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SPECTRAL OPTIMIZATION FOR

SINGULAR SCHRÖDINGER OPERATORS

PAVEL EXNER

Abstract. For several classes of singular Schrödinger operators which can be formally written
as −Δ−αδ (x−Γ) we discuss the problem of optimization of their principal eigenvalue with
respect to the shape of the interaction support Γ .

1. Introduction

Search for a shape that optimizes a given spectral quantity is a trademark question
in spectral geometry which has a long history that can be traced back at least to the
famous Faber and Krahn proof [24, 27] of the lowest tone conjecture of Lord Rayleigh;
this example also illustrates that quite often the optimal shape exhibits a rotational sym-
metry. It is not just the property of the lowest eigenvalue, as an example one recall the
Payne-Pólya-Weinberger inequality the proof of which by Ashbaugh and Benguria was
a real tour de force [5, 6]. We are not going to describe the history here, however, and
refer to the nice lecture series [10].

Our aim in this review is different, we are going to discuss some more recent
results concerning optimization of several classes of singular Schrödinger operators
which can be formally written as

Hα ,Γ = −Δ−αδ (x−Γ) , α > 0 , (1)

where Γ is a manifold or a more general subset of R
d ; we shall focus at that at the

principal eigenvalues of these operators. There are two main reasons why this problem
is of interest. First of all, they are attractive mathematically in view of the relations
between spectral properties reflect and the geometry of Γ in a sense wider than the topic
of this review. At the same time, they represent an alternative to the conventional theory
of quantum graphs [11] over which it has the advantage that the quantum tunneling
between edges of such a graph is not neglected – for introduction to such leaky quantum
graphs and a bibliography we refer to [21, Chap. 10]. Here we will be concerned
primarily with situations where Γ is a manifold or a complex of codimension one,
however, we shall also say something about more singular interactions, either of δ ′
type, or those with support of codimension two.

To put our problem in context, let us first mention several related ones. The closest
to Faber and Krahn is the question about the shape that optimizes the ground state
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eigenvalue of the Robin Laplacian on a region Ω⊂Rd which is the self-adjoint operator
associated with the quadratic form

ψ �→
∫

Ω
|∇ψ(x)|2dx−α

∫
∂Ω

|ψ(s)|2ds

on H1(Ω) . The sign convention is chosen in accordance with the following discussion,
and we can naturally exclude the Neumann case, α = 0, which is trivial from the
present point of view. As long as α < 0 the result is similar to that of Faber and Krahn:
the principal eigenvalue λ α

1 (Ω) is uniquely minimized among the sets of the same
volume by λ α

1 (B) where B is a ball.
The situation is not that simple, though. Bareket conjectured that in the case of an

attractive Robin boundary, α > 0, the opposite inequality is valid, namely that λ α
1 (B)

is now maximal among the ground state energies for sets of the same volume [8]. This
is true for local deformations of a ball, but fails globally: Freitas and Krejčiřı́k showed
that λ α

1 (Ω) > λ α
1 (B) may hold if Ω is a spherical shell [25]. On the other hand, we

note that the analogous inequality does hold if we compare sets of the same perimeter
[4]. Furthermore, in two dimensions λ α

1 (Ω) � λ α
1 (B) holds if Ω is the exterior of

a convex set of the same area/perimeter as B [28], and under additional geometrical
constraints the result extends to non-convex domains and higher dimensions [29].

Moreover, even when the boundary is Dirichlet, the analogue of Faber-Krahn in-
equality may not be valid because the topology of Ω may change the situation. Let us
illustrate this claim on a pair of examples. If we seek extremum among ‘fat loops’ Ω ,
i.e. strips of a fixed width built around a loop of fixed length, we find that a circular
annulus sharply maximizes λ α

1 (Ω) [16]. The analogous result holds for the optimal
position of a circular obstacle in a circular cavity: the ground state energy is again
maximal when the obstacle is placed in the center of the cavity [26].

