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LOWER ESTIMATES ON EIGENVALUES OF QUANTUM GRAPHS

DELIO MUGNOLO AND MARVIN PLÜMER

Abstract. A method for estimating the spectral gap along with higher eigenvalues of quantum
graphs has been introduced by Amini and Cohen-Steiner in [1] recently: it is based on a new
transference principle between discrete and continuous models of a graph. We elaborate on it by
developing a more general transference principle and by proposing alternative ways of applying
it. To illustrate our findings, we present several spectral estimates on planar metric graphs that
are oftentimes sharper than those obtained by isoperimetric inequalities and further previously
known methods.

1. Introduction

Our aim in this paper is to present some new developments in the theory of Lapla-
cians on metric graphs: in particular, we discuss the role played by planarity and related
concepts in spectral theory.

Intuitively, a metric graph is a collection of E intervals (0, �1), . . . ,(0, �E) whose
endpoints are identified in a graph-like fashion, so that each interval is regarded as an
edge and the identified endpoints as vertices; a more precise definition can be found
e.g. in the monographs [5, 21], but this will suffice for our purposes. In this note, we
are restricting ourselves to the case of finite metric graphs of finite total length, i.e.,

E < ∞ and L :=
E

∑
j=1

� j < ∞. (1.1)

Accordingly, each metric graph G induces a combinatorial graph G (with vertex
set V and edge set E , E = |E|) that describes its connectivity; conversely, the under-
lying combinatorial graph G and the vector of edge lengths (0, �e)e∈E fully determine
the metric graph G : for this reason, it is natural to consider a weighted version of G
each of whose edges e is assigned the weight �e . If no confusion is possible, we tacitly
identify G with its weighted version.

At the same time, G can be turned into a metric measure space by

• endowing each interval with the Lebesgue measure and

• extending canonically the usual combinatorial distance defined on G ;
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again, we refer to [21, Chapter 3] for details. In this way, it is natural to introduce the
Hilbert space

L2(G ) ≡
E⊕

j=1

L2(0, � j)

of square-integrable functions over the metric graph. An element of L2(G ) is hence a
vector f ≡ ( f1, . . . , fE) of functions with f j ∈ L2(0, � j) for each j ; one can then define
differential operators edgewise. Especially the operator

A : ( f1, . . . , fE) �→ ( f ′′1 , . . . , f ′′E )

has enjoyed much attention over the last decades, beginning with the pioneering inves-
tigations in [24]. Throughout this paper we adopt the convention that the Laplacian is
positive semidefinite, i.e., Δ := −A . It is easy to see that

A|⊕E
j=1 H2

0 (0,� j)

is not essentially self-adjoint and 2E transmission conditions have to be imposed in
the vertices of the graph in order to determine a self-adjoint extension. On any given
metric graph, uncountably many self-adjoint extensions of A exist, the most canonical
one being defined by imposing continuity across the vertices along with a Kirchhoff-
type condition (i.e., for each vertex v the sum of all normal derivatives evaluated along
edges incident in v has to vanish) on elements of

⊕E
j=1 H2(0, � j) . Equipped with these

natural vertex conditions, Δ is often referred to as the standard Laplacian. We will only
study this Laplacian realization in the following.

Finite metric graphs of finite total length share an important property with compact
manifolds without boundary, domains with Neumann boundary conditions, and finite
combinatorial graphs: the standard Laplacian is a self-adjoint, positive semidefinite op-
erator and – as long as these underlying metric graphs are connected – the Laplacian’s
null space is one-dimensional, as it coincides with the space of all constant functions.
Furthermore, the standard Laplacian is associated with a Dirichlet form, hence it gen-
erates a Markovian semigroup: in the context of metric graphs, this has been proved
in [16].

Because the embedding of H2(G ) into L2(G ) is compact – in fact, even of trace
class – the operator Δ has pure point spectrum consisting of countably many eigenval-
ues

0 = λ1(G ) � λ2(G ) � . . .

accumulating at ∞ ; we have already mentioned that λ1(G ) is simple and hence Δ
has a spectral gap, i.e., a positive distance between the spectral bound λ1(G ) = 0
and the second-lowest eigenvalue λ2(G ) > 0. In particular, as t → ∞ the semigroup
(e−tΔ)t�0 generated by −Δ converges to the orthogonal projector onto the null space
exponentially, at a rate given by e−tλ2(G ) ([16, Cor. 5.2]). Many investigations have
been devoted in recent years to the issue of estimating λ2(G ) and hence the conver-
gence rate of the semigroup: apart from the pioneering work [22], we refer in particular
to [15, 2, 9, 6, 7, 18]. All these articles aim at estimating λ2(G ) based on different
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quantities of combinatorial and/or metric nature, including total length, diameter, total
number of vertices or edges, Cheeger constants, etc.

Refined results are furthermore available provided the metric graph belongs to
specific classes: we mention e.g. the upper estimate in [23], which holds for trees:
these are by definitions metric graphs without cycles, hence have poor connectivity.
This paper has in a certain sense an opposite goal: we are going to prove a family of
lower estimates if suitable assumptions ensuring rich connectivity are imposed on the
combinatorial graph G underlying G .

