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ON THE NOTION OF EFFECTIVE IMPEDANCE

ANNA MURANOVA

Abstract. It is known that electrical networks with resistors are related to the Laplace operator
and random walk on weighted graphs. In this paper we consider more general electrical net-
works with coils, capacitors, and resistors. We give two mathematical models of such networks:
complex-weighted graphs and graphs with weights from the ordered field of rational functions.
The notion of effective impedance in both approaches is defined.

1. Introduction

It was shown in [3] and [7] that there is a tight relation between electrical networks
with resistors and weighted graphs. Ohm’s and Kirchhoff’s laws imply that the voltage
in the network is a solution of the Dirichlet problem for the discrete Laplace operator
on the weighted graph. Due to the maximum principle, the solution of the Dirichlet
problem in this case exists and is unique (see, for example, [5]). Hence, this provides a
mathematical justification of the notion of effective resistance as the inverse energy of
the solution of the Dirichlet problem.

Consider now an electrical network of alternating current, that consists of impe-
dances (i.e. resistors, capacitors, and coils). In this case one rewrites Ohm’s and Kirch-
hoff’s laws in the complex form (see e.g. [4], [6], [8]) and obtains the Dirichlet problem
with complex-valued coefficients. Maximum principle does not exist in this case, and
solution of the Dirichlet problem may not exist or may be not unique, which creates
difficulties in definition of the effective impedance. In this paper we propose two ap-
proaches of overcoming this difficulty.

In the first approach we show that, in the case of multiple solutions, all they have
the same energy and, therefore, the effective impedance is well-defined. In the case of
absence of solution the effective impedance is set to be 0.

In the second approach, we consider the impedance of each edge as a rational
function of the parameter λ = iω , where ω is the frequency of the current (see [1]),
and use the fact, that rational functions of λ form an ordered field (see [9]). Fortu-
nately, the maximum principle holds for the Laplace operator with weight from that
field, which allows to solve uniquely the Dirichlet problem and, hence, to define the
effective impedance as a rational function on λ .

The two notions of effective impedances coincide if the Dirichlet problem of the
first approach has a unique solution. Otherwise, the question of identity of the two
effective impedances remains open.
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2. Graphs with complex-valued weight

Let (V,E) be a connected graph, where V is a set of vertices and E is a set of
(unoriented) edges. Unless otherwise is said, the set V is always assumed finite.

Assume that each edge xy is equipped with a resistance Rxy , inductance Lxy ,
and capacitance Cxy , where Rxy,Lxy ∈ [0,+∞) and Cxy ∈ (0,+∞] , which correspond
to physical resistor, inductor (coil), and capacitor. Let a0,a1 ∈ V be two vertices, to
which an external periodic voltage of frequency ω > 0 is applied.

The impedance of the edge xy is

zxy = Rxy +Lxyiω +
1

Cxyiω
. (1)

Note that Rezxy � 0.

By complex Ohm’s and Kirchhoff’s laws the complex voltage v : V → C satisfies
the following Dirichlet problem:⎧⎪⎨

⎪⎩
∑y:y∼x

v(y)−v(x)
zxy

= 0 on V \ {a0,a1},
v(a0) = 0,

v(a1) = 1.

(2)

Note that here and further in notations ∑y means ∑y∈V .
The physical meaning of v(x) is that it is a (complex-valued) amplitude of the volt-

age at the node x , while the actual alternating voltage at time t is equal to Re(v(x)eiωt ) .
It will be convenient for us to use the inverse capacity:

Dxy =
1

Cxy
∈ [0,+∞),

as well as the admittance ρxy :

ρxy =
1
zxy

=
iω

Lxy(iω)2 +Rxy(iω)+Dxy
=

Rxyω2 + i(−Lxyω3 +Dxyω)
(Dxy −Lxyω2)2 +R2

xyω2 (3)

=
λ

Lxyλ 2 +Rxyλ +Dxy
, (4)
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where λ = iω is pure imaginary, Imλ > 0 (i.e. −iλ > 0). We always assume that for
any edge

R2
xy +L2

xy +D2
xy �= 0.

Note that we can consider ρ as a function from V ×V to C by setting ρxy = 0, if xy
is not an edge. We refer to the structure Γ = ((V,E),{ρxy},a0,a1) as an (electrical)
network.

DEFINITION 1. The weighted Laplacian Δρ is the operator, defined as follows:
for any function f : V → C

Δρ f (x) = ∑
y:y∼x

( f (y)− f (x))ρxy = ∑
y:y∼x

(∇xy f )ρxy,

where
∇xy f = f (y)− f (x)

is the difference operator.

