighted graphs are
quasi-unitarily equivalent.

Moreover, we are confident that with the improvements done — in particular in
Corollary 2.10 — it is possible to treat more complex examples than just symmetric
post-critically finite self-similar fractals (in the sense of [11, Sec. 5.2]) in the future.

Related works

Our analysis can be seen in some sense as an analytic and rigorous confirmation
of numerical results found by Berry, Heilman and Strichartz [2]. There, the authors ap-
proximate the eigenvalues of the usual Laplacian on the Sierpiński gasket K (and other
related spaces) numerically by the eigenvalues of a sequence of Neumann Laplacians
on domains Ωm , where Ωm+1 = F(Ωm) is obtained via the iterated function system
(IFS) from an open neighbourhood Ω0 of K . Such a sequence is called outer approx-
imation as K ⊂ Ωm for all m ∈ N0 . Another closely related approach can be found
in [3], where the authors also consider an outer approximation {Ω′

m}m . There, Ω′
m+1

is obtained from Ω′
m by subtracting some triangles with small balls removed around

the vertices. Again, they obtain similar results as in [2], but numerically better approx-
imations.

Our sequence of manifolds {Xm}m is not an outer approximation of the Sierpiński
gasket K , even in the embedded case where Xm is a subset of R2 . Moreover, {Xm}m is
not obtained from the IFS, as we need a faster decay in the transversal direction (namely
εm = ε0Em � �m,e = �0,eΛm , see Subsection 3.2 for the notation). As an example, we let
Xm be the εm/2-neighbourhood of the graph Gm , where Gm is the m-th approximation
graph of K . Here, we consider Gm as a metric graph embedded in R2 . In this case,
Xm is a graph-like manifold (in the sense of Definition 2.1) with transversal manifolds
Ye,m = [−εm/2, εm/2] and length function �m of order Λm with Λ = 1/2. We obtain
this embedded concrete case from the abstract setting in Corollary 3.5. Or analysis
confirms the energy rescaling factors τm = (5/4)m in front of the standard energy form
on Xm already numerically found in [2, 3].

In this context we should also mention the article [8] (see also the references
therein) where the authors construct a sequence of weighted energy forms on open
domains that Mosco-converge to an energy form with singular potential supported on a
nested fractal such as the Koch curve or the Sierpiński triangle. For further references,
especially on approximations of energy forms on manifolds by discrete graphs, we refer
to the introduction of [12].
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2. Approximation of discrete graphs by graph-like manifolds

2.1. Graph-like manifolds and their energy forms

In this section, we briefly introduce the notion of graph-like manifolds. For more
details we refer to the monograph [10] and references therein.

Let G = (V,E,∂ ) be a discrete graph, i.e., V and E are at most countable sets,
called the vertex and edge set of G . Moreover, ∂ : E →V ×V , e �→ (∂−e,∂+e) , assigns
to each edge e an initial vertex ∂−e and a terminal vertex ∂+e , and hence determines
an orientation. We define

Ev := E+
v ∪E−

v where E±
v := {e ∈ E |∂±e = v}.

We call degv := |Ev| the degree of the vertex v ∈ V . We assume that the graph is
simple, i.e., that there are no loops (i.e., ∂+e 	= ∂−e for all e ∈ E ) and no multiple
edges (i.e., an edge e is uniquely determined by its adjacent vertices {∂−e,∂+e} ).

Moreover, let μ : V → (0,∞) be a vertex weight function and γ : E → (0,∞) an
edge weight function. Then there is a natural Hilbert space structure on G given by

�2(V,μ) :=
{

f
∣∣∣ f : V → C such that ∑

v∈V
μ(v)| f (v)|2 < ∞

}
(2.1)

with norm ‖ f‖2
�2(G,ν) := ∑v∈V μ(v)| f (v)|2 and a non-negative quadratic form

EG( f ) := ∑
e∈E

γe|(d f )e|2 where (d f )e = f (∂+e)− f (∂−e).

The associated non-negative self-adjoint operator is given by

ΔG f (v) =
1

μ(v) ∑
e∈Ev

γe( f (v)− f (ve)),

where ve denotes the vertex on e opposite to v . The graph energy form EG fulfills

EG( f ) �
(

sup
v∈V

2
μ(v) ∑

e∈Ev

γe

)
‖ f‖2

�2(V,μ).

In what follows we assume that the above supremum is finite (i.e. EG is bounded), or,
equivalently, we assume the boundedness of the relative weights

ρ(v) :=
1

μ(v) ∑
e∈Ev

γe.

A graph-like manifold associated with the discrete graph G = (V,E,∂ ) is a Rie-
mannian manifold of dimension d � 2 which decomposes into vertex neighbourhoods
and edge neighbourhoods respecting the structure of the underlying graph. The follow-
ing definition makes this precise (see also Figure 1).
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Figure 1: A graph-like manifold X with transversal manifold Ye being an interval;
together with an edge neighbourhood Xe and a core vertex neighbourhood Xv . The
enlarged vertex neighbourhood Xv here consists of the core vertex neighbourhood X̌v

(dark grey) together with the four edge neighbourhoods (medium grey). The underlying
graph G (see also Figure 2) here is the graph approximating the Sierpiński gasket in
generation m = 2 called G2 in Subsection 3.1.

DEFINITION 2.1. (Graph-like manifold) We say that a d -dimensional Rieman-
nian manifold X is a graph-like manifold with associated discrete graph G = (V,E) , if
the following properties hold:

1. We can decompose X into compact and connected subsets X̌v and Xe , i.e.,

X =
⋃
v∈V

X̌v ∪
⋃
e∈E

Xe,

such that X̌v∩Xe 	= /0 if and only if e ∈ Ev ; all other sets X̌v and Xe are pairwise
disjoint. We call X̌v the core vertex neighbourhood of v ∈ V and Xe the edge
neighbourhood of e ∈ E .

If X̌v ∩Xe 	= /0 we assume that X̌v ∩Xe is isometric with a (d − 1)-dimensional
Riemannian manifold Ye , called transversal manifold of e .

2. There is a so-called edge length function � : E −→ (0,∞) , e �→ �e > 0, such that
each edge neighbourhood Xe is isometric with Me ×Ye , where Me = [0, �e] and
where Ye is the transversal manifold from (1).

3. There exists a function κ : E −→ (0,∞) , e �→ κe , such that ∂eX̌v := X̌v∩Xe (iso-
metric with Ye by (2)) has a κe -collar neighbourhood Xv,e inside X̌v , i.e., Xv,e is
isometric with [0,κe]×Ye ; we assume that (Xv,e)e∈Ev are pairwise disjoint.

In what follows, we will identify points in the manifold with its coordinates, e.g., we
write x = (t,y) ∈ Me ×Ye if we mean a point x ∈ Xe , and similarly for x ∈ Xv,e . More-
over, we choose the isometry Xe

∼= Me×Ye in such a way that points in ∂eX̌v correspond
to {0}×Ye or {�e}×Ye , depending whether v = ∂−e or v = ∂+e .

We also need the so-called (enlarged) vertex neighbourhood of v defined by

Xv := X̌v∪
⋃

e∈Ev

Xe.
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We sometimes also refer to the data (X , �,(X̌v)v∈V ,κ ,(Ye)e∈E) as a graph-like manifold.

REMARKS 2.2.