Our results are essentially based on a transference principle recently developed
in [1] in order to deduce spectral estimates for discrete Laplacians from corresponding
estimates known to hold for Laplace–Beltrami operators on manifolds of given genus;
it was observed already in [1] that this transference principle applies to metric graphs
as well, and we are going to elaborate on this idea.

The method in [1] is based on the introduction of a double cover of the metric
graph G , and in turn of a suitable vicinity graph. In Section 2 we first generalize the
basic lower estimate by Amini and Cohen-Steiner by analyzing m-fold covers U of G ,
m � 2: both the elements of U and the associated vicinity graph play a central role
and different choices of U lead to different estimates. This is indeed the starting point
of our analysis: while a smart choice for U was made in [1, § 3] that applies to all
metric graphs, we take a closer look at the class of metric graphs whose underlying
combinatorial graph G admits a cycle double cover. For our purposes, such (combina-
torial) cycle double covers induce canonically a (metric) double cover U . To illustrate
our idea and compare it with the original one in [1], we thus focus on two prototypical
classes of graphs: regular polyhedra and pumpkin chains in Sections 3 and 4, respec-
tively. We show by means of numerous examples that spectral estimates based on the
Amini–Cohen-Steiner approach (both in the original and in our own version) can often
outperform other methods based either on the isoperimetric inequality

λk(G ) � π2k2

4L2 , k � 2, (1.2)

[22, 11] and its refinements in [25, 17, 9, 6] or on surgery methods [15, 14, 7].

2. General setting and the main result

All spectral inequalities quoted in the introduction aim at estimating the spectral
gap λ2(G ) of a metric graph G in dependence of one or more metric or combinatorial
quantities of G : i.e., if only partial knowledge of G is available. The classical result
discovered by von Below in [4] is conceptually different in that it does not deliver esti-
mates on λ2(G ) , but rather it allows to determine the spectral gap λ2(G ) of the metric
graph Laplacian with natural boundary conditions if the spectral gap of the normalized
Laplacian on the underlying combinatorial graph is given; and more generally, to deter-
mine the whole spectrum of the standard Laplacian on G , provided perfect knowledge
of G is available.

Very recently, a new method based on a similar but different transference principle
has been proposed by Amini and Cohen-Steiner in [1]: unlike von Below’s formula,
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it applies to possibly non-equilateral graphs, but at the price of a comparatively rough
estimate. Their result is based on the introduction of a double cover U of the metric
graph G and the associated vicinity graph Γ . However, their results can be generalized
to a larger class of covers of G : to this purpose, we need to introduce a few notions.

2.1. m-fold covers of metric graphs

Beyond the standing finiteness and compactness assumptions (1.1), for technical
reasons we also impose that the metric graph G has no loops. This is hardly restrictive,
since, after inserting dummy vertices, we can always produce a new, loopless metric
graph G ′ with same topology and same spectrum as G . Parallel edges are allowed,
though.

DEFINITION 1. Let m ∈ N . An m-fold cover of a metric graph G is a finite
family U := (Ui)1�i�k of connected metric subgraphs of G such that for almost every
x ∈ G there exist m distinct indices 1 � i1 < .. . < im � k such that x ∈ Ui1 ∩ . . .∩Uim
and x �∈ Ui for i /∈ {i1, . . . , im} .

The associated vicinity graph Γ is a simple, unoriented weighted graph with ver-
tex set {1, . . . ,k} and edge weights μi j := |Ui ∩U j| for vertices i �= j and μii = 0; in
particular two vertices i �= j are adjacent in Γ if and only if Ui ∩U j is not a null set
with respect to the Lebesgue measure on G .

REMARK 1. Since U is an m-fold cover of G the weighted degree of a vertex i
of Γ is

dμ
i :=

k

∑
j=1

μi j =
k

∑
j=1
j �=i

|Ui ∩U j| = (m−1)|Ui|. (2.1)

Moreover, the total volume of Γ with respect to the vertex degree weight is

Volμ(Γ) :=
k

∑
i=1

dμ
i = (m−1)

k

∑
i=1

|Ui| = m(m−1)L. (2.2)

2.2. Normalized Laplacians of weighted graphs

Given a simple (unoriented) weighted graph G with edge weights μe , let M be
the diagonal matrix whose entries are the edge weights of G : we can then introduce the
(weighted) normalized Laplacian

Λ := D−1I MI T , (2.3)

on G , where I is the signed incidence matrix of an arbitrary orientation of G (cf. [21,
§ 2.1]) and D is the diagonal matrix whose entries are the weighted vertex degrees dv

defined for each vertex v by
dv := ∑

e∼v

μe.
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A different, popular linear operator on the vertex space of a graph is

Λsym := D− 1
2 I MI T D− 1

2 , (2.4)

which is often referred to as the symmetric normalized Laplacian. Because Λ and Λsym

are unitarily equivalent, they have the same – real – eigenvalues: we denote them by
αi(G) , with

0 = α1(G) � α2(G) � . . . � αV (G) � 2.