Therefore, we can rewrite the Dirichlet problem (2) as follows:⎧⎪⎨
⎪⎩

Δρv(x) = 0 on V \ {a0,a1},
v(a0) = 0,

v(a1) = 1.

(5)

Note that if |V | = n , then (5) is a n×n system of linear equations. The existence and
uniqueness of the solution of (5) over C is not always the case. Indeed, the determinant
of the Dirichlet problem (5) is equal to zero, when ω is equal to a natural frequency of
the given network (see e.g. [2, p. 601]).

EXAMPLE 2. Consider the network Γ as at the figure below, where admittances
are shown on each edge (R,L,C > 0).

a1

z y x

a01
Lλ+R

Cλ
1

Lλ

Cλ

Cλ
Cλ

1
Lλ

The Dirichlet problem for this network is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(v(y)−v(x))
Lλ +(v(a0)− v(x))Cλ = 0,

(v(z)− v(y))Cλ + (v(a1)−v(y))
Lλ +(v(a0)− v(y))Cλ + (v(x)−v(y))

Lλ = 0,

(v(a1)− v(z))Cλ +(v(y)− v(z))Cλ = 0,

v(a0) = 0,

v(a1) = 1.

(6)
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The determinant of this linear system is

D = D(λ ) =
−C(3LCλ 2 +1)(LCλ 2 +2)

L2λ

and it has two pure imaginary zeros with positive imaginary part: λ1 = i
√

2
LC , λ2 =

i
√

1
3LC . In case D(λ ) �= 0 the solution of the Dirichlet problem (6) is

v = (v(x),v(y),v(z),v(a0),v(a1)) =
(

1
3LCλ 2 +1

,
LCλ 2 +1
3LCλ 2 +1

,
2LCλ 2 +1
3LCλ 2 +1

,0,1

)
.

In the case λ = λ1 the Dirichlet problem (6) has infinitely many solutions

v = (−2τ +1,2τ −1,τ,0,1) ,τ ∈ C.

In the case λ = λ2 the Dirichlet problem (6) has no solution.

EXAMPLE 3. Consider the network Γ as at the figure below, where admittances
are shown on each edge.

a0

x

y

a1

1
λ

λ

λ

1
λ

1
λ+1

The Dirichlet problem for this network is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v(a0)−v(x))
λ + (v(y)−v(x))

λ+1 +(v(a1)− v(x))λ = 0,

(v(a0)− v(y))λ + (v(x)−v(y))
λ+1 + (v(a1)−v(y))

λ = 0,

v(a0) = 0,

v(a1) = 1.

(7)

The determinant of this linear system is

D = D(λ ) =
λ 5 + λ 4 +4λ 3 +2λ 2 +3λ +1

λ 3 + λ 2

=
(λ 2 +1)(λ 3 + λ 2 +3λ +1)

λ 2(λ +1)
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and it has one pure imaginary zero, whose imaginary part is positive, λ0 = i . In case
D(λ ) �= 0 the solution of the Dirichlet problem (7) is

v(x) =
λ 3 + λ 2 + λ

λ 3 + λ 2 +3λ +1
,

v(y) =
2λ +1

λ 3 + λ 2 +3λ +1
.

In the case λ = i the Dirichlet problem (7) has infinitely many solutions

v(x) = τ −1+ i,

v(y) = τ,τ ∈ C.

DEFINITION 4. Let v(x) be a solution of the Dirichlet problem (5). Define the
effective impedance of the network Γ by

Ze f f =
1

∑x:x∼a0
v(x)ρxa0

and the effective admittance by

Pe f f =
1

Ze f f
= ∑

x:x∼a0

v(x)ρxa0 .

If (5) has no solution, then set Ze f f = 0 and Pe f f = ∞ .

Note that Ze f f and Pe f f take values in C∪{∞} . We will prove below (see Theorem
10) , that in the case when (5) has multiple solutions, the values Ze f f and Pe f f are
independent of the choice of the solution v .

PROPOSITION 5. For any given network Γ the determinant D(λ ) of the Dirichlet
problem (5) has a finite number of zeros in C .

Hence, for all λ ∈ C , except for a finite number of values, the Dirichlet problem
(5) has a unique solution.

The proof of Proposition 5 will be given in Section 3. Note that the theorem is true
just for networks (see Example 6 below).

EXAMPLE 6. Consider the Dirichlet problem for the weighted graph at the figure
below, where weights are shown on each edge. Note that here the weights of the edges
xa1 and a0y are not in the form (4), and, therefore, this is not a network.
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a0

x

y

a1

λ

−λ

−λ

λ

1

The Dirichlet problem for this graph is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v(a0)− v(x))λ +(v(a1)− v(x))(−λ )+ (v(y)− v(x)) = 0,

(v(a0)− v(y))(−λ )+ (v(a1)− v(y))λ +(v(x)− v(y)) = 0

v(a0) = 0,

v(a1) = 1.