1. If Ye is the compact interval [−1/2, 1/2] , then X is diffeomorphic with a closed
neighbourhood of the graph embedded in R2 (provided the graph has an embed-
ding into R2 ). We would like to stress that X is not necessarily isometrically
embeddable in R2 . The above definition is more general than the embedded
case, as it refers to an abstract manifold. Nevertheless, we see in Corollary 3.5
that one can treat the embedded case as a perturbation of the abstract case.

2. Other cases are also included, e.g. if Ye is a circle (a one-dimensional compact
manifold), then X is diffeomorphic with the surface of a tubular neighbourhood
of the underlying graph.

3. The decomposition into vertex neighbourhoods X̌v and edge neighbourhoods Xe

is not unique. Moreover, in the special case of a compact graph-like manifold,
the third condition in the above definition follows from the first and the second
one: For each edge e ∈ Ev , we take away a little piece from Xe and add it to X̌v ,
as a result, �e will be smaller.

4. If we start with a metric graph instead of a discrete graph, we can construct a
graph-like manifold by using the same length function � and X is defined as an
abstract space (cf. [12, Example 4.2]).

We mainly use not only the graph-like manifold, but a scaled version Xε of it for
some ε > 0. We use the following handy notation for a Riemannian manifold M with
metric g : we denote by εM the Riemannian manifold M with metric ε2g . Technically,
the ε -dependence only enters in the metric, hence εM and M have the same underlying
manifold, allowing e.g. to define functions on εM without referring to ε , see e.g. (2.4).

DEFINITION 2.3. Let ε > 0. We say that Xε is an (transversally) ε -scaled graph-
like manifold if Xε is a graph-like manifold with data (Xε , �,(εX̌v)v∈V ,εκ ,(εYe)e∈E) .

The idea of the above definition is to scale the transversal and core vertex manifolds Ye

and X̌v , respectively, by a length factor ε . Note that the 1-scaled graph-like manifold
X1 is X itself.

The Hilbert space we consider here is the usual space of square integrable func-
tions L2(X ,ν) with respect to the Riemannian measure ν and with the usual norm
denoted by ‖·‖L2(X ,ν) . The energy form on X is given by

EX(u) =
∫

X
|∇u(x)|2x dν(x) (2.2)

for each u ∈ H1(X) , i.e., the domain of EX is the closure of Lipschitz continuous
functions with compact support in X with respect to the energy norm defined by

‖u‖2
H1(X) = ‖u‖2

L2(X) +EX(u). (2.3)
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Here, ∇ denotes the gradient and |·|x is the norm induced by the Riemannian metric at
x ∈ X .

2.2. Compatibility of graph-like manifolds and weighted graphs

Let G = (V,E) be a discrete graph. Let X be the associated graph-like manifold
with Riemannian measure ν . We first define a partition of unity {ϕv}v∈V on X that
respects the structure of the associated discrete graph. The idea in this section is quite
similar to the approach we followed in [11] where we compared a finitely ramified
fractal with its associated discrete graph. Let ϕv : X → [0,1] be given by

X̌v

Xe

Xv

G X
ϕv

Figure 2: A discrete graph G together with an associated graph-like manifold X and
the function ϕv supported on the (enlarged) vertex neighbourhood Xv .

ϕv(x) = 1 if x ∈ X̌v , ϕv(x) =
t
�e

if x = (t,y) ∈ Me ×Ye (2.4)

and ϕv(x) = 0 if x ∈ X \ Xv . Here we assume for simplicity that v is the terminal
vertex for all edges e ∈ Ev , i.e., v = ∂+e and the corresponding coordinate is t = �e .
Note that ϕv ∈ H1(X) since these functions are continuous and (piecewise) harmonic,
hence Lipschitz continuous on X . In particular, ϕv is constant on the core vertex
neighbourhoods X̌v , affine linear in longitudinal and constant in transversal direction on
the edge neighbourhoods Xe . Similarly, we can define a partition of unity {ϕv}v∈V for
an ε -scaled graph-like manifold Xε (without referring to ε , as the underlying manifold
is X , the parameter ε enters only via the metric, see the remark before Definition 2.3).

The partition of unity allows us to define a vertex measure {ν(v)}v∈V inherited
by the Riemannian measure of X on the underlying discrete graph: We define ν : V →
(0,∞) by

ν(v) :=
∫

X
ϕv(x)dν(x) = vol X̌v +

1
2 ∑

e∈Ev

volXe = vol X̌v +
1
2 ∑

e∈Ev

�e volYe. (2.5)

Note that {ν(v)}v∈V would be the natural choice for a vertex measure on the
discrete graph G , which we want to compare with the graph-like manifold X . But
keep in mind that it is our goal to compare the family of discrete graphs associated with
the Sierpiński gasket with its associated graph-like manifolds. In that case, we have
already a given vertex and edge weight function on G . Hence, we need to make sure
that the weights induced by a post-critically finite fractal and the once induced by the
graph-like manifold and other objects fit to each other, called compatibility here:
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DEFINITION 2.4. (Compatibility of weights and manifold geometry) Let X be a
graph-like manifold defined by the data (X , �,(X̌v)v∈V ,κ ,(Ye)e∈E) as in Definition 2.1
and let G be its underlying discrete graph. Let μ : V → [0,∞) and γ : E → [0,∞) be a
vertex weight and edge weight respectively.

1. We say that X and (G,μ ,γ) are compatible if there exist two constants c > 0
and τ > 0 such that the graph weights μ and γ , the edge length function � and
the transversal volumes (volYe)e∈E fulfil

1
2μ(v) ∑

e∈Ev

�e volYe =
1
c2 and

γe�e

volYe
= c2τ (2.6a)

for all vertices v ∈V and edges e ∈ E .

2. We say that X has uniformly small (core) vertex neighbourhoods if there are
constants α0 ∈ (0,1] and α∞ > 0 such that

α0 � α(v) :=
2vol X̌v

∑e∈Ev volXe
� α∞, (2.6b)

for all v ∈V and, in addition, if

K∞ := sup
v∈V

max
e∈Ev

(
κe +

2

κeλ2(X̌v)

)
< ∞, (2.6c)

where λ2(X̌v) > 0 is the second (first non-zero) Neumann eigenvalue on X̌v .

3. We say that X has uniform transversal volume, if1

0 < vol0 := inf
e∈E

volYe � vol∞ := sup
e∈E

volYe < ∞ (2.6d)

REMARK 2.5. Let us comment on the meaning of the assumptions (2.6a)–(2.6d):

1. The first equality in (2.6a) means that the leg volume

vol(Xv \ X̌v) = ∑
e∈Ev

volXe = ∑
e∈Ev

�e volYe (2.7)

is proportional to the vertex measure μ(v) (where “proportional” here means that
the constant — here 2/c2 — is independent of v ∈V ).

2. The second equality in (2.6a) means that the edge weight (or discrete conduc-
tance) γe is proportional to the “conductance” volYe/�e of the graph-like man-
ifold: recall that �e is the length of the cylinder; a large �e will lead to a bad
conductance; while a “thick” cylinder (i.e., a large value of volYe ) leads to a
good conductance.

1Here, volYe is the volume of the (d−1) -dimensional manifold Ye , where d is the dimension of X . We
will not distinguish here between volume measures in different dimensions in the notation.
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3. The estimate in (2.6b) assures that the core vertex volume X̌v is comparable with
the leg volume (2.7).

4. The estimate in (2.6c) measures in some sense the uniform “connectedness” of
X̌v (as family in v): recall that λ2(X̌v) can be controlled by an isoperimetric
contant, the Cheeger constant: the smaller λ2(X̌v) (and hence the smaller the
Cheeger constant), the less connected X̌v is (and hence the larger K∞ is). The
extreme case would be λ2(X̌v) = 0 and hence K∞ = ∞ ; this would happen if X̌v

was disconnected (which is excluded in Definition 2.1).