In the following we are also going to consider graphs with parallel edges; for this
purpose, we need to generalize the above notion. If G is a weighted graph with parallel
edges, let us consider its reduced graph, i.e., the simple weighted graph G̃ defined as
follows:

• G̃ has same vertex set as G ;

• given any two adjacent vertices v,w in G , v,w are adjacent in G̃ , too, and the
weight of the corresponding edge is the sum of weights of all edges connecting
v,w in G .

Then, the normalized Laplacian of a general weighted, loopless graph G is defined as
the normalized Laplacian of the reduced graph G̃ ; again, we denote its eigenvalues by
αi(G) , in increasing order. Note that G is connected, if and only if α2(G) > 0.

2.3. The Amini–Cohen-Steiner theorem

Let us present the main result in this section.

THEOREM 2.1. Let G be a metric graph. Given an m-fold cover U := (Ui)1�i�k

of G with associated vicinity graph Γ , the k lowest eigenvalues of the Laplacian with
natural conditions on G satisfy

λi(G ) � m−1
m

η αi(Γ), i = 1, . . . ,k, (2.5)

where η is the minimal spectral gap of the Laplacian with natural conditions defined
on any U j , j = 1, . . . ,k , i.e.,

η := min
1�i�k

λ2(Ui).

(Observe that η > 0, since all Ui are supposed to be connected.)
Theorem 2.1 generalizes [1, Thm. 1.2] from double covers (m = 2) to m-fold

covers.

Proof. Since the proof uses similar arguments as the one given in [1] for double
covers, we restrict ourselves to the main arguments. We consider the linear bounded
operator Φ : L2(G ) → Rk given by

(Φ f )i :=
1√|Ui|

∫
Ui

f dx, i = 1, . . .k
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and let Φ∗ denote its adjoint operator. Using the Courant–Fischer Theorem for the
respective eigenvalues and using the fact that U is an m-fold cover of G one can show
that

λi(G ) � η
m

αi(mI−ΦΦ∗), i = 1, . . .k

where I is the identity on Rk and αi(mI−ΦΦ∗) denotes the i-th-lowest eigenvalue of
the operator mI−ΦΦ∗ . The entries of ΦΦ∗ with respect to Cartesian coordinates on
Rk are

(ΦΦ∗)i j =
|Ui ∩U j|√|Ui| |U j|

and, thus, (mI−ΦΦ∗)ii = m−1 and

(mI−ΦΦ∗)i j = − |Ui ∩U j|√|Ui| |U j|
= −(m−1)

μi j√
dμ

i dμ
j

for i �= j , where we used (2.1) in the second step. Therefore, the entries of mI−ΦΦ∗
are in fact equal to m−1 times the entries of the symmetric normalized Laplacian (2.4)
on Γ and we obtain

λi(G ) � η
m

αi(mI−ΦΦ∗) =
m−1

m
η αi(Γ),

for i = 1, . . .k . This proves the claim.

REMARK 2. The factor m−1
m cannot be improved: if the double cover of G con-

sists of m identical copies U1, · · · ,Um of G , then Γ is the – unweighted – complete
graph on m vertices and, thus, α2(Γ) = m

m−1 (cf. [10, Exa. 1.1]), so the inequality
in (2.5) is in fact an equality for i = 2.

Of course, (2.5) can be improved by taking the supremum over all possible m-fold
covers of G . Intuitively, taking smaller Ui ’s leads to higher η but lower αi , since the
vicinity graph tends to get sparser and hence to have poorer connectivity. It seems that
this trade-off is not easy to optimize, even just for i = 2: η can be estimated owing to
the known inequalities

π2

|U |2 � λ2(U ) � π2E2
U

|U |2 , (2.6)

cf. [22, 15]; here EU ,EΓ are the number of edges of U ,Γ , respectively. But little is
known about α2(Γ) apart from

max

{
h2

Γ
2

,
4

Dμ−1(Γ)Volμ(Γ)

}
� α2(Γ) � 2hΓ, (2.7)

where hΓ , Volμ(Γ) , and Dμ−1(Γ) are the Cheeger constant, the total weight of the
weighted graph Γ with respect to the vertex degree weight based on the edge weights,
and the diameter of Γ with respect to the path metric on Γ induced by the inverse edge
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weights μ−1
i j , respectively; see [10, § 1.3 and § 2.3] for unweighted versions of these

results and [8, Thm. 3.6] and [19, Cor. 18] for general versions. (But see [6, 7] for
sharper estimates whenever U or Γ have higher connectivity.)

