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LOWER ESTIMATES ON EIGENVALUES OF QUANTUM GRAPHS

DELIO MUGNOLO AND MARVIN PLÜMER

Abstract. A method for estimating the spectral gap along with higher eigenvalues of quantum
graphs has been introduced by Amini and Cohen-Steiner in [1] recently: it is based on a new
transference principle between discrete and continuous models of a graph. We elaborate on it by
developing a more general transference principle and by proposing alternative ways of applying
it. To illustrate our findings, we present several spectral estimates on planar metric graphs that
are oftentimes sharper than those obtained by isoperimetric inequalities and further previously
known methods.
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