5. Finally, (2.6d) assures that the transversal volume can be controlled by some
lower and upper constant.

Let us stress that we meticulously mention all the above constants as we deal with
an infinite family of finite graphs in our main application in Section 3. Moreover,
Theorem 2.9 and Corollary 2.10 are also valid for infinite graphs under the given as-
sumptions. In addition, our results in Section 3 also apply to so-called non-compact
fractafolds like the tesselation of the plane with Sierpiński gaskets touching in the
boundary points and a suitable (non-compact) graph-like manifold.

Note that there is still some freedom in the choice of the parameters τ and c
(adopting the other data), as they only need to satisfy the two equations (2.6a). We
conclude

c =

(
1

2μ(v) ∑
e∈Ev

�e volYe

)−1/2

and τ =
1

2μ(v) ∑
e∈Ev

�2
eγe.

Moreover, the compatibility conditions in (2.6a) gives the following necessary condi-
tion on the vertex weights μ and edge weights γ of the weighted graph G and the
transversal volume volYe ; namely, we need that

1
2μ(v) ∑

e∈Ev

(volYe)2

γe
=

1
c4τ

is independent of the vertices v ∈V .
Summarising the above three conditions of Definition 2.4, we require:

DEFINITION 2.6. (Uniform compatibility of a graph-like manifold and a discrete
graph) We say that a graph-like manifold X and a discrete weighted graph (G,μ ,γ) are
uniformly compatible, if they are compatible and if X has uniformly small vertex neigh-
bourhoods and uniform transversal volume, i.e., if the conditions of Definition 2.4 (1)–
(3) hold.

We now need to know how the various constants in Definition 2.4 depend on ε for
an ε -scaled graph-like manifold. Recall that Xε is obtained from X by scaling the
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transversal and core vertex manifolds by a length scaling factor ε > 0. Note that we
have the scaling behaviour

vol(εM) = εdM and λk(εM) =
1
ε2 λk(M)

for a d -dimensional (compact) Riemannian manifold M , where k denotes the k -th
eigenvalue of its Laplacian (without boundary, or Neumann boundary conditions). It
follows immediately from Definition 2.4 that an ε -scaled graph-like manifold Xε is
uniformly compatible with (G,μ ,γ) if the constants in Definition 2.4 fulfil the follow-
ing scaling behaviour: τ is ε -independent and

cε = ε−(d−1)/2c, K∞,ε = εK∞,

α0,ε = εα0, α∞,ε = εα∞,

vol0,ε = εd−1 vol0, vol∞,ε = εd−1 vol∞,

where d is the dimension of X . Here, the quantities with subscript ε refer to Xε
whereas those without refer to the unscaled graph-like manifold X = X1 .

On each vertex neighbourhood Xv , we define a quadratic form by

EXv(u) =
∫

Xv

|∇u(x)|2x dν(x)

for all u ∈ domEXv := {u�Xv
|u ∈ H1(X)} . This allows us to decompose the energy

form with respect to the building blocks, and we have

EX(u) � ∑
v∈V

EXv(u�Xv
) � 2EX(u) (2.8)

for each u ∈ H1(X) , and the same is true for an ε -scaled graph-like manifold Xε .
We need some facts about an auxiliary weighted eigenvalue problem on Xv , their

proof can be found in [12, Lem. 2.6]):

PROPOSITION 2.7. The quadratic form (EXv ,domEXv) is closable in the weighted
Hilbert space

L2(Xv,ϕv) :=
{

u
∣∣∣‖u‖2

L2(Xv,ϕv) :=
∫

Xv

|u(x)|2ϕv(x)dν(x) < ∞
}

.

Moreover, the first eigenvalue of the associated operator is λ1(Xv,ϕv) = 0 with constant
eigenfunction �Xv ; and its second eigenvalue λ2(Xv,ϕv) fulfils

λ2(Xv) � λ2(Xv,ϕv). (2.9)

Here, λ2(Xv) denotes the second (first non-zero) eigenvalue of EXv in the unweighted
Hilbert space L2(Xv,ν) .

For an ε -scaled graph-like manifold, we can estimate the weighted eigenvalue
on Xv,ε (the core vertex neighbourhood εX̌v together with |Ev| many cylindrical ends
[0, �e]× εYe ) by a scaling argument (see [12, Prop. B.3]):
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PROPOSITION 2.8. Assume that Xε is an ε -scaled graph-like manifold uniformly
compatible with (G,μ ,γ) such that there are constants �0, �∞ ∈ (0,∞) , λ̌2 > 0 and
λ �

2 > 0 with

�0 � �e � �∞, λ2(Ye) � λ �
2 and λ2(X̌v) � λ̌2 for all e ∈ E and v ∈V .

Then there exists a constant C > 0 depending only on �∞/�0 , λ �
2 and λ̌2 (from the

unscaled graph-like manifold X = X1 ) such that

λ2(Xv,ε ) � 1
�2

∞
for all 0 < ε � ε0 :=

�0

C2

for all v ∈V .

Combining Propositions 2.7 and 2.8 we conclude that the weighted eigenvalue problem
on Xv,ε of an ε -scaled graph-like manifold Xε satisfies

1
�2

∞
� λ2(Xv,ε ,ϕv) (2.10)

for all v ∈V and ε ∈ (0,ε0] .

2.3. Quasi-unitary equivalence of the energy forms on a graph-like manifold and
its related discrete graph

We are now able to state our first main result: the quasi-unitary equivalence of
the (rescaled) natural energy forms on the graph-like manifold X and the energy form
of the underlying discrete weighted graph (G,μ ,γ) . We first state the result for an
unscaled graph-like manifold and later introduce the transversal scaling parameter ε in
Corollary 2.10.

THEOREM 2.9. Assume that (G,μ ,γ) is a weighted discrete graph with weights
fulfilling

μ∞ := sup
v∈V

μ(v) < ∞ and 0 < γ0 := inf
e∈E

γe � γ∞ := sup
e∈E

γe < ∞. (2.11)

Assume in addition that X is a graph-like manifold with underlying graph G and that
X and (G,μ ,γ) are uniformly compatible. Then there exist �0, �∞ ∈ (0,∞) such that
�0 � �e � �∞ for all e ∈ E . If finally

1
�2

∞
� λ2(Xv,ϕv), (2.12)

then the discrete energy form EG on the weighted graph and the rescaled energy form
ẼX = τEX with domain dom ẼX = H1(X) in L2(X ,ν) are δ -quasi-unitarily equivalent
where

δ 2 = max

{
α2

∞,
4

α0

(
vol∞
vol0

)2 γ∞

γ0
· 1
d0

· μ∞

γ0
,
4K∞

�0

}
, (2.13)

where d0 := minv∈V degv is the minimal degree, and α∞ , K∞ and vol0 , vol∞ are
defined in Definition 2.4.
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The lower bound (2.12) on the second eigenvalue can be verified e. g. by estimat-
ing an isoperimetric constant h(Xv) from below, using Cheeger’s inequality λ2(Xv) �
h(Xv)2

/4 (and Proposition 2.7). We will not use this approach here. Instead, we use
Proposition 2.8 (and also Proposition 2.7) and an ε -scaled graph-like manifold here
(together with the scaling behaviour of the constants stated above):

COROLLARY 2.10. Assume that as in Theorem 2.9, (G,μ ,γ) is a weighted graph
fulfilling (2.11), and that Xε is an ε -scaled graph-like manifold uniformly compatible
with (G,μ ,γ) . Moreover, assume that λ �

2 = infe λ2(Ye) > 0 and λ̌2 = infv λ2(X̌v) > 0 .
Then there is ε0 = �0/C > 0 with C depending only on �∞/�0 , λ �

2 and λ̌2 such that
the discrete energy form EG on the weighted graph and the rescaled energy form ẼXε =
τEXε on Xε are δε -quasi-unitarily equivalent with

δ 2
ε = max

{
ε2α2

∞,
4

εα0

(
vol∞
vol0

)2 γ∞

γ0
· 1
d0

· μ∞

γ0
,
4εK∞

�0

}
(2.14)

for ε ∈ (0,ε0] .