In [1] Amini and Cohen-Steiner choose to work with star double covers: a star
double cover is a double cover consisting of V stars Sv j , each centered at a differ-
ent vertex v j and consisting of all edges incident in v j , j = 1, . . . ,V (where V is the
number of vertices of G ). Not only is this choice particularly natural because the result-
ing weighted vicinity graph Γ has the same topology as the underlying combinatorial
graph G of G and the edge weight μi j is equal to the length of the edge connecting the
vertices vi and v j in G ; we will show in several examples that it is also surprisingly
efficient. Applying Theorem 2.1 to star double covers it was proved in [1, Thm. 3.4]
that

λi(G ) � π2

8�2
max

αi(G), i = 1, . . . ,V, (2.8)

where �max is the maximal length of any edge in G . This estimate can be improved
by using different lower estimates for the spectral gaps of the single stars: Nicaise’
inequality (2.6) and [14, Thm. 1.1] imply that

λ2(Sv j ) � π2

deg2
�, j

, λ2(Sv j ) � 1
Dj ·deg�, j

for j = 1, . . . ,V where deg�, j := |Sv j | is the weighted degree of the vertex v j and
Dj := diam(Sv j ) is the diameter of the star Sv j , i.e., the total length of all edges inci-
dent in v j and the combined length of the two longest edges incident in v j , respectively.
Applying Theorem 2.1 yields:

PROPOSITION 2.2. Let G be a metric graph with underlying weighted combina-
torial graph G . Then the eigenvalues λi(G ) of the Laplacian with natural conditions
on G satisfy

λi(G ) � max

(
π2

8�2
max

,
π2

2deg2
�,max

,
1

2(D ·deg�)max

)
αi(G), i = 1, . . . ,V, (2.9)

where �max is the maximal length of the edges of G , deg�,max is the maximal weighted
degree of the vertices of G with respect to the edge lengths of G and

(D ·deg)max := max
{
Dj ·deg�, j | j = 1, . . . ,V

}
.

REMARK 3. 1) Actually [1, Thm. 1.2] is only formulated for simple metric graphs,
but the proof of Theorem 2.1 shows that the assertion remains true if G and its sub-
graphs Ui have parallel edges; in this case, it is natural to generalize the notion of stars
to that of pumpkin stars, and accordingly consider pumpkin star double covers rather
than star covers.
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Figure 1: A pumpkin star

2) Formally, (2.5) and (2.9) hold with αi(G) replaced by αi(Γ) ; but for (pumpkin)
star double covers, G (or its associated reduced graph, if G has parallel edges) and the
vicinity graph Γ coincide.

We will show in several examples that the estimate (2.9) is often very good in
comparison with other known ones. Perhaps more interesting even is the flexibility
offered by the idea behind Theorem 2.1: instead of the double cover based on stars –
which always exists – we are going to focus on special classes of graphs that admit a
specific, different double cover: the elements of U will not be stars, but rather cycles.

3. Cycle double covers and regular polyhedra

Double covers whose elements are cycles within the graphs are a classical topic of
(combinatorial) graph theory. Not all (metric) graphs admit such double covers: obvi-
ously, a necessary condition is that the graph contains no bridges (i.e., it is not simply
connected). Many authors conjectured independently that this condition is sufficient,
too.

CONJECTURE 3.1. (Cycle double cover conjecture) Every bridgeless graph has a
cycle double cover.

The cycle double cover conjecture is among the major open problems of graph
theory and we will not comment on it: we only refer to the monograph [29] and the
survey [13] and mention that the conjecture is especially known to hold in the following
cases, under the additional assumption that G is bridgeless:

• G is planar (i.e., it can be drawn in R2 without any edge crossings);

• G is complete (i.e., any two vertices are adjacent if and only if they are not equal);

• G contains a Hamiltonian path (i.e., there is a path contained in G that traverses
every vertex exactly once);

• G is cubic and 3-edge colorable (i.e., each vertex has exactly three incident edges
and there is a way of assigning to each edge one out of three given colors in such
a way that any two adjacent edges have different colors);
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• G is 4-edge colorable.

It turns out that this allows for a new family of spectral estimates based on the
theory presented in Section 2.

DEFINITION 2. Let G be a metric graph. A cycle double cover of G is a double
cover whose elements are cycles within G .

In the following, we are going to discuss estimates on the spectral gap of planar
quantum graphs. Given an embedding of the graph G in the plane R2 (or in the unit
sphere S2 ), so that any two edges do not cross, G and hence G decompose the plane
(or sphere) into a finite number of open sets (fi)1�i�k – the faces of G . Hence, in the
case of bridgeless planar graphs, each face fi defines an element Ci of a cycle double
cover C : let Ci be the cycle enclosing fi . The vicinity graph is a weighted version of
what is known as the dual graph in (combinatorial) graph theory: we hence denote it by
Gd . The weight of the edge between i �= j is given by the total length of the boundary
shared by fi, f j .

Because the elements (Ci)1�i�k of the double cover are cycles, they satisfy

λ2(Ci) =
4π2

|Ci|2 , i = 1, . . . ,k. (3.1)

Applying Theorem 2.1 to the elements of the cycle double cover immediately yields
the following.