2. Manifolds without boundary

Before coming to the optimization we have to define properly the operator refer-
ring to the formal expression (1) assuming that codimΓ = 1. As in the case of Robin
billiards, a natural way to define our singular Schrödinger operators is to employ the
appropriate quadratic form, namely

qδ ,α [ψ ] := ‖∇ψ‖2
L2(Rd)−α‖ψ |Γ‖2

L2(Γ) (2)

with the domain H1(Rd) and to use the first representation theorem. The advantage
of this approach is that it requires a weak regularity only; it is sufficient to assume
that Γ is Lipschitz [9]. If it is a smooth manifold one can easily check that the self-
adjoint operator defined in this way, denoted as Hα ,Γ or sometimes also −Δδ ,α , can
alternatively be characterized by boundary conditions: it acts as −Δ on functions from
H2

loc(R
d \Γ) , which are continuous and exhibit a normal-derivative jump,

∂ψ
∂n

(x)
∣∣∣∣
+
− ∂ψ

∂n
(x)

∣∣∣∣− = −αψ(x) ;
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this explains the formal expression as describing the attractive δ -interaction of strength
α perpendicular to Γ at the point x . The derivatives here are taken in the same direc-
tion; sometimes one uses the convention in which they are taken with respect to the
outer normals to the two regions of which Γ is the common boundary, in that case
the expression at the left-hand side of the last formula is the sum instead of the differ-
ence. We note also that the definition easily extends to the situation where the coupling
strength is position dependent characterized by a function Γ � x �→ α(x) , however, in
this review we consider a constant α only.

Let us now turn to our main task. Consider first the situation where Γ is a loop
in R

d , d � 2, parametrized by its arc length, i.e. a piecewise differentiable function
Γ : [0,L]→R

d such that Γ(0) = Γ(L) and |Γ̇(s)|= 1 for all but finitely many s∈ [0,L] .
Since the definition of Hα ,Γ using the form (2) requires codimΓ = 1, we consider loops
in the plane, d = 2, and denote by λ1(α,Γ) the principal eigenvalue of the operator for
which we can make the following claim [17]:

THEOREM 1. For any α > 0 and L > 0 we have λ1(α,Γ) � λ1(α,C ) , where C
is a circle of perimeter L, the inequality being sharp unless Γ is congruent with C .

Proof sketch. One employs the generalized Birman-Schwinger principle [12] by
which there is one-to-one correspondence between eigenvalues −κ2 of Hα ,Γ and solu-
tions to the integral-operator equation

Rκ
α ,Γφ = φ , where Rκ

α ,Γ(s,s′) :=
α
2π

K0(κ |Γ(s)−Γ(s′)|)

on L2([0,L]) , where K0 is the Macdonald function coming from the resolvent kernel
of the two-dimensional Laplacian. The question can be reduced to a purely geometric
problem, specifically to inequalities on mean values of chords,

∫ L

0
|Γ(s+u)−Γ(s)|pds � L1+p

π p sinp πu
L

, p > 0, u ∈ (
0, 1

2L
]
, (3)

which we label as Cp
L(u) ; the expression at the right-hand side is nothing but the value

of the integral for Γ = C . They may not hold for all p > 0, however, a simple Fourier
analysis allows one to demonstrate the following result [17]:

PROPOSITION 1. C2
L(u) is valid for any u ∈ (0, 1

2L] , and the inequality is strict
unless Γ is a planar circle; by convexity the same is true for all p < 2 .

Proof. Using a variational argument together with the fact that the function K0(·)
appearing in the resolvent kernel is strictly monotonous and convex the optimization
problem for Rκ

α ,Γ can be reduced to the inequality C1
L(u) being thus proved. �

REMARK 1. The inequalities Cp
L (u) hold also for p ∈ [−2,0) , however, in the

reversed sense. Taking p =−1, for instance, we can infer from here that a charged and
ideally flexible loop in the absence of gravity takes a circular form.
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The above result also has a discrete analogue. Consider the same loop and place
at it point interactions at the arc distances jL

N , j = 0, . . . ,N1 , in other words, the formal
Hamiltonian

HN
α ,Γ = −Δ + α̃

N−1

∑
j=0

δ
(
x−Γ

(
jL
N

))
(4)

in L2(Rd), d = 2,3. The interaction term is more singular than the one in (1) and has
to be properly defined. To this aim, one introduces the generalized boundary values
which are the coefficients in the expansion of functions from the domain of the adjoint
operator H∗

Y , where Y is a shorthand for the interaction support and HY is the Laplacian
restricted to functions vanishing at the vicinity of the points of Y . It is well known that
the said expansions around points y j ∈Y look as follows,

ψ(x) = − 1
2π

log |x− y j|L0(ψ ,y j)+L1(ψ ,y j)+O(|x− y j|) , d = 2 , (5a)

ψ(x) =
1

4π |x− y j| L0(ψ ,y j)+L1(ψ ,y j)+O(|x− y j|) , d = 3 . (5b)

Local self-adjoint extensions which give the meaning to the formal operator (4) are then
given by

L1(ψ ,y j)−αL0(ψ ,y j) = 0 , α ∈ R , (6)

where α , in contrast to the α̃ in (4), is the ‘true’ parameter characterizing the coupling
strength; for details and other properties of point interactions we refer to [2].