Note that δε becomes small as ε → 0 only if the graph weights fulfil μ∞/(γ0ε) → 0 as
ε → 0. This will be fulfilled in Section 3 where we consider not only a fixed weighted
graph, but a sequence (Gm)m∈N0 of weighted graphs with associated εm -scaled graph-
like manifold Xm,εm for some εm → 0. The weights μm and γm (now also depending
on m) are chosen in such a way that δm → 0 as m → ∞ . In particular, this implies that
the length function e �→ �m,e decays slower to 0 than εm as m → ∞ .

The proof of the above theorem is similar to the one that states the quasi-unitary
equivalence of the energy form on a post-critically finite fractal and the energy forms
on their associated sequence of discrete weighted graphs in [11]. Again, we begin by
defining the identification operators needed in Definition A.2. Let

J : �2(V,μ) → L2(X ,ν), J f = c · ∑
v∈V

f (v)ϕv

and let J′ be the adjoint of J , that is,

J′ : L2(X ,ν) → �2(V,μ), J′u(v) =
1
c
· 1

ν(v)
〈u,ϕv〉L2(X ,ν),

for each v ∈ V . Moreover, let J1 : domEG = �2(V,μ) → domH1(X) , J1 := J�H1(X)
and define

J′1 : H1(X) → domEG = �2(V,μ), J′1u(v) =
1
c
· 1

vol X̌v

∫
X̌v

udν

for each v ∈ V . The operators J and J′ are also called smoothing and discretisation
operator in [4, Sec. VI.5].
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PROPOSITION 2.11. Let X be a graph-like manifold with uniformly spectrally
small vertex neighbourhoods and compatible discrete graph (G,μ ,γ) . Then the oper-
ators J and J′ fulfil (A.2a) with δa and (A.2b) with δb , where

δa = α∞ and δ 2
b = max

{
2μ∞

γ0
,

2
τλ2

}
.

Here, the constant α∞ is given in (2.6b); moreover, μ∞ and γ0 are defined in (2.11)
and λ2 := infv∈V λ2(Xv,ϕv) .

Proof. First, we verify (A.2a) and we begin with the boundedness of J and J′ .
For all f ∈ �2(V,μ) we estimate, applying the Cauchy-Young inequality,

‖J f‖2
L2(X ,ν) = ∑

v∈V
∑

v′∈V

c2 f (v) f (v′)〈ϕv,ϕv′ 〉L2(X ,ν)

� c2 ∑
v∈V

| f (v)|2 ∑
v′∈V

〈ϕv,ϕv′ 〉L2(X ,ν) � sup
v∈V

c2ν(v)
μ(v)

‖ f‖2
�2(V,μ).

Using (2.6a) and (2.6b) we see that J is bounded by 1+ α∞ . Let u ∈ L2(X ,ν) . Then,
by the Cauchy-Schwarz inequality and since

∫ |ϕv|2 dν �
∫

ϕv = ν(v) for all v ∈V , we
have

‖J′u‖2
�2(V,μ) = ∑

v∈V

μ(v)
c2ν(v)2

∣∣〈u,ϕv〉L2(X ,ν)
∣∣2 � ∑

v∈V

μ(v)
c2ν(v)

‖u‖2
L2(X ,ϕv)

� ∑
v∈V

1
1+ α(v)

‖u‖2
L2(X ,ϕv) � ‖u‖2

L2(X ,ν).

Since α(v) is non-negative, J′ is bounded by 1. For the second condition in (A.2a),
we define the function

Ξ(ξ ) :=

∣∣∣∣∣√ξ − 1√
ξ

∣∣∣∣∣= 2sinh

∣∣∣∣12 logξ
∣∣∣∣ . (2.15)

Clearly, Ξ(1) = 0, Ξ(1/ξ ) = Ξ(ξ ) and 0 � Ξ(ξ ) � ξ −1 for ξ � 1. Hence,∣∣∣〈J f ,u〉L2(X ,ν) −〈 f ,J′u〉�2(V,μ)

∣∣∣= ∣∣∣∣∣∑v∈V

(
c− μ(v)

cν(v)

)
f (v)〈ϕv,u〉L2(X ,ν)

∣∣∣∣∣
� sup

v∈V
Ξ
(

c2ν(v)
μ(v)

)
∑
v∈V

∣∣∣∣∣√μ(v) f (v)
〈ϕv,u〉L2(X ,ν)√

ν(v)

∣∣∣∣∣
� sup

v∈V
Ξ
(

c2ν(v)
μ(v)

)
‖ f‖�2(V,μ)‖u‖L2(X ,ν),

where we used the Cauchy-Schwarz inequality in the last estimate. We can further
estimate the supremum by

sup
v∈V

Ξ
(

c2ν(v)
μ(v)

)
= sup

v∈V
Ξ(1+ α(v)) � Ξ(1+ α∞),
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Since
√

1+ α∞ − 1 � α∞ and Ξ(1+ α∞) � α∞ , we conclude that (A.2a) holds with
δa = α∞ .

Next, we check the estimates in (A.2b). For the first one, let f ∈ domEG =
�2(V,μ) . Then,

f (v)− J′J f (v) =
1

ν(v) ∑
v′∈V

( f (v)− f (v′))〈ϕv′ ,ϕv〉L2(X ,ν),

for each v ∈V . Thus, estimating in norm, we get

‖ f − J′J f‖2
�2(V,μ) = ∑

v∈V

μ(v)
ν(v)2

∣∣∣∣∣∑
v′∈V

( f (v)− f (v′))〈ϕv′ ,ϕv〉L2(X ,ν)

∣∣∣∣∣
2

� ∑
v∈V

μ(v)
ν(v)2 ∑

e∈Ev

γ−1
e |〈ϕve ,ϕv〉L2(X ,ν)|2 ∑

e∈Ev

γe| f (v)− f (ve)|2,

where we used the Cauchy-Schwartz inequality. Note that ϕv is non-negative, and by
the definition of these functions, we have that γe > 0 if and only if 〈ϕve ,ϕv〉L2(X ,ν) > 0.
Let us further estimate the sum in the middle as follows

∑
e∈Ev

γ−1
e |〈ϕve ,ϕv〉L2(X ,ν)|2 � ∑

e∈Ev

γ−1
e 〈ϕve ,ϕv〉L2(X ,ν) ·ν(v) � ν(v)2

γ0

and we conclude

‖ f − J′J f ‖2
�2(V,μ) � ∑

v∈V

μ(v)
γ0

∑
e∈Ev

γe| f (v)− f (ve)|2 � 2μ∞

γ0
·EG( f ).

Hence, the first inequality in (A.2b) holds with δ 2
b = 2μ∞/γ0 .