PROPOSITION 3.2. Given a planar metric graph G with a cycle double cover
C := (Ci)1�i�k and associated dual graph Gd , the k lowest eigenvalues of the Lapla-
cian with natural conditions on G satisfy

λi(G ) � 2π2αi(Gd) min
1� j�k

1
|C j|2 , i = 1, . . . ,k. (3.2)

As usual, αi(Gd) denotes the i-th-lowest eigenvalue of the normalized Laplacian
of Gd .

It is not too restrictive to assume a metric graph to be bridgeless: indeed, doubling
each edge of G yields a new, bridgeless graph G2 whose spectral gap is no larger than
the spectral gap of G .

Because each metric graph with a double cover also admits the double cover based
on stars introduced in [1], it is a natural question whether either of these two estimates
is consistently better. One may think that the trade-off is apparent: cycle double covers
tend to have much higher η , even though the eigenvalues αi can be a bit smaller. On
the other hand, the topology of Γ is more obviously related to that of G if the star
double cover is chosen.

It turns out that the estimate Proposition 2.2 can actually be quite efficient in many
different examples. In order to discuss this issue, we restrict for a while to the case of
regular polyhedra.
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EXAMPLE 1. Given a polyhedron P on V vertices with Schläfli symbol {n,m}
(i.e., each face is a regular n -gon, each vertex has degree m) and dual polyhedron Pd ,
we consider the equilateral metric polyhedron P by assigning unitary length to each
edge in P . Then the lower estimate in (2.9) becomes

λi(P) � π2

8
αi(P), i = 1, . . . ,V. (3.3)

If instead a cycle double cover based on the F = 4n
2m+2n−mn faces of the polyhedron is

taken, then we promptly obtain the estimate

λi(P) � 2π2

n2 αi(Pd), i = 1, . . . ,F. (3.4)

Hence, (3.4) is sharper than (3.3) if and only if

αi(P) � 16
n2 αi(Pd). (3.5)

Let us test these estimates in the case of equilateral metric graphs built upon Pla-
tonic solids: they turn out to be a good benchmark for spectral bounds, since the actual
eigenvalues can be found by means of von Below’s formula [4].

1) In order to apply our construction we consider a metric graph P whose un-
derlying combinatorial graph P has the shape of an icosahedron (cf. Figure 2), i.e., the
Platonic solid with Schläfli symbol {3,5} .

Figure 2: The icosahedron ... Figure 3: ... and its dual graph – the dodec-
ahedron

For simplicity we assume all edges in P to have unit length. Then, we can use
von Below’s formula to calculate the eigenvalues of the Laplacian on P : first of all,
we can compute the eigenvalues of the normalized Laplacian on the icosahedron P
explicitly. For instance, its spectral gap is

α2(P) =
5−√

5
5
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and, therefore, von Below’s formula [4] implies

λ2(P) = arccos(1−α2(P))2 = arccos

(√
5

5

)2

� 1.226.

Again, note that applying von Below’s formula would not be possible if P were not
equilateral – however, the following calculation can be extended to the non-equilateral
case.
We compare the estimates for star double covers and cycle double cover: the dual graph
Pd of P has the shape of the Platonic solid with Schläfli symbol {5,3} – the dodecahe-
dron (cf. Figure 3). The spectral gap of the normalized Laplacian on the dodecahedron
Pd is

α2(Pd) =
3−√

5
3

.

Applying the estimate (3.4) for cycle double covers yields the lower bound

λ2(P) � 2π2

32 α2(Pd) =
2π2(3−√

5)
27

� 0.558.

In comparison, using the star-double-cover-based estimate in (3.3) we find

λ2(P) � π2

8
α2(P) =

π2(5−√
5)

40
� 0.682,

whereas the estimates in [14, Thm. 1.1] and [9, Thm. 2.1] yield the weaker lower
bounds

λ2(P) � 1
90

� 0.011 λ2(P) � π2

225
� 0.044,

respectively, since the total length and diameter of P are L = 30 and D = 3.
2) Let us take a look at higher eigenvalues: the eigenvalues of the icosahedron are

01,

(
5−√

5
5

)3

,

(
6
5

)5

,

(
5+

√
5

5

)3

.

On the other hand, the eigenvalues of the dodecahedron are

01,

(
3−√

5
3

)3

,

(
2
3

)5

,14,

(
5
3

)4

,

(
3+

√
5

3

)3

,

so by (3.5) we see that the estimate (2.9) based on the star double cover is better for the

lowest eight nontrivial eigenvalues; whereas 5+
√

5
5 � 1.447, thus the remaining eleven

estimates yielded by the cycle double cover are better. The last relevant estimate reads

λ18(P) � (3+
√

5)π2

27
� 1.914.
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For comparison: Friedlander’s inequality (1.2) yields

λ18(P) � 324π2

3600
� 0.888.