The determinant of this system is

D = D(λ ) ≡ 0

and the Dirichlet problem has infinitely many solutions

v(x) = τ,v(y) = τ + λ ,τ ∈ C

for any λ .

From physical point of view the effective impedance means that if we replace our
entire network by a single edge connecting a0 and a1 with the impedance Ze f f , then
the current in this single-edge network will be the same as in the original one.

LEMMA 7. (Green’s formula) Let Γ be a network as above and let Ω be a non-
empty subset of V . Then for any two functions f ,g : V → C the following identity is
true:

∑
x∈Ω

Δρ f (x)g(x) = −1
2 ∑

x,y∈Ω
(∇xy f )(∇xyg)ρxy + ∑

x∈Ω
∑

y∈V\Ω
(∇xy f )g(x)ρxy. (8)

Proof.

∑
x∈Ω

Δρ f (x)g(x) = ∑
x∈Ω

(
∑
y∈V

( f (y)− f (x))ρxy

)
g(x)

= ∑
x∈Ω

∑
y∈V

( f (y)− f (x))g(x)ρxy
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= ∑
x∈Ω

∑
y∈Ω

( f (y)− f (x))g(x)ρxy + ∑
x∈Ω

∑
y∈V\Ω

( f (y)− f (x))g(x)ρxy

= ∑
y∈Ω

∑
x∈Ω

( f (x)− f (y))g(y)ρxy + ∑
x∈Ω

∑
y∈V\Ω

(∇xy f )g(x)ρxy,

where in the last line we have switched notation of the variables x and y in the first
sum. Adding together the last two lines and dividing by 2, we obtain (8).

If Ω = V , then V \Ω is empty so that the last term in (8) vanishes, and we obtain

∑
x∈V

Δρ f (x)g(x) = −1
2 ∑

x,y∈V
(∇xy f )(∇xyg)ρxy. (9)

COROLLARY 8. For any function f : V → C ,

∑
x∈V

Δρ f (x) = 0. (10)

Proof. Apply (9) for g ≡ 1.

LEMMA 9. For any solution v of the Dirichlet problem (5) we have

∑
x:x∼a0

v(x)ρxa0 = Δρv(a0) = −Δρv(a1) =
1
2 ∑

x,y∈V

(∇xyv)(∇xyu)ρxy, (11)

where u : V → C is any function such that u(a0) = 0 and u(a1) = 1 .

Proof. Using v(a0) = 0, we have

Δρv(a0) = ∑
x:x∼a0

(v(x)− v(a0))ρxa0 = ∑
x:x∼a0

v(x)ρxa0

which proves the first identity in (11). Since by (10)

∑
x∈V

Δρ f (x) = 0

and Δρv(x) = 0 for all x ∈V \ {a0,a1} , we obtain

Δρv(a0)+ Δρv(a1) = 0

whence the second identity in (11) follows. Finally, to prove the third identity, we apply
the Green’s formula (9) and obtain

1
2 ∑

x,y∈V
(∇xyv)(∇xyu)ρxy = −∑

x
Δρv(x)u(x) = −Δv(a1),

because Δρv(x) = 0 for all x ∈V \ {a0,a1} , while u(a0) = 0 and u(a1) = 1.
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THEOREM 10. The value of the impedance Ze f f does not depend on the choice
of a solution v of the Dirichlet problem (5). Besides, we have the identity

1
2 ∑

x,y∈V

|∇xyv|2ρxy = Pe f f . (12)

Proof. Let v1 and v2 be two solutions of (5). By (11) we have

∑
x:x∼a0

v1(x)ρxa0 =
1
2 ∑

x,y∈V
(∇xyv1)(∇xyv2)ρxy

and also

∑
x:x∼a0

v2(x)ρxa0 =
1
2 ∑

x,y∈V
(∇xyv2)(∇xyv1)ρxy,

whence the identity

∑
x:x∼a0

v1(x)ρxa0 = ∑
x:x∼a0

v2(x)ρxa0

follows. Hence, the admittance and impedance are independent of the choice of v .
Applying (11) with u = v , we obtain

1
2 ∑

x,y∈V
|∇xyv|2ρxy =

1
2 ∑

x,y∈V
(∇xyv)(∇xyv)ρxy = Pe f f .

By the physical meaning Rezxy � 0 and the effective impedance also is expected
to have a non-negative real part. We prove this in a following theorem, using Theorem
10.

THEOREM 11. For any finite network, we have

Re(Ze f f ) � 0.

Moreover, if Im(zxy) � 0 for every xy ∈ E (RC-network), then Im(Ze f f ) � 0 and if
Im(zxy) � 0 for every xy ∈ E (RL-network), then Im(Ze f f ) � 0 .