For the second inequality in (A.2b), we first compute

u− JJ′u = ∑
v∈V

uϕv − ∑
v∈V

1
ν(v)

〈u,ϕv〉L2(X ,ν) ·ϕv,

where we used that the family {ϕv}v∈V is a partition of unity. Hence,

‖u− JJ′u‖2
L2(X ,ν) =

∫
X

∣∣∣∣∣∑v∈V

(
u(x)− 1

ν(v)
〈u,ϕv〉L2(X ,ν)

)
·ϕv(x)

∣∣∣∣∣
2

dν(x)

�
∫

X
∑
v∈V

∣∣∣∣u(x)− 1
ν(v)

〈u,ϕv〉L2(X ,ν)

∣∣∣∣2 ·ϕv(x) ∑
v∈V

ϕv(x)dν(x)

= ∑
v∈V

∫
X

∣∣∣∣u(x)− 1
ν(v)

〈u,ϕv〉L2(X ,ν)

∣∣∣∣2 ·ϕv(x)dν(x),

where we again used the Cauchy-Schwarz inequality. Since ‖�Xv‖2
L2(Xv,ϕv)

= ν(v) ,

u− 1
ν(v)

〈u,�Xv〉L2(Xv,ϕv)�Xv
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is the projection onto the orthogonal complement of the first eigenspace C�Xv in the
weighted Hilbert space L2(Xv,ϕv) . The min-max characterisation of eigenvalues im-
plies that

∫
X

∣∣∣∣u(x)− 1
ν(v)

〈u,ϕv〉L2(X ,ν)

∣∣∣∣2 ·ϕv(x)dν(x) � 1
λ2(Xv,ϕv)

EXv(u). (2.16)

Thus, we can further estimate

‖u− JJ′u‖2
L2(X ,ν) � ∑

v∈V

1
λ2(Xv,ϕv)

EXv(u�Xv
) � 2

λ2
EX(u) � 2

τλ2
ẼX(u),

where λ2 := infv∈V λ2(Xv,ϕv) and where we applied (2.8) for the last inequality. Hence,
the second inequality in A.2b is fulfilled with δ 2

b = 2/(τλ2) .
The following proposition has already been stated in [12] but here we give an

easier proof which leads to a more convenient error estimate.

PROPOSITION 2.12. Let X be a graph-like manifold with uniformly spectrally
small vertex neighbourhoods and compatible discrete graph (G,μ ,γ) . Then the oper-
ators J1 and J′1 fulfil the inequalities in (A.2c) with

δ 2
c =

2
α0τλ2

,

where α0 is given in (2.6b) and λ2 := infv∈V λ2(Xv,ϕv) .

Proof. Since J1 = J , the first estimate in (A.2c) is fulfilled with δc = 0. For the
second one, let u ∈ H1(X) . Then we have

J′1u(v)− J′u(v) =
1
c

(
1

vol X̌v
〈u,�X̌v

〉L2(X ,ν)

)
− 1

ν(v)
〈u,ϕv〉L2(X ,ν)

for all v ∈V and thus, we can estimate in norm

‖J′1u− J′u‖2
�2(V,μ) = ∑

v∈V

μ(v)
c2

∣∣∣∣ 1

vol X̌v
〈u,�X̌v

〉L2(X ,ν)−
1

ν(v)
〈u,ϕv〉L2(X ,ν)

∣∣∣∣2
= ∑

v∈V

μ(v)
c2

∣∣∣∣ 1

vol X̌v

∫
X̌v

(
u(x)− 1

ν(v)
〈u,ϕv〉L2(X ,ν)

)
dν(x)

∣∣∣∣2
� ∑

v∈V

μ(v)
(c ·volX̌v)2

∫
X̌v

∣∣∣∣u(x)− 1
ν(v)

〈u,ϕv〉L2(X ,ν)

∣∣∣∣2 dν(x) ·vol X̌v

� ∑
v∈V

μ(v)
c2 vol X̌v

∫
X

∣∣∣∣u(x)− 1
ν(v)

〈u,ϕv〉L2(X ,ν)

∣∣∣∣2 ·ϕv(x)dν(x)

� ∑
v∈V

1
α(v)

· 1
λ2(Xv,ϕv)

EXv(u) � 2
α0τλ2

ẼX(u),
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where we used the Cauchy-Schwarz inequality in the first estimate, the definition of ϕv

in the second (i.e., that ϕv is equal to �X̌v
on the core vertex neighbourhood X̌v and

non-negative on X ) and (2.16) and (2.6a)–(2.6b) in the third estimate, and finally, (2.8)
in the last estimate.

PROPOSITION 2.13. Let X be a graph-like manifold with compatible discrete
graph (G,μ ,γ) . The discrete energy form EG and the rescaled energy form on the
graph-like manifold ẼX := τEX fulfil (A.2d) with

δ 2
d =

4K∞

�0
,

where K∞ is defined in (2.6c) and where �0 := infe∈E �e .

Proof. Let f ∈ domEG = �2(V,μ) and u ∈ H1(X) . Then, on the discrete graph,
we have

EG( f ,J′1u) =
1
c ∑

e∈E
γe
(
f (∂+e)− f (∂−e)

)( 1

vol X̌∂+e

∫
X̌∂+e

udν − 1

vol X̌∂−e

∫
X̌∂−e

udν

)

and for the rescaled energy form ẼX := τEX form on the graph-like manifold,

ẼX(J f ,u) = cτ ∑
v∈V

f (v)
∫

X
〈∇ϕv(x),∇u(x)〉x dν(x) (2.17)

= cτ ∑
v∈V

f (v) ∑
e∈Ev

1
�e

∫ �e

0

∫
Ye

u′e(t,y)dt dy

= cτ ∑
v∈V

f (v) ∑
e∈Ev

1
�e

∫
Ye

(
ue(�e,y)−ue(0e,y)

)
dy

=
1
c ∑

e∈E
γe
(
f (∂+e)− f (∂−e)

)( 1
volYe

∫
∂eX̌∂+e

udy− 1
volYe

∫
∂eX̌∂−e

udy

)
where (·)′ denotes the derivative with respect to the first (i.e., longitudinal) variable,
and where we used that ϕv is supported on Xv , constant on X̌v and ϕv(x) = t/�e on
each edge e ∈ Ev , for x = (t,y) ∈ [0, �e]×Ye . In the last equation, we rearranged the
sum via ∑v∈V ∑e∈Ev = ∑e∈E ∑v=∂±e and used the choice of the edge weight in (2.6a)
to replace cτ/�e by γe/cvolYe . Combining the above equations and rearranging the
integral terms we get by applying the Cauchy-Schwarz inequality,∣∣EG( f ,J′1u)−EX(J f ,u)

∣∣2 � 2
c2 ·EG( f ) ∑

e∈E
∑

v=∂±e

γe

∣∣∣∣ 1

vol X̌v

∫
X̌v

udν − 1
volYe

∫
∂eX̌v

udy

∣∣∣∣2 .