Conversely, if we take P to be the metric graph with the shape of the dodeca-
hedron – hence P is the dodecahedron and Pd is the icosahedron –, we see that the
estimate based on the cycle double cover is strictly better if and only if

αi(P) � 16
25

αi(Pd) :

this is seen to be the case for the eight lowest non-trivial eigenvalues, whereas

1 >
16
25

(
5+

√
5

5

)
� 0.926

and hence the estimate

λ9(P) � π2

8

obtained by means of Proposition 2.2 is better.
3) Similar tests can be performed for the remaining regular polyhedra, too: in the

case of the tetrahedron, the self-dual regular Platonic solid with Schläfli symbol {3,3}
and eigenvalues

01,

(
4
3

)3

,

the lower estimates on the spectral gap of the quantum graph based on Proposition 3.2
is trivially better than the estimate based on Proposition 2.2: they yield

λ2(P) � 8π2

27
and λ2(P) � π2

6
,

respectively.
Let us finally turn to the Platonic solid with Schläfli symbol {4,3} – the cube –

and its dual with Schläfli symbol {3,4} – the octahedron. They have eigenvalues

01,

(
2
3

)3

,

(
4
3

)3

,21 and 01,13,

(
3
2

)2

,

respectively: hence, the estimate on λ2 (resp., λ5 ) of the cube based on Proposition 3.2
is better (resp., worse) then that based on Proposition 2.2. Instead, for the octahedron
all estimates based on Proposition 3.2 are better than those based on Proposition 2.2.

4) Different cycle double covers are conceivable: one may e.g. think of dou-
ble cover elements defined by two adjacent faces. In the case of the tetrahedron this
would lead to three double cover elements consisting of diamonds bounded by edges
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e1,e3,e4,e6 ; e2,e3,e4,e6 ; and e1,e2,e4,e5 . The corresponding vicinity graph is a cycle
of length 3 whose eigenvalues are

01,

(
3
2

)2

,

whence the lower estimate

λ2(P) � 3π2

16
.

This bound is not as good as the one obtained from “classical” cycle double covers in
3).

5) As an example for an m-fold cover of order m > 2 let us, again, consider the
equilateral graph P corresponding to the cube. We consider the cover C of cycles
that bound the union of two adjacent faces in the cube respectively. There are 12 such
cycles, each having length 6, and C is a cycle 6-fold cover of P . The corresponding
vicinity graph Γ is a complete graph where each edge vertex has 3 incident edges with
weight 2 and 8 incident edges with weight 3. Since the vicinity graph is complete
and close to being equilateral we obtain a rather high spectral gap α2(Γ) : namely the
eigenvalues are

01,

(
16
15

)9

,

(
6
5

)2

.

Applying Theorem 2.1 directly to this cycle 6-fold cover, we obtain the estimates

λ2(P) � 8π2

81
, λ11(P) � π2

9
.

The estimate for λ2(P) is weaker than the one obtained from the cycle double cover
corresponding to the dual platonic solid. However, note that α2(Γ) is higher than
α2(Pd) , whereas η is higher for the cycle double cover, since we only consider cycles
of length 4 in that case.

REMARK 4. 1) When applying (3.2) to a concrete graph G it would be useful to
have further information on the eigenvalues of Gd . Unfortunately, we are not aware of
any abstract description of the normalized Laplacian on the dual of planar graphs and, in
fact, it is unlikely that such a description is, generally, available at all: for already in the
simple case of planar graphs, there is not a unique dual graph. Instead, a planar graph
G generally depends on the choice of the embedding of G in the plane. In particular,
applying Proposition 3.2 with the cycle double cover (Ci)1�i�k may lead to different
estimates depending on the choice of the embedding (cf. Figure 4). However, note that
this situation may not occure when G is planar and 3-connected because in that case G
has a unique dual graph by a theorem of Whitney [27, Theorem 11].
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11

2
22

2 1

2

2
1

Figure 4: Two embeddings of the same equilateral graph whose induced cycle double
covers define different vicinity graphs.

2) As we have seen, the estimate (2.5) for m = 2, which is based on double covers
consisting of (pumpkin) stars, is in the case of bridgeless graphs possibly improved
by (3.2), which deals with double covers consisting of chains of cycles. The crucial
point for this possible improvement is however that – instead of an estimate on the
spectral gap of stars – the isoperimetric inequality for doubly connected graphs [9,
Thm. 2.1] can be used in order to estimate η , in case we are dealing with a cycle double
cover. Thus, the assertion in Theorem 3.2 carries over to the case of a double cover
each of whose elements is merely a doubly connected subgraph of G . We remind that
a sharper – if more technical – estimate on η is available in this case, see [6, Prop. 3.4].

3) More generally, Theorem 2.1 can be applied with respect to double covers con-
sisting of faces whenever a well-defined notion of duality exists. This is e.g. the case
for higher dimensional polytopes with respect to the canonical duality [26] and for em-
bedded graphs with respect to Petrie duality [28].

4) It is also possible to define m-fold covers of homogeneous simplicial k - com-
plexes based on facets (i.e., on maximal simplices: (k−1)-dimensional hypertetrahe-
dra); or else on all simplices of dimension � k−1. Indeed, relations between normal-
ized Laplacian eigenvalues of different dimensions are known, see [12, Thms. 5.1 and
5.3]. We do not go into details.