Proof. For any z ∈ C , we have

Rez � 0 ⇔ Re

(
1
z

)
� 0,

because if z = a+bi,a,b∈ R , then

1
z

=
a

a2 +b2 −
b

a2 +b2 i. (13)

Therefore, Re(Ze f f ) � 0 is equivalent to Re
(
Pe f f

)
� 0. From the left hand side of

(12) it is obvious that Re
(
Pe f f

)
� 0 since Re(ρxy) � 0 for any xy ∈ E by (3).

We have Im(zxy) � 0 ⇔ Im(ρxy) � 0 and Im(Ze f f ) � 0 ⇔ Im
(
Pe f f

)
� 0 by

(13). Due to (12), Im(ρxy) � 0, for any xy ∈ E , implies Im
(
Pe f f

)
� 0. The result for

RL -network can be proved analogously.
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EXAMPLE 12. The effective impedance for the network from Example 2 is given
by.

Ze f f =

⎧⎪⎪⎨
⎪⎪⎩

R+ i
√

2L
C ,λ = i

√
2

LC , case of multiple solutions ;

0,λ = i
√

1
3LC , case of no solution ;

3L2Cλ 3+3RLCλ 2+Lλ+R
L2C2λ 4+RLC2λ 3+5LCλ 2+2RCλ+1

, for other λ ,such that− iλ > 0.

It is easy to verify, that in this example the effective impedance is a continuous function
on ω = −iλ ∈ (0,∞) .

EXAMPLE 13. The effective impedance for the network from Example 3 is given
by

Ze f f =

{
1
2 − i

2 ,λ = i,
λ 3+λ 2+3λ+1

3λ 2+2λ+1
, in other cases (−iλ > 0).

It is easy to verify, that here the effective impedance is again a continuous function on
ω = −iλ ∈ (0,∞) .

3. Network over an ordered field

Let us consider the admittance ρxy as a rational function of λ

ρxy(λ ) =
λ

Lxyλ 2 +Rxyλ +Dxy
(14)

with real coefficients.
Let us denote by R(λ ) the set of all rational functions of λ with real coefficients.

DEFINITION 14. [9] Define in R(λ ) an order “ 	” as follows: for any rational
function

f (λ ) =
anλ n + . . .+a1λ +a0

bmλ m + . . .+b1λ +b0
∈ R(λ )

with an �= 0,bm �= 0, write

f (λ ) 	 0, if
an

bm
> 0

and
f (λ ) 	 g(λ ), if f (λ )−g(λ ) 	 0.

It is easy to check that 	 is a total order and (R(λ ),	) is an ordered field (see [9]).
Note that this field is non-Archimedean: λ 	 n for any n = 1+ · · ·+1︸ ︷︷ ︸

n

.

Clearly, a rational function ρxy(λ) as in (14) is positive as an element of (R(λ),	) ,
where “	” is defined as in Definition 14.
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Let (K,	) be an arbitrary ordered field. We say that k ∈ K is positive if k 	 0.
For k1,k2 ∈ K we will write

k1 
 k2, if k1 	 k2 or k1 = k2.

Moreover, we will write
k1 ≺ k2, if k2 	 k1

and
k1 � k2, if k1 ≺ k2 or k1 = k2.

DEFINITION 15. A network over the ordered field K is a structure

Γ = ((V,E),{ρxy},a0,a1),

where (V,E) is a connected graph, ρ : E → K is a positive function in (K,	) (i.e.
ρxy 	 0 for every xy ∈ E ), and a0,a1 ∈V are two fixed vertices.

Note that we can consider ρ as a function from V ×V to K by setting ρxy = 0, if
xy is not an edge. Then the weight ρxy gives rise to a function on vertices as follows:

ρ(x) = ∑
y

ρxy, (15)

where the notation ∑
y

means ∑
y∈V

. Then ρ(x) is called the weight of a vertex x . By

properties of the ordered field, we have ρ(x) 	 0 for any x ∈V .

DEFINITION 16. For any function f : V → K the weighted Laplacian Δρ is de-
fined as

Δρ f (x) = ∑
y

( f (y)− f (x))ρxy = ∑
y

(∇xy f )ρxy,

where
∇xy f = f (y)− f (x)

is the difference operator.

From now on we assume that (V,E) is a finite graph and Γ is a network over the
ordered field K on this graph.

THEOREM 17. The following Dirichlet problem:⎧⎪⎨
⎪⎩

Δρv(x) = 0 on V \ {a0,a1},
v(a0) = 0,

v(a1) = 1.

(16)

where v : V → K is an unknown function, has always a unique solution over K .