In order to estimate the sum in the above equation, we need the following standard
estimates (a min-max and a Sobolev trace estimate)∥∥∥∥u− 1

vol X̌v

∫
X̌v

udν
∥∥∥∥2

L2(Xv,e)
� 1

λ2(X̌v)
‖du‖2

L2(X̌v)
(2.18)
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∂eX̌v

|u(y)|2 dy � κe‖du‖2
L2(Xv,e) +

2
κe

‖u‖2
L2(Xv,e), (2.19)

see e.g. [10, Proposition 5.1.1 and Corollary A.2.12]; recall that κe and Xv,e are defined
Definition 2.1 (3). Then

∑
e∈Ev

γe

∣∣∣∣ 1

vol X̌v

∫
X̌v

udν − 1
volYe

∫
∂eX̌v

udy

∣∣∣∣2
= ∑

e∈Ev

γe

∣∣∣∣ 1
volYe

∫
∂eX̌v

(
u(y)− 1

vol X̌v

∫
X̌v

udν
)

dy

∣∣∣∣2
� ∑

e∈Ev

γe

volYe

∫
∂eX̌v

∣∣∣∣u(y)− 1

vol X̌v

∫
X̌v

udν
∣∣∣∣2 dy

� ∑
e∈Ev

γe

volYe

(
κe‖du‖2

L2(Xv,e) +
2
κe

∥∥∥∥u− 1

vol X̌v

∫
X̌v

udν
∥∥∥∥2

L2(Xv,e)

)

�c2τ max
e∈Ev

1
�e

(
κe +

2

κ2
e λ2(X̌v)

)
· ‖du‖2

L2(X̌v)
,

where we used the Cauchy-Schwarz inequality in the first estimate, (2.19) in the second,
and (2.18) and (2.6a) for the last one. Hence, by the above and (2.8), we conclude∣∣EG( f ,J′1u)−EX(J f ,u)

∣∣2 � 4τK∞

�0
·EG( f ) ·EX(u)

using the definition of K∞ in (2.6c).
We are now prepared to prove our first main result Theorem 2.9.

Proof of Theorem 2.9. By the second equation of (2.6a), we have

�e =
c2τ volYe

γe

⎧⎪⎪⎨⎪⎪⎩
� c2τ vol∞

γ0
=: �∞ < ∞

� c2τ vol0
γ∞

=: �0 > 0.

For the error estimate, we have to collect the individual terms from Propositions 2.11,
2.12 and 2.13. We need to estimate the term 2/(τλ2) appearing in δb and δc :

2
τλ2

� 2�2
∞

τ
=

2c2 vol∞
γ0

· �∞ =
2vol∞
vol0

· �∞

�0
· d0c2�0 vol0

d0γ0
� 4vol∞

vol0
· �∞

�0
· μ∞

d0γ0
.

In the first inequality above, we use (2.12), and for the first equality the definition of
�∞ . The last estimate follows from the first equation in (2.6a) because

2μ∞ � 2μ(v) = c2 ∑
e∈Ev

�e volYe � d0c
2�0 vol0,

for each v ∈ V . Finally using the definition of �0 and �∞ we end up with the desired
term (note that α0 � 1).
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Similarly as in the proof of Proposition 2.11, we can extract the following propo-
sition, which allows us to compare two different weights on the same discrete graph.
This result will later be used to treat the embedded case in Corollary 3.5.

PROPOSITION 2.14. Let G = (V,E,∂ ) be a discrete graph. Let ν, ν̃ : V → (0,∞)
be two vertex weight functions and moreover, let γ, γ̃ : E → (0,∞) be two edge weight
functions. Then the energy forms EG associated with the edge weight γ in �2(V,ν) and

ẼG associated with γ̃ in �2(V, ν̃) are δ -quasi-unitarily equivalent with

δ = max

{
sup
v∈V

Ξ
( ν̃(v)

ν(v)

)
,sup
e∈E

Ξ
( γ̃e

γe

)}
. (2.20)

where Ξ is defined in (2.15); recall that Ξ(1+ η) = O(η) .

Proof. We choose the identification operators J , J′ , J1 and J′1 to be the corre-
sponding identity operators. Then (A.2b) and (A.2c) are trivially fulfilled with δb =
δc = 0. The two inequalities in (A.2a) are satisfied with δa = supv∈V Ξ( ν̃(v)/ν(v))
which follows as in the first part of the proof of Proposition 2.11. Let us now check
condition (A.2d). Using the same arguments as before, we obtain

∣∣ẼG(J f ,g)−EG( f ,J′g)
∣∣ = ∣∣∣∣∣∑e∈E

(γ̃e − γe)(d f )e(dg)e

∣∣∣∣∣ � sup
e∈E

Ξ
(

γ̃e

γe

)
EG( f )ẼG(g),

for f ,g : V → C .
We end this section with the following lemma, that states that the identification

operators J1 and J′1 , acting on the form domains, are also bounded in the correspond-
ing energy norms. This is later needed if we want to use the transitivity Proposition A.3
of the notion of quasi-unitary equivalence. The proof uses similar arguments as before.

LEMMA 2.15. ([12, Proposition 2.12]) Assume the situation from Theorem 2.9.
Then the operators J1 and J′1 fulfil

‖J1 f ‖
ẼX

� (1+ δ )‖ f‖EG and ‖J′1u‖EG � (1+ δ )‖u‖
ẼX

,

for f ∈ �2(V,μ) and u ∈ H1(X) . Recall that ẼX := τEX .

3. Approximating the Sierpiński gasket by graph-like manifolds

3.1. The Sierpiński gasket and its canonical energy form

In this section, we briefly introduce the Sierpiński gasket interpreted as a self-
similar set together with its canonical energy form. For more details we refer to the
monographs [6, 16].

Let V0 := {p1, p2, p3} be the vertices of an equilateral triangle in the plain and let
F := {Fj | j = 1,2,3} be given by

Fj : R
2 → R

2, Fj(x) =
1
2
(x− p j)+ p j.
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The family F is called an iterated function system (IFS) and each Fj is a contraction
with ratio θ j = 1/2 and fixed point p j . Then, there exists a unique non-empty compact
subset K of R2 such that

K = F(K) := F1(K)∪F2(K)∪F3(K) (3.1)

and this set K is called the Sierpiński gasket. The set V0 is called the boundary of K .
Moreover, the contractions describe a cell structure on the Sierpiński gasket K via the
map

w := w1w2 . . .wm �→ Fw(K) := Fw1 ◦Fw2 ◦ . . .◦Fwm(K)

where w ∈ {1,2,3}m is a word of length |w| = m . We call Fw(K) an m-cell of K
whenever w ∈Wm and we write W� for the collection of all the words over the alphabet
{1,2,3} .

We define a sequence of discrete graphs by applying the IFS inductively to the
boundary vertices V0 as follows: Let G0 be the complete graph with three vertices V0 .
For each m ∈ N , we set Gm := (Vm,Em) , where

Vm :=
⋃

w∈Wm

Fw(V0) and Em :=
{

e
∣∣e = {x,y} ⊂Vm and x ∼m y

}
.

Here, x ∼m y if and only if x and y are two distinct vertices in Vm and there exists a
word w ∈Wm such that x,y ∈ Fw(K) .

On each graph Gm there is a canonical energy form Em , given by

Em( f ) := γm ∑
{x,y}∈Em

∣∣ f (x)− f (y)
∣∣2 with γm :=

(5
3

)m
(3.2)

for each f : Vm → R . Here the edge weight (also called conductance) γm = (5/3)m is
independent of the edges e ∈ Em and is chosen in order to guarantee that the sequence
of discrete energy forms {Em}m∈N0 is compatible. Compatibility here means that the
minimisation problem

Em(ρ) = min
{

Em+1( f )
∣∣ f : Vm+1 → R and f �Vm

= ρ
}

has a unique solution for each ρ : Vm → R and each m ∈ N0 . As a consequence,
{Em(u�Vm

}m∈N0 is non-decreasing for all continuous u : K −→ C , and hence, the limit
exists. We therefore define an energy form on K as the limit

E (u) = lim
m→∞

Em(u�Vm
) where u ∈ domE :=

{
u ∈ C(K)

∣∣ lim
m→∞

Em(u�Vm
) < ∞

}
in the Hilbert space L2(K,μ) . The measure μ we choose is the so-called (homoge-
neous) self-similar measure, i.e., μ is the unique Hausdorff measure on K of dimension
log3/log2 and such that any m-cell has measure 1/3m .