We are again interested in the shape of Γ which maximizes the ground state energy
provided, of course, that the discrete spectrum of HN

α ,Γ is nonempty. This requirement
is nontrivial for d = 3: there is an αcrit depending on the geometry of the interaction
support such that σ(HN

α ,Γ) 
= /0 holds for α < αcrit . In the described situation one can
modify the method which led to Theorem 1 to obtain the following result [14]:

THEOREM 2. infσ(HN
α ,Γ) is uniquely maximized by an N -regular polygon.

After this interlude let us return to the situation when the interaction support is a
loop and consider another more singular case, namely we replace the δ in (1) by δ ′
interaction [2]. Recall that the latter can be introduced either by boundary condition or
using the quadratic form

qδ ′,β [ψ ] := ‖∇ψ‖2
L2(Rd)−

1
β
‖[ψ ]Γ‖2

L2(Γ)

defined on H1(R2 \Γ) , where [ψ ]Γ := ψ+|Γ−ψ+|Γ . We have the following result [30]:

THEOREM 3. For any β > 0 we have max|Γ|=L λ β
1 (Γ) = λ β

1 (C ) , where C is a
circle of perimeter L > 0 and the maximum is taken over all C2 smooth loops.
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Concerning the proof, we note that the Birman-Schwinger method does not work
in this case, one has to use instead locally orthogonal coordinates in a way similar to
those employed in [28] to treat the exterior of a Robin obstacle.

Let us next consider again the interactions defined by (2) and ask about the opti-
mization problem in dimension d = 3. The first thing to note is that here the discrete
spectrum of Hα ,Γ = −Δ−αδ (x−Γ) may be empty if α is small enough; as an ex-
ample, for Γ being a sphere of radius R bound states are known to exist iff αR > 1,
cf. [3]. This raises the following question: given the critical sphere, αR = 1, would its
deformations produce a discrete spectrum? A partial answer is the following [15]:

THEOREM 4. Let Γε by a deformation of the sphere expressed in spherical co-
ordinates as r(θ ,φ) = R(1+ ερ(θ ,φ)) , where ρ is nonzero function of zero mean. If
Hα ,Γ0 is critical, σdisc(Hα ,Γε ) 
= /0 holds for all nonzero ε small enough.

REMARK 2. The above result fails to hold globally: if a surface-preserving de-
formation of a critical surface is elongated enough, the discrete spectrum is empty. In
contrast, deformation of a critical surface always produces a nonempty discrete spec-
trum if it is capacity preserving, cf. [15] for details.

3. Cones

Let us involve next some new geometries into the game and investigate singular
Schrödinger operators Hα ,Γ having a conical surface as the interaction support Γ . We
start with some definitions: let T ⊂ S

2 be a C2 -smooth loop on the 2D unit sphere
S

2 ⊂ R
3 of length |T | without self-intersections. We distinguish between circular and

non-circular loops. A circle C on S
2 has, of course, the length |C | � 2π . The C2 -

smooth cone ΣR(T ) ⊂ R
3 of radius R ∈ (0,∞] having a C2 -smooth loop T ⊂ S

2 as
its cross-section is

ΣR(T ) :=
{
rT ∈ R

3 : r ∈ [0,R)
}

;

it is called finite (or truncated) if R < ∞ and infinite otherwise. The cone ΣR(T ) is
called circular if its cross-section T is a circle and non-circular otherwise. An infinite
circular cone with the cross-section length 2π is, of course, a plane.