The key point for the proof of Theorem 17 is the following lemma.
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LEMMA 18. (A maximum/minimum principle) Let B be a non-empty subset of
V , such that V \B is also non-empty. Then, for any function u : V → K , that satisfies
Δρu(x) 
 0 (i.e. u is subharmonic) on V \B, we have

max
V\B

u � max
B

u (17)

and for any function u : V → K , that satisfies Δρu(x) � 0 (i.e. u is superharmonic) on
V \B, we have

min
V\B

u 
 min
B

u. (18)

Proof. It is enough to proof the first claim (then the second claim follows by
changing u to −u ). Set

M = max
V\B

u,

and assume from the contrary, that

M 	 max
B

u. (19)

Let us consider the set
S = {x ∈V : u(x) = M}.

Claim 1. If x ∈ S , then all neighbors of x also belong to S .
Observe, that by assumption (19) we have S ⊂ V \B . Therefore, for any x ∈ S

Δρu(x) 
 0, which can be rewritten in the form

u(x) � ∑
y:y∼x

ρxy

ρ(x)
u(y). (20)

By properties of positive elements, we have

ρxy

ρ(x)
	 0 for any y ∼ x.

Also, for any y we have u(y) � M by the definition of maximum. Therefore,

ρxy

ρ(x)
u(y) =

ρxy

ρ(x)
M, if u(y) = M, (21)

and
ρxy

ρ(x)
u(y) ≺ ρxy

ρ(x)
M, if u(y) ≺ M, (22)

where the last line is true by properties of positive elements. If there exist y0 ∼ x such
that u(y0) ≺ M , then, summing up all the equalities (21) and inequalities (22), we
obtain

∑
y∼x

ρxy

ρ(x)
u(y) ≺ ∑

y∼x

ρxy

ρ(x)
M. (23)

But

∑
y∼x

ρxy

ρ(x)
M = M = u(x),
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therefore, (23) is a contradiction with (20).

Claim 2. Let S be a non-empty set of vertices of a connected graph (V,E) such that
x ∈ S implies that all neighbours of x belong to S . Then S = V .

Indeed, let x ∈ S and y be any other vertex. Then by the definition of connected
graph, there is a path {xk}n

k=0 between x and y , that is,

x = x0 ∼ x1 ∼ x2 ∼ ·· · ∼ xn = y.

Since x0 ∈ S and x1 ∼ x0 , we obtain x1 ∈ S . Since x2 ∼ x1 , we obtain x2 ∈ S . By
induction, we conclude that all xk ∈ S , whence y ∈ S .

It follows from two claims that set S must coincide with V , which is not possible
since u(x) ≺ M for any x ∈ B . This contradiction shows that M � maxB u .

Proof of the Theorem 17. Let us first prove the uniqueness. If we have two solu-
tions v1 and v2 of (16), then the difference v = v1− v2 satisfies the conditions{

Δρv(x) = 0 on V \ {a0,a1},
v(x) = 0 on {a0,a1},

(24)

and, by Lemma 18

0 = max
{a0,a1}

v 
 max
V\{a0,a1}

v 
 min
V\{a0,a1}

v 
 min
{a0,a1}

v = 0,

whence, v ≡ 0 since v(a0) = v(a1) = 0. Let us now prove the existence of a solution
of (16). For any x ∈V \ {a0,a1} , rewrite the equation Δρv(x) = 0 in the form

∑
y∼x,

y∈V\{a0,a1}

ρxy

ρ(x)
v(y)− v(x) = − ρxa1

ρ(x)
v(a1)− ρxa0

ρ(x)
v(a0). (25)

Let us denote by F the set of all functions v on V \ {a0,a1} with values in K(n−2) ,
where n = |V | . Then the left hand side of (25) can be regarded as an operator in this
space; let us denote it by Lv , that is

Lv(x) = ∑
y∼x,

y∈V\{a0,a1}

ρxy

ρ(x)
v(y)− v(x), (26)

for all x ∈ V \ {a0,a1} . Rewrite the equation (25) in the form Lv = h , where h is the
right hand side of (25), which is a given function on V \ {a0,a1} . Note that F is a
linear space over the field K . Since the family {1{x}}x∈V\{a0,a1} of indicator functions
form a basis in F , we obtain that dimF = n−2 < ∞ . Hence, the operator L : F →F
is a linear operator in a finitely dimensional space, and the first part of the proof shows
that Lv = 0 implies v = 0 (indeed, just set v(a1) = 0 and v(a0) = 0 in (25)), that
is, the operator L is injective. By Linear Algebra, any injective operator acting in the
spaces of equal dimensions, must be bijective. Hence, for any h ∈ F (in particular, for
h(x) = − ρxa1

ρ(x) ), there is a solution, which finishes the proof.
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COROLLARY 19. (Proposition 5) For any given network Γ the determinant D(λ )
of the Dirichlet problem (5) has a finite number of zeros in C .