We have outlined that estimates based on cycle double covers seem to perform very
erratically in comparison with different double covers. Unfortunately, we do not have a
cogent explanation for this phenomenon. A careful analysis of the proof of Theorem [1,
Thm. 1.2] suggests that the closer the i-th eigenvalue of the Laplacian is to its mean
value on each Ui , the more accurate the estimates on λi(G ) based on the double cover
(Ui)i∈I are. Hence, even a partial qualitative knowledge of the eigenfunction may help
design a more convenient double cover that, in turn, allows for sharper estimates. An
important class of metric graphs whose eigenfunctions are relatively well understood
will be discussed in the next section.

4. Generalized cycle double covers and pumpkin chains

After discussing in detail regular polyhedra, in this section we are going to con-
sider a further class of graphs that does trivially satisfy the cycle double cover conjec-
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ture: pumpkins and, more generally, pumpkin chains.
An m-pumpkin P is by definition a metric graph consisting of two vertices con-

nected by arbitrarily (but finitely) many parallel edges ei with edge lengths �i ∈ (0,∞) .

Figure 5: A pumpkin

The eigenvalues of the Laplacian on an equilateral pumpkin can be derived explic-
itly. For non-equilateral pumpkins the eigenvalue problem becomes more difficult; fur-
thermore, Theorem 2.1 only yields a tautology whenever applied to a star double cover,
as observed in Remark 2. However, we shall demonstrate how to apply Theorem 2.1
to cycle double covers of P to obtain a lower bound for eigenvalues of the Laplacian
on P . To define a cycle double cover C = (Ci)1�i�m for P we consider the cycles
given by Ci = ei ∪ ei+1 for i = 1, . . . ,m− 1 and Cm = em ∪ e1 . Note that pumpkins
obviously are planar and the just constructed double cover is the one described in the
previous section for a specific plane embedding of P . The vicinity graph Γ induced
by C is itself a discrete cycle, where i and i+ 1 are adjacent for i = 1, . . . ,m− 1 and
the edge connecting i and i+1 has the edge weight �i and the edge connecting m and
1 has weight �m . Note that, depending on the ordering of the edge set {e1, . . . ,em} , we

obtain different configurations of the cycle double cover. In fact, there are (m−1)!
2 such

configurations for P if all edges have different lengths.

EXAMPLE 2. In order to compare different double cover configurations for a given
non-equilateral pumpkin we consider a 4-pumpkin P consisting of two edges e1,e

′
1

of length 1 and two edges ea,e
′
a of variable length a � 1 respectively. Following the

construction above we find exactly two cycle double covers C1 and C2 of P given by

C1 = (e1 ∪ e′1,e
′
1 ∪ e′a,e

′
a ∪ ea,ea ∪ e1), C2 = (e1 ∪ ea,ea ∪ e′1,e

′
1 ∪ e′a,e

′
a ∪ e1).

It can be shown that the spectral gap of the normalized Laplacians corresponding to the
respective vicinity graphs Γi are given by

α2(Γ1) = 1, α2(Γ2) =
2

a+1
.

Furthermore, the minimal spectral gaps ηi of the single covering elements are

η1 =
π2

a2 , η2 =
4π2

(a+1)2

and Theorem 2.1 yields the lower bounds

λ2(P) � π2

2a2 , λ2(P) � 4π2

(a+1)3 . (4.1)
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One quickly checks that the first estimate gives a better lower bound for λ2(P) if
and only if a > 2+

√
5. This is likely due to the fact that the largest cycle of our 4-

pumpkin has length 2a and the eigenfunction corresponding to the actual spectral gap
λ2(P) = π2

a2 is only supported by this cycle. So, one might actually expect that the
cycle ea∪ e′a is an element of the “optimal” double cycle cover for λ2(P) .

Even in this simple example the choice of an optimal double cover depends on the
ratio of the single edge lengths and the choice seems to be more involved if the number
of edges increases.

A pumpkin chain arises by taking an interval, subdividing it into n pieces by in-
serting n− 1 vertices v1, . . . , . . . ,vn−1 , and adding arbitrarily (but finitely) many par-
allel edges between any two consecutive vertices; we refer to [15, § 5] for a precise
definition, but the following picture will probably suffice.

Figure 6: A pumpkin chain

If all parallel edges within each pumpkin have the same length, we call a pumpkin
chain locally equilateral.

It has become increasingly clear over the last few years that pumpkin chains rep-
resent an important class of metric graphs. Locally equilateral pumpkin chains enjoy
several good properties (in particular, the eigenfunction corresponding to the spectral
gap is monotonic along the chain) and they are hence often used as reference graphs in
geometric spectral theory for quantum graphs: we mention two relevant justifications
in form of reductions obtained in [15, Lemma 5.4] and [7, Lemma 5.3].

LEMMA 4.1. Let G be compact and connected. Then there exist two locally equi-
lateral pumpkin chains P1,P2 , both with total length no larger than that of G , such
that

λ2(P2) � λ2(G ) � λ2(P1).