If R < ∞ it is easy to check that σess(Hα ,Γ) = [0,∞) . Since the system is three-
dimensional, the discrete spectrum again may or may not exist, and we are interested
in the principal eigenvalue λ1(Hα ,Γ) for which we have the following result [22]:

THEOREM 5. Let C ⊂ S
2 be a circle and T ⊂ S

2 be a C2 -smooth non-circular
loop such that L := |C |= |T | ∈ (0,2π ] . Let ΓR := ΣR(C ) and ΛR := ΣR(T ) be finite
cones of radius R > 0 with the cross-sections C and T , respectively; then

• #σdisc(Hα ,ΓR) � 1 holds iff α > αcrit for a certain value αcrit = αcrit(L,R) > 0 .

• #σdisc(Hα ,ΛR) � 1 for all α � αcrit (the borderline case α = αcrit is included)
and the spectral isoperimetric inequality

λ1(Hα ,ΛR) < λ1(Hα ,ΓR)



710 P. EXNER

is satisfied for all α > αcrit .

COROLLARY 1. Any (fixed-radius, smooth, conical) deformation of a critical cir-
cular cone gives rise to a nonempty discrete spectrum of the corresponding Hα ,Γ .

On the other hand, the spectrum changes for infinite cones: in this case we have
σess(Hα ,Γ) = [− 1

4 α2,∞) and the discrete spectrum is not only nonempty but infinite
except in the trivial case of a plane. Moreover, we even know its accumulation rate: for
circular cones we have according to [31]

N− 1
4α2 −E

(Hα ,Γ) ∼ cotθ
4π

| lnE| , E → 0+ ,

and a similar result with a different constant also holds in the non-circular case [34].

THEOREM 6. Let C ⊂ S
2 be a circle and T ⊂ S

2 be a C2 -smooth non-circular
loop such that L := |C | = |T | ∈ (0,2π) . Let Γ∞ := Σ∞(C ) and Λ∞ := Σ∞(T ) be
infinite cones with cross-sections C and T , respectively; then for any α > 0 we have

• #σdisc(Hα ,Γ∞)∩ (−∞,− 1
4α2) � 1

• the spectral isoperimetric inequality λ1(Hα ,Λ∞) � λ1(Hα ,Γ∞) is valid.

Sketch of the proof. Let us start with Theorem 5. The strategy is to employ the gen-
eralized Birman-Schwinger principle in combination with a minimization result about
the energy of knots, cf. [17] and an earlier paper [1]. The former has been used already
in proof of Theorem 1; it can be written as

dimker
(
Hα ,Σ + κ2) = dimker

(
I−αSΣ(κ)

)

for any κ > 0, where

(
SΣ(κ)ψ

)
(x) :=

∫
Σ
Gκ(x− y)ψ(y)dσ(y)

and Gκ(·) is Green’s function of the Laplacian in R
3 at energy −κ2 . This implies, in

particular, the following equivalences:

• #σdisc(Hα ,Σ)∩ (−∞,−κ2) � 1 iff μΣ(κ) > α−1 , where μΣ(κ) > 0
is the largest eigenvalue of SΣ(κ)

• λ1(Hα ,Σ) = −κ2 iff μΣ(κ) = α−1 .

We also note that the eigenvalue μΣ(κ) is simple and the corresponding eigenfunction
can be chosen positive. To proceed, we need a suitable parametrization of the cone. We
begin with arc-length parametrization of the cross section, τ : [0,L] → S

2 with |τ̇| ≡ 1
and put

σ : [0,R)× [0,L]→ R
3, σ(r,s) := rτ(s) ; (7)

this defines natural co-ordinates (r,s) on ΣR . One can check easily the following claim:
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PROPOSITION 2. Let C ⊂ S
2 be a circle and ΓR := ΣR(C ) . Then the eigenfunc-

tion corresponding to the largest eigenvalue of the Birman-Schwinger operator SΓR(κ)
is rotationally invariant, i.e. it depends on the distance from the tip of the cone only.

The next part of the argument is geometric and employs an inequality reminiscent
of (3) known from [32, 33] and other sources: for a C2 -smooth loop T ⊂ S

2 we define
the functional

Φ f [T ] :=
∫ L

0

∫ L

0
f (|τ(s)− τ(t)|2)dsdt .

PROPOSITION 3. Let f ∈C([0,∞);R) be convex and decreasing. Let further C ⊂
S

2 be a circle and T ⊂ S
2 be a C2 -smooth non-circular loop such that |T |= |C |= L

for some L ∈ (0,2π ] . Then the following isoperimetric inequality holds,

Φ f [C ] < Φ f [T ] .