Proof. For any given network the determinant of the Dirichlet problem (5) is a
rational function on λ and, by Theorem 17, it is not constantly zero.

COROLLARY 20. For the solution v : V → K of (16) the following inequality

0K � v(x) � 1K (27)

is true for any x ∈V .

Proof. Apply Lemma 18 for B = {a0,a1} .
Now we can define the effective impedance of the network over the ordered field K .

DEFINITION 21. Let v be a solution of the Dirichlet problem (16) for the network.
Then define the effective impedance by

Ze f f =
1

∑x v(x)ρxa0

, (28)

The quantity

Pe f f =
1

Ze f f
= ∑

x
v(x)ρxa0

is called the effective admittance.

Since by Theorem 17 the Dirichlet problem (16) has exactly one solution over the
field K , the effective impedance is always well-defined as an element of K .

In particular, when K = R(λ ) the effective impedance is always well-defined as a
rational function.

Moreover, by (27) we have Pe f f 
 0 and, hence, Ze f f 
 0 in K .

THEOREM 22. (Green’s formula) Let Γ be a network over the ordered field K
with the vertex set V , and let Ω be a non-empty subset of V . Then, for any two
functions f ,g : V → K ,

∑
x∈Ω

Δρ f (x)g(x) = −1
2 ∑

x,y∈Ω
(∇xy f )(∇xyg)ρxy + ∑

x∈Ω
∑

x∈V\Ω
(∇xy f )g(x)ρxy. (29)

If Ω = V , then the last term in (29) vanishes, and we obtain

∑
x∈V

Δρ f (x)g(x) = −1
2 ∑

x,y∈V

(∇xy f )(∇xyg)ρxy (30)



736 A. MURANOVA

Proof.

∑
x∈Ω

Δρ f (x)g(x) = ∑
x∈Ω

(
∑
y∈V

( f (y)− f (x))ρxy

)
g(x)

= ∑
x∈Ω

∑
y∈V

( f (y)− f (x))g(x)ρxy

= ∑
x∈Ω

∑
y∈Ω

( f (y)− f (x))g(x)ρxy + ∑
x∈Ω

∑
y∈V\Ω

( f (y)− f (x))g(x)ρxy

= ∑
y∈Ω

∑
x∈Ω

( f (x)− f (y))g(y)ρxy + ∑
x∈Ω

∑
y∈V\Ω

(∇xy f )g(x)ρxy,

where in the last line we have switched notation of the variables x and y in the first
sum. Adding together the last two lines and dividing by 2 (it is possible, since any
ordered field has characteristic 0, see [9]), we obtain

∑
x∈Ω

Δρ f (x)g(x) = −1
2 ∑

x∈Ω
∑
y∈Ω

(∇xy f )(∇xyg)ρxy + ∑
x∈Ω

∑
y∈V\Ω

(∇xy f )g(x)ρxy,

which was to be proved.

COROLLARY 23. For any function f : V → K ,

∑
x∈V

Δρ f (x) = 0. (31)

Proof. Apply (30) for g ≡ 1.

LEMMA 24. For any network we have

Pe f f = Δρv(a0) = −Δρv(a1), (32)

where v is the solution of the Dirichlet problem (16).

Proof. Using v(a0) = 0, we obtain

Δρv(a0) = ∑
y:y∼a0

(v(y)− v(a0))ρa0y = ∑
y:y∼a0

v(y)ρa0y = Pe f f . (33)

The second equality in (32) follows from (31), since v is the solution of the Dirichlet
problem (16).

THEOREM 25. Let v be the solution of the Dirichlet problem (16) for network Γ
over the ordered field K . Then

1
2 ∑

x,y∈V

(∇xyv)2ρxy = Pe f f . (34)
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Proof. Applying (30) to the left hand side of (34) we obtain

1
2 ∑

x,y∈V
(∇xyv)2ρxy = − ∑

x∈V
Δρv(x)v(x)

= − ∑
x∈V\{a0,a1}

Δρv(x)v(x)−Δρv(a0)v(a0)+ Δρv(a1)v(a1)

= −Δρv(a1),

since v is the solution of (16). The statement (34) is proved due to Lemma 24.