This measure μ also induces a vertex measure {μm(v)}v∈Vm on the graph Gm . Let
ψv,m : K → R be the unique solution of

Em(�{v}) = min
{

E (u)
∣∣u ∈ domE and u�Vm

= �{v}
}
.
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Using the symmetry of the Sierpiński gasket and the fact that {ψv,m}v∈Vm is a partition
of unity, we have

μm(v) :=
∫

K
ψv,m(x)dμ(x) =

⎧⎪⎨⎪⎩
1

3m+1 v ∈V0,

2
3m+1 v ∈Vm \V0.

(3.3)

The Hilbert space structure on the discrete weighted graph G is given by �2(Vm,μm) ,
see (2.1).

In [11] we have shown that an energy form on a self-similar fractal such as the
Sierpiński gasket and its associated sequence of discrete graph energies are quasi-
unitarily equivalent with an explicitly given error converging to 0. In our situation
this precisely means the following:

PROPOSITION 3.1. ([11]) The standard energy form on the Sierpiński gasket Ê
in the Hilbert space L2(K,μ) and the discrete energy form Em in �2(Vm,μm) are δ̂m -
quasi-unitarily equivalent with error

δ̂m =
(1+

√
3) ·√2√
3

· 1

5m/2
.

3.2. Quasi-unitary equivalence of the Sierpiński gasket and its associated graph-
like manifold

Let (Gm,μm,γm) be the m-th approximation of the energy form on the Sierpiński
gasket K . In this section, we apply Corollary 2.10 to the energy form on the discrete
weighted graph (Gm,μm,γm) and an energy form on a compatible graph-like manifold
Xm associated with (Gm,μm,γm) . The situation can easily be generalised to certain
other post-critically finite fractals, see [12]. Let us now fix the different data for the
family of scaled graph-like manifolds {Xm}m∈N0 : Recall that the scaling parameter εm

scale the transversal and core vertex manifold as

Ym,e = εmYe and X̌m,v = εmX̌v (3.4)

for all v ∈ V and e ∈ E , respectively (see the text before Definition 2.3). We fix the
scaling parameter εm and the length function (here constant, i.e., �m,e = �m for all
e ∈ Em ) as

�m = �0Λm and εm = ε0E
m,

where �0 ∈ (0,∞) and ε0 ∈ (0,∞) are some given parameters and Λ,E ∈ (0,∞) are
specified later. Probably the most interesting case is Λ = 1/2, obtained from the IFS
as in Subsection 3.1.

Next, we assume that Ye is isometric with a fixed manifold Y0 with volYe = 1,
e.g. Ye = [−1/2, 1/2] or Ye is a circle of circumference 1 if d = 2. As the graphs
approximating a Sierpiński gasket have only vertices of degree 2 and 4, we can work
with two properly scaled building blocks X̌2 and X̌4 for the core vertex neighbourhoods
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X̌v in all generations, one with two and one with four boundary components, each
isometric with Y0 . We assume for simplicity that the one with four ends has larger
volume than the one with only two ends. In particular, we have

αm(v) =
vol X̌v

(degv)�0
·Λ−m,

for the unscaled graph-like manifold associated with Gm . Here, degv ∈ {2,4} is the
degree of v .

Recall that the unscaled graph-like manifold as well as the εm -scaled graph-like
manifold Xm are both defined as abstract manifolds and are not necessarily embedded
in R2 or some other space. In particular, the edge lengths shrink as �m = �0Λm while
the transversal manifolds and the core vertex neighbourhoods do not shrink if m → ∞
for the unscaled manifold. We treat the embedded case in Corollary 3.5.

Moreover, the numbers λ2(Ye) = λ2(Y0) and λ2(X̌v) only achieve a finite set of
numbers for e ∈ Em and v ∈Vm independently of m ∈ N0 . In particular, the constant C
in Proposition 2.8 is independent of m .

For κm in the (unscaled) graph-like manifold associated with Gm , we choose a
fixed value κ0 again independent of m (the shrinking later enters via the parameter
εm ). As before, this means that the constant K∞ of the unscaled graph-like manifold
associated with Gm is independent of m .

A straightforward calculation now shows that the constants cm (unscaled) and τm

are given by

cm = (3�0)−1/2(3Λ)−m/2 and τm = 3�2
0(5Λ2)m.

We can now state one of our main results:

THEOREM 3.2. Let (Gm,μm,γm) be the m-th approximation graph of the Sier-
piński gasket K . Moreover, let Em be the discrete energy form defined in (3.2) and
let Ẽm := τmEXm be the rescaled energy form on the (transversally εm -scaled) graph-
like manifold Xm associated with Gm with edge length �m = �0Λm and scaling factor
εm = ε0Em as above. Moreover, we assume that

1
5

<
E
Λ

< 1.

Then Em and Ẽm are δm -quasi-unitarily equivalent with

δm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O

((
E
Λ

)m/2
)

,
1√
5

� E
Λ

< 1

O

((
Λ
5E

)m/2
)

,
1
5

<
E
Λ

� 1√
5

(the precise term is given in (3.5)). In particular, if we choose E/Λ = 1/
√

5 , then
δm = O((1/5)m/4) which is the best possible choice.
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REMARKS 3.3.

1. A natural choice in terms of geometry is to set Λ = 1/2 thus choosing the natural
length scale of the Sierpiński gasket as subset of R

2 given by the IFS. In this case
we have (cm unscaled)

cm = (3�0)−1/2
(

2
3

)m/2

and τm = 3�2
0

(
5
4

)m

.

Note that the energy rescaling factor τm = O((5/4)m) was already found numer-
ically in [2, 3]. Our analysis hence confirms their results.

2. One condition in Theorem 3.2 is E < Λ . In particular, this means that the
transversal length parameter εm shrinks faster than the longitudinal length �m .
If we are interested in a sequence of subsets Xm in R2 obtained via the m-th
iteration of the IFS (i.e., Xm+1 = F(Xm) as in (3.1) for some starting set X0 , a
thickened equilateral triangle), then the scaling parameter 1/2 of the IFS forces
Λ = E. Unfortunately, we are not able to cover this case with our methods here.

Proof of Theorem 3.2. A careful analysis of δε in Corollary 2.10 using the above
considerations shows that

δ 2
m = max

{(
ε0 vol X̌4

2�0

)2

·
(

E
Λ

)2m)
,
4
3

(
ε0 vol X̌2

4�0

)−1

·
(

Λ
5E

)m

,
4K∞ε0

�0
·
(

E
Λ

)m
}

(3.5)
where we have used that vol X̌2 � vol X̌4 .

Now, we are prepared to state the quasi-unitary equivalence of the canonical en-
ergy form on the Sierpiński gasket and a properly rescaled energy form on a suitable
graph-like manifold. The result is a direct consequence of the transitivity stated in
Proposition A.3:

COROLLARY 3.4. Assume the situation as in Theorem 3.2, then the rescaled en-
ergy form Ẽm = τmEXm on the εm -scaled graph-like manifold Xm and the energy form

EK on the Sierpiński gasket are δ̃m -unitarily equivalent with δ̃m being of the same order
as δm in Theorem 3.2. In particular, Ẽm converges to EK in the sense of Definition A.2.