In particular, the above proposition holds with the function

f (x) :=
e−a

√
bx+c

√
bx+ c

,

which is convex and decreasing for any positive a,b,c . Comparing the Birman-Schwinger
operators for the circular and non-circular cones with the use of the indicated parametriza-
tion we employ such isoperimetric inequalities with

a(r,r′) := κ , b(r,r′) := rr′, c(r,r′) := (r− r′)2 ;

we have to exclude the situations where r = 0, r′ = 0 or r = r′ , but this is a zero
measure set. This yields the claim of Theorem 5. As it holds for any radius R > 0,
Theorem 6 is proved by taking the limit R → ∞ . The Birman-Schwinger analysis can
be also performed on infinite cones directly making it possible to show that also in this
case the inequality is sharp unless Λ∞ and Γ∞ are congruent. �

4. Stars

Let us return to the two-dimensional situation and suppose that Γ ⊂ R
2 is a planar

graph. To be specific, we consider star graphs ΣN = ΣN(L) ⊂ R
2 , which have N � 2

edges of length L ∈ (0,∞] each, enumerated in the clockwise manner. They are char-
acterized by the angles φ = φ(ΣN) = {φ1,φ2, . . . ,φN} between the neighboring edges,
φn ∈ (0,2π) for all n ∈ {1, . . . ,N} and ∑N

n=1 φn = 2π . By ΓN we denote the star graph
with maximum symmetry, in other words, φ = φ(ΓN) =

{
2π
N , 2π

N , . . . , 2π
N

}
.

Given α > 0, we ask again about the spectral threshold of the operator Hα ,ΣN .
It is easy to see that σess(Hα ,ΣN ) = [0,∞) if L < ∞ and with the set σess(Hα ,ΣN ) =
[− 1

4α2,∞) if L = ∞ . Since the system is two-dimensional we have σdisc(Hα ,ΣN ) 
= /0
if L < ∞ , and the same is true also for an infinite star, cf. [18] or [21, Example 10.2.1].
For the lowest eigenvalue we have the following result [23]:
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THEOREM 7. For any α > 0 we have the relation

max
ΣN (L)

λ α
1 (ΣN(L)) = λ α

1 (ΓN(L)) ,

where the maximum is taken over all star graphs with N � 2 edges of a given length
L ∈ (0,∞] , the equality being achieved iff ΣN and ΓN are congruent.

Sketch of the proof. We again employ Birman-Schwinger principle. Writing the
corresponding operators for L < ∞ , one can interchange integration over the variables
parametrizing the edges and summation over the edges. Next we use the symmetry of
the principal eigenfunction of Hα ,ΓN (L) sketched in the picture below

and a discrete analogue of the inequality (3) analogous to that employed in the proof of
Theorem 2. To establish the relation for L = ∞ one uses the strong resolvent conver-
gence which gives, in particular,

lim
L→∞

λ α
1 (ΣN(L)) = λ α

1 (ΣN(∞))

and the analogous relation for symmetric stars, alternatively the corresponding Birman-
Schwinger operators can be compared directly. �

Let us next consider the analogous problem in three dimensions which is much
harder; the two-dimensional one might have been technically nontrivial, but the result
was easy to guess. The interaction support will be now an equilateral star in R

3 , i.e.
a complex Γ ≡ ΓN of a ‘sea urchin’ shape with N ‘pins’, finite or semi-infinite. The
first question is, of course, how to define the corresponding operator Hα ,Γ . Without
going into details, for which we refer to [19], we claim that it acts as the Laplacian
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on functions that are H2 outside Γ and at the points of the star one imposes boundary
conditions which look like (6) with (5a) in the planes perpendicular to the edges of Γ .

Before proceeding further, let us recall some related problems. The oldest ana-
logue coming to mind is the Thomson problem about an optimal distribution of N point
charges on the surface of a sphere [36]. Despite the question is more than century old, a
rigorous solution is known in some case only, for instance, the case N = 5 was solved
only recently [35]. Various generalizations of this problem to other ‘potentials’ and
higher dimensions triggered numerous mathematical investigations in algebraic combi-
natorics, cf. [7, 13] an references therein.

We shall make use of some of these results for configurations of N points {xi}N
i=1

on the unit sphere S2 . They are said to form an M-spherical design if for any poly-
nomial x �→ p(x) on R

3 of total degree M the averages over the sphere and over the
configuration are the same, in other words, one has

∫
S2 p(x)dx = 1

N ∑N
i p(xi) . Let fur-

ther m be the number of different inner products between distinct points of {xi}N
i=1 .