THEOREM 26. (Dirichlet/Thomson’s principle) Let v be the solution of the Dirich-
let problem (16) for the network Γ over the ordered field K . Then for any other function
f : V → K such that f (a0) = 0 and f (a1) = 1 , the following inequality holds:

1
2 ∑

x,y∈V
(∇xyv)2ρxy � 1

2 ∑
x,y∈V

(∇xy f )2ρxy (35)

Proof. Let g = f − v . Then g(a0) = g(a1) = 0. Therefore,

1
2 ∑

x,y∈V

(∇xy f )2ρxy =
1
2 ∑

x,y∈V

(∇xy(g+ v))2ρxy =
1
2 ∑

x,y∈V

(∇xyg+ ∇xyv)2ρxy

=
1
2 ∑

x,y∈V

((∇xyg)2 +2(∇xyg)(∇xyv)+ (∇xyv)2)ρxy

=
1
2 ∑

x,y∈V
(∇xyv)2ρxy +

1
2 ∑

x,y∈V
(∇xyg)2ρxy + ∑

x,y∈V
(∇xyv)(∇xyg)ρxy,

where the last term vanishes by Green’s formula (29), since g(a0) = g(a1) = 0 and v is
the solution of (16) and the second term is greater then zero whenever g �≡ 0. Therefore,
(35) is proved and an equality is attained if and only if f ≡ v .

4. Comparison of two definitions of Ze f f

Denote by Z(1)
e f f (λ ) the effective impedance defined in Section 2, that we from

now on will consider as a function of λ = iω .
The effective impedance from Section 3 for the field K = R(λ ) will be denoted

by Z(2)
e f f (λ ) . Note that it was already defined as a rational function of λ .
Of course, the arises question is whether

Z(1)
e f f (λ ) = Z(2)

e f f (λ ) (36)

for all λ , such that −iλ > 0.
The unique solution v(λ ) of the Dirichlet problem (16) can be found by Cramer’s

rule applied in the field R(λ ) . Hence, v(λ )(x) is a rational function of λ for any x∈V .
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Consequently, Z(2)
e f f (λ ) is a rational function of λ . Note, that any rational function of

λ ∈ C takes values in C∪{∞} (for any λ ∈ C). 1 Consequently, any rational function

is continuous with the values in C∪{∞} . In particular, Z(2)
e f f (λ ) is continuos function

of λ ∈ C with values in C∪{∞} (including the value ∞).

By Cramer’s rule, applied in C , the function Z(1)
e f f (λ ) is also a rational function of

λ at all λ , where the determinant D(λ ) of the Dirichlet problem (5) does not vanish.
Moreover, at those λ , where D(λ ) �= 0 the equality (36) is true by Cramer’s rule.

By Theorem 17, D(λ ) vanishes only at finitely many values of λ , therefore, the

identity (36) will be true for all −iλ > 0 if we know that Z(1)
e f f (λ ) is continuous in λ .

However, it is not obvious for those λ , where (5) has multiple solutions or no
solution.

The question should definitely be restricted just to the Dirichlet problem, which
arises from electrical networks, and to the case of pure imaginary λ , as the following
two examples show.

EXAMPLE 27. Consider the Dirichlet problem for the network at the figure below,
where weights are shown on each edge. Note, that here the weight of the edge ya1 is
positive function, but it is not in the form (4).

a0

x

y

a1

λ
1
λ

1 λ + 1
λ −1 = λ 2−λ+1

λ

The Dirichlet problem for this network is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v(a0)− v(x))λ + v(a1)−v(x)
λ = 0,

(v(a0)− v(y))+ (v(a1)− v(y))(λ + 1
λ −1) = 0,

v(a0) = 0,

v(a1) = 1.

The determinant of this system is

D = D(λ ) =
1

λ 2 (λ 2 +1)2

1For any rational function P(λ)
Q(λ) with polynomials P , Q , one can always assume that P and Q have no

common zeros, since otherwise their common linear factor can be cancelled. Hence, one avoids indeterminate
form 0

0 .
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and its zeros are i and −i .
In case D(λ ) �= 0 the solution of the Dirichlet problem is

v(x) =
1

λ 2 +1
,v(y) =

λ 2 −λ +1
λ 2 +1

.

and it has no finite limit as λ → i .
But the effective impedance in this case is Z(1)

e f f (λ ) = 1. Therefore, Z(2)
e f f (λ ) ≡ 1

The Dirichlet problem in the case λ = i is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v(a0)− v(x))i− (v(a1)− v(x))i = 0,

(v(a0)− v(y))− (v(a1)− v(y)) = 0,

v(a0) = 0,

v(a1) = 1.

and, obviously, has no solutions. Therefore, Z(1)
e f f (i) = 0 by definition. Hence Z(1)

e f f (λ )

is not continuos at the point λ = i and Z(1)
e f f (i) �= Z(2)

e f f (i) .