Proof. The δ̂m -quasi-unitary equivalence of Ê = EK and Em is stated in Propo-
sition 3.1; the δm -quasi-unitary equivalence of Em and Ẽm is just stated in Theo-
rem 3.2. The boundedness of the corresponding operators respecting the form domains
as in (A.3a) for both cases can be deduced from [12, Prp. 2.12], see also Lemma 2.15.
Note that the error δ̂m = O((1/5)m/2) from Proposition 3.1 is not dominated by the
error δm of Theorem 3.2, as 1/5 < E/Λ , and hence (E/Λ)m/2 dominates already
(1/5)m/2 . In particular, δ̃m = 14(δm + δ̂m) (from Proposition A.3) is of the same order
as δm .

Let us now show that we can also find a sequence of open subsets Xm ⊂ R2 such
that Xm approximates the Sierpiński gasket; moreover, the corresponding sequence
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κ0ε1

ε1
√

3/2
ε1

X̌1,v

X̌1,v0

�̃1 = 1/2

�1

X1

Figure 3: The εm/2-neighbourhood of the equilateral metric graph associated with Gm

with edge length �̃m = (1/2)m ; here m = 1. Note that the edge neighbourhood has

length �m = �̃m − 2(κ0 +
√

3/2)εm . Moreover, the two building blocks for the core
vertex neighbourhoods X̌1,v (upper vertex of degree 4) and X̌1,v0 (lower left corner
vertex of degree 2) are ε1 -homothetic versions of the prototypes X̌4 and X̌2 .

of energy forms corresponding to the Neumann Laplacian converge to the canonical
energy form on the Sierpiński gasket. We fix Λ = 1/2.

COROLLARY 3.5. Let Xm be the εm/2 -neighbourhood of Gm considered as met-
ric graph embedded in R2 with edge length �̃m = 1/2m . Then the corresponding
rescaled energy form Ẽm given by

Ẽm(u) =
(

5
4

)m ∫
Xm

|∇u(x)|2, u ∈ dom Ẽm := H1(Xm),

is δ̃m -quasi unitarily equivalent with the energy form EK on the Sierpiński gasket,
where

δ̃m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
(2E)m/2

)
,

1

2
√

5
� E <

1
2

O

((
1

10E

)m/2
)

,
1
10

< E � 1

2
√

5
.

Proof. If we want the metric edge lengths in generation m to have length �̃m =
1/2m , then the length �m of the edge neighbourhoods in the embedded case (again
independent of the edges e ∈ Em ) is related via

�̃m = �m +2

(
κ0 +

√
3

2

)
εm = �0

(
1+ k0

(
E
Λ

)m)
Λm, where k0 =

ε0

�0

(
2κ0+

√
3
)
.
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We now use the second equation in (2.6a) to calculate the corresponding edge weights
γ̃m : Note first that we have

c2
mτm = �0

(
5Λ
3

)m

,

and hence (recall volYe = volY0 = 1)

γ̃m =
c2
mτm

�̃m
=

1

1+ k0(E/Λ)m

(
5
3

)m

.

We now use Proposition 2.14 to see that the energy forms on the weighted graphs
(Gm,μm,γm) and (Gm,μm, γ̃m) are δm -quasi unitarily equivalent with

δm = Ξ
(

γ̃m

γm

)
= Ξ

(
γm

γ̃m

)
= Ξ

(
1+ k0

(
E
Λ

)m)
= O

((
E
Λ

)m)
.

This error term is again not dominant. The boundedness of the identification operators
(here the identities) with respect to the energy norms can also be seen easily. We now
use the transitivity of quasi-unitary equivalence, Theorem 3.2, Proposition 3.1 and the
above considerations to conclude the result fixing Λ = 1/2.

A. Quasi-unitary equivalence

In this appendix we briefly introduce the notion of quasi-unitary equivalence. The
concept appeared first in [9] and was outlined in greater details in [10, Ch. 4]. Roughly
speaking, we define a sort of “distance” between two energy forms E and Ẽ acting
in Hilbert spaces H resp. H̃ . The distance is expressed as a parameter δ � 0, and
appears in the concept of δ -quasi-unitary equivalence.

Let H and H̃ be two separable complex Hilbert spaces. We call E an energy
form in H if E is a closed, non-negative quadratic form in H , i.e., if E ( f ) := E ( f , f )
for some sesquilinear form E : H 1 ×H 1 −→ C (denoted by the same symbol), if
E ( f ) � 0 and if H 1 := domE , endowed with the norm

‖ f‖2
E := ‖ f‖2

H +E ( f ), (A.1)

is itself a Hilbert space and dense (as a set) in H . We call the corresponding non-
negative, self adjoint operator Δ (see e.g. [5, Sec. VI.2]) the Laplacian associated with
E . Similarly, let Ẽ be an energy form in H̃ with Laplacian Δ̃ .

DEFINITION A.1. (Quasi-unitary equivalence for energy forms) Let δ � 0. Let
J : H −→ H̃ and J′ : H̃ −→ H , resp. J1 : H 1 −→ H̃ 1 and J′1 : H̃ 1 −→ H 1 be
linear operators on the Hilbert spaces and energy form domains. Then E and Ẽ are
δ -quasi-unitarily equivalent, if for all f ∈ H and u ∈ H̃ ,

‖J f‖
H̃

� (1+ δ )‖ f‖H

∣∣〈J f ,u〉 − 〈 f ,J′u〉∣∣ � δ‖ f‖H ‖u‖
H̃

(A.2a)
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and if for all f ∈ H 1 and u ∈ H̃ 1 ,

‖ f − J′J f ‖H � δ‖ f‖E ‖u− JJ′u‖
H̃

� δ‖u‖
Ẽ

(A.2b)

‖J1 f − J f‖
H̃

� δ‖ f‖E ‖J′1u− J′u‖H � δ‖u‖
Ẽ

(A.2c)∣∣Ẽ (J1 f ,u)−E ( f ,J′1u)
∣∣ � δ‖ f‖E ‖u‖Ẽ

. (A.2d)

DEFINITION A.2. Let {Em}m∈N be a sequence of energy forms acting in the Hil-
bert spaces Hm and E∞ be an energy form in H∞ . Moreover, assume that Em and
E∞ are δm -quasi-unitarily equivalent and the δm → 0 as m → ∞ . Then we say that
{Em}m∈N converges to E∞ (with error {δm}m∈N ).

One essential ingredient to prove our main result is the following proposition
which states the transitivity of the notion of quasi-unitary equivalence.

PROPOSITION A.3. ([13, Prop. 1.6]) Let δ , δ̃ ∈ [0,1] . Assume that E and Ẽ are
δ -quasi-unitarily equivalent with identification operators J , J1 , J′ and J′1 . Moreover,
assume that Ê and E are δ̂ -quasi-unitarily equivalent with identification operators Ĵ ,
Ĵ1 , Ĵ′ and Ĵ′1 . Assume in addition that, for all u ∈ H̃ 1 and w ∈ Ĥ 1 ,

‖Ĵ1w‖E � (1+ δ̂)‖w‖Ê and ‖J′1u‖E � (1+ δ )‖w‖
Ẽ
. (A.3a)

Then Ê and Ẽ are δ̃ -quasi-unitarily equivalent with δ̃ = 14(δ + δ̂) .
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