They form a sharp configuration if it is 2m− 1 spherical design. By [13] a sharp
configuration is universally optimal if it minimizes any potential energy f : [0,4] → R

which is completely monotonous, i.e. it satisfies (−1)k f (k) � 0 for all k � 0. In three
dimensions there are five such sharp configurations, namely

• N = 2, antipodal points

• N = 3, simplex with inner product −1/2,

• N = 4, tetrahedron – simplex with inner product −1/3,

• N = 6, octahedron – cross polytope with inner products −1,0,

• N = 12, icosahedron with inner products −1,±1/
√

5.

We note that the configurations corresponding to the two remaining Platonic solids, the
cube and the dodekahedron, do not qualify for universality; we recall that they do not
represent Thomson’s problem solutions either.

One may wonder how to make use of the mentioned minimization problem results.
The answer is, as in the previous cases, that maximization of the ground state eigenvalue
is equivalent to minimization of the (norm of) the corresponding Birman-Schwinger
operator. The quoted result of [13] implies easily the following claim:

LEMMA 1. Consider an N -arm star with edges of length L ∈ (0,∞] determined
by unit vectors {γ i}N

i=1 , and let {σ i}N
i=1 correspond to a sharp-configuration star. Then

we have

∑
i
= j

Tκ ;s,t(|γ i − γ j|2) � ∑
i
= j

Tκ ;s,t(|σ i −σ j|2)

for any s, t ∈ [0,L] and Tκ ;s,t(x) := e−κ
√

a+bx

4π
√

a+bx
with a = (s− t)2 and b = st . Moreover,

the inequality is sharp unless the two star graphs are congruent.

We combine this with the fact that the eigenfunction referring to the largest eigen-
value of the Birman-Schwinger operator for a sharp-configuration star has the maxi-
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mum symmetry being thus of the form f̃σ = ( fσ , ..., fσ ) ∈ ⊕N
j=1 L2([0,L]) . Then

supQκ ,γ � (Qκ ,γ f̃σ , f̃σ ) � supQκ ,σ

holds according to the lemma, which allows us to make the following conclusion [20]:

THEOREM 8. Assume that N ∈ {2,3,4,6,12} , then the ground state energy of the
N -arm leaky star assumes the unique maximum for γ = σ , where σ corresponds to the
appropriate sharp configuration listed above.

5. Concluding remarks

At least a part of the results included into this survey is of a recent date which
shows that this area is active and far from being ready to be sealed and put aside.
Indeed, various related questions remain open. Some are of a technical nature coming
from the fact that we did not strive here for the weakest assumptions, others questions
are deeper and more interesting, for instance

• optimization with a non-constant coupling strength α . In this case we lose one
important ingredient of our argument, the ground state symmetry. Put like that,
however, the question seems to be too broad and one would likely need to fix
more narrow classes of Γ and α to get a meaningful problem

• while for planar loops there is a similarity between the δ and δ ′ interaction, the
situation for star graphs is more complicated. The optimal configuration for a
δ ′ star is easy to guess when the vertex degree is even and the full symmetry
is compatible with a switching sign of the wave function, but not at all for stars
with an odd number of edges

• there is no need to stress how beautiful, and at the same time difficult is the three-
dimensional star graphs optimization problem discussed in the previous section,
and there is no doubt that any result for the number of edges different from those
five listed in Theorem 8 would be of interest. Note that in contrast to Thomson’s
problem where the potential coupling appears as a multiplicative constant and,
as a result, the solution is scale invariant, the ‘potential’ in Lemma 1 is more
complicated. If the star edges are semi-infinite the problem is still scale invariant,
while for a finite star the optimal configuration depends in general of the value of
the coupling constant α

• last but not least, one is interested in result going beyond the principal eigenvalue
level. It is possible to ask about comparison of the first two eigenvalues in the
spirit of Payne-Pólya-Weinberger-Ashbaugh-Benguria, whether the nodal line of
the second eigenvalue corresponding to a planar loop always intersects Γ , what
can one say about the higher eigenvalues, etc.

We leave this, and more, in the hands of our kind reader and believe that he or she
would find a pleasure in thinking about such problems.
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