EXAMPLE 28. Consider the Dirichlet problem for the network at the figure below,
where admittances are shown on each edge.

a0 y

z

x

a1

1
λ

λ

1
λ

1
λ

λ 1
λ

The Dirichlet problem for this network is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(v(a0)−v(x))
λ +(v(a1)− v(x))λ +(v(y)− v(x)) = 0,

(v(a0)− v(y))λ + (v(a1)−v(y))
λ +(v(x)− v(y)) = 0,

(v(a0)− v(z))λ + (v(a1)−v(z))
λ = 0,

v(a0) = 0,

v(a1) = 1.

The determinant of this system is

D = D(λ ) =−
(

1
λ 2 +

2
λ

+2+2λ + λ 2
)(

λ +
1
λ

)
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=− 1
λ 3 (λ +1)2(λ 2 +1)2,

and it is easy to see, that λ = ±i and λ = −1 are its zeros.
In case D(λ ) �= 0 the solution of the Dirichlet problem is

v(λ ) = (v(x),v(y),v(z),v(a0),v(a1)) =
(

λ
1+ λ

,
1

1+ λ
,

1
1+ λ 2 ,0,1

)
.

The effective impedance in these cases is

Z(1)
e f f (λ ) = Z(2)

e f f (λ ) =
λ 2 +1

λ 2 + λ +1
. (37)

Note that the finite limit of v does not exist when λ goes to i or λ goes to −1.
The Dirichlet problem in the case λ = i is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−(v(a0)− v(x))i+(v(a1)− v(x))i+(v(y)− v(x)) = 0,

(v(a0)− v(y))i− (v(a1)− v(y))i+(v(x)− v(y)) = 0,

(v(a0)− v(z))i− (v(a1)− v(z))i = 0,

v(a0) = 0,

v(a1) = 1.

and has no solution, which by definition of effective impedance implies Z(1)
e f f (i) = 0. It

is easy to see, that Z(2)
e f f (i) = 0. Therefore Z(1)

e f f (i) = Z(2)
e f f (i) and Z(1)

e f f (λ ) is continuous
at the point λ = i .

The Dirichlet problem in the case λ = −1 is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(v(a0)− v(x))− (v(a1)− v(x))+ (v(y)− v(x)) = 0,

−(v(a0)− v(y))− (v(a1)− v(y))+ (v(x)− v(y)) = 0,

−(v(a0)− v(z))− (v(a1)− v(z)) = 0,

v(a0) = 0,

v(a1) = 1.

and it has multiple solutions

v = (v(x),v(y),v(z),v(a0),v(a1)) =
(

τ,1− τ,
1
2
,0,1

)
,τ ∈ C.

One can calculate, that, Z(1)
e f f (−1) = − 2

3 . But from (37) follows, that Z(1)
e f f (−1) = 2.

Therefore, (36) fails at the point λ = −1 and Z(1)
e f f (λ ) is not continuous at this point.

Acknowledgement. The author thanks her scientific advisor, Professor Alexander
Grigor’yan, for helpful discussions on the topic.



ON THE NOTION OF EFFECTIVE IMPEDANCE 741

RE F ER EN C ES

[1] O. BRUNE, Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed
function of frequency, Thesis (Sc. D.). Massachusetts Institute of Technology, Dept. of Electrical En-
gineering, Massachusetts, 1931.

[2] CHARLES A. DESOER, ERNEST S. KUH, Basic circuit theory, McGraw-Hill Book Company, USA,
1969.

[3] P.G. DOYLE, J.L. SNELL, Random walks and electric networks, Carus Mathematical Monographs
22, Mathematical Association of America, Washington, DC, 1984.

[4] RICHARD P. FEYNMAN, ROBERT B. LEIGHTON, MATTHEW SANDS, The Feynman lectures on
physics, Volume 2: Mainly Electromagnetism and Matter, Addison-Wesley publishing company, Read-
ing, Massachusetts, Fourth printing – 1966.

[5] A. GRIGOR’YAN, Introduction to Analysis on Graphs, AMS University Lecture Series, Volume: 71,
Providence, Rhode Island, 2018.

[6] EDWARD HUGHES, Electrical and electronic technology, Pearson Education Limited, England, Tenth
edition – 2008.

[7] DAVID A. LEVIN, YUVAL PERES, ELIZABETH L. WILMER, Markov Chains and Mixing Times,
AMS University Lecture Series, Providence, Rhode Island, 2009.

[8] ARIEH L. SHENKMAN, Circuit analysis for power engineering handbook, Springer Science+Business
Media, B. V, USA, 1998.

[9] B. L. VAN DER WAERDEN, Algebra, Volume I, Springer, New York, 2003.

(Received August 10, 2020) Anna Muranova
5050 Institut für discrete Mathematik

Steyrergasse 30/II, 8010 Graz, Austria
e-mail: anna.muranova@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