Furthermore, P2 can be taken to have same diameter as G , whereas the bridges within
P1 can be taken to have total length no longer than the bridges within G .

While their eigenvalues and eigenfunctions are fairly well understood, see [7, § 5],
there are hardly any spectral estimates for pumpkin chains.

Let us apply our theory in order to deduce lower bounds on the spectral gap of
pumpkin chains. A first estimate can be directly derived from Proposition 2.2: it holds
for pumpkin chains that are not necessarily locally equilateral.
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PROPOSITION 4.2. A chain P of n pumpkins P1, . . . ,Pn admits the lower
bound

λ2(P) � π2

4�2
max

1
n
∑
i=1

|Pi|
1

n
∑
i=1

1
|Pi|

, (4.2)

where �max is the maximal length of the edges in P and |Pi| is the Lebesgue measure
of the pumpkin Pi .

Needless to say, the Lebesgue measure of the pumpkin Pi is the total length of its
edges; we casually refer to |Pi| as the total length of Pi .

Proof. Applying Proposition 2.2 yields

λ2(P) � π2

8�2
max

α2(Γ),

where Γ is the vicinity graph corresponding to the star double cover of P . In fact,
Γ is a path on n + 1 vertices with edge weights μi := |Pi| for i = 1, . . . ,n . Thus,
the volume of Γ with respect to the degree vertex weight and the diameter of Γ with
respect to the inverse edge weight μ−1 are

Volμ(Γ) = 2
n

∑
i=1

|Pi| Dμ−1(Γ) =
n

∑
i=1

1
|Pi| .

Using the lower bound (2.7) proves the claim.

COROLLARY 4.3. A chain P of n pumpkins P1, . . . ,Pn admits the lower bound

λ2(P) � 4|P|min|P|max

(|P|min + |P|max)
2 ·

π2

4n2�2
max

, (4.3)

where �max is the maximal length the edges in P and |P|min, |P|max are the maximal
and minimal total lengths among those of P1, . . . ,Pn .

Proof. Let us take a closer look at (4.2). Because, 1
n2

n
∑
i=1

|Pi|
n
∑
i=1

1
|Pi | is the quo-

tient of the arithmetic and the harmonic mean of (|Pi|)1�i�n , by a known estimate
(cf. [20, §2.11])

n

∑
i=1

|Pi|
n

∑
i=1

1
|Pi| � 4n2|P|max|P|min

(|P|max + |P|min)
2 .

This concludes the proof.
The above estimates complement a recent upper bound for the spectral gap of a

chain of n � 2 pumpkins with total length L : it has been proved in [3] that

λ2(P) � (n+1)2π2

4L2 .
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REMARK 5. Combining Proposition 4.2 with Lemma 4.1 we may deduce a lower
bound on the spectral gap of an arbitrary quantum graph, provided some information
on the critical sets of an eigenfunction associated with the spectral gap is known; we
omit the (rather technical) details and refer to the proof of [7, Lemma 5.3].

The relevant idea that has led us to Proposition 3.2 is that the elements of a cycle
double cover C = (Ci)1�i�k satisfy (3.1). To this purpose, the elements of the double
cover need actually not be cycles at all.

DEFINITION 3. Let G be a metric graph. A generalized cycle double cover of G
is a double cover whose elements are doubly connected subgraphs of G .

The assertion of Proposition 3.2 carries over verbatim to metric graphs admitting such
generalized cycle double covers: using

λ2(Ci) � 4π2

|Ci|2 , i = 1, . . . ,k, (4.4)

by [9, Thm. 2.1] we obtain the following result.

PROPOSITION 4.4. Given a metric graph G with a generalized cycle double cover
C := (Ci)1�i�k and associated vicinity graph Γ , the k lowest eigenvalues of the Lapla-
cian with natural conditions on G satisfy

λi(G ) � 2π2αi(Γ) min
1� j�k

1
|C j|2 , i = 1, . . . ,k. (4.5)

Next, we provide two algorithms to define a generalized cycle double cover of a
pumpkin chain P , based on an arbitrary but fixed planar embedding of P consisting
of n linked pumpkins. We explain our constructions based on the example of the pump-
kin chain in Figure 6. Indeed, pumpkin chains are planar but their cycle double covers
lead to disconnected vicinity graphs: i.e., this choice leads, for instance, to α2 = 0 and
hence to trivial eigenvalue estimates. However, it is easy to come up with different
generalized cycle double covers of pumpkin chains, each leading to a different estimate
based on Proposition 2.2 or Proposition 3.2.

In the following we denote by mi the number of parallel edges between vi−1 and
vi and we make the assumption that P is bridgeless, i.e. mi � 2 holds for 1 � i � n :
accordingly, the edges belonging to the i-th pumpkin Pi are ei,1, . . . ,ei,mi . Unless
explicitly stated we assume the pumpkin chain to be locally equilateral and denote by �i

the common length of all such mi edges. Nevertheless, we point that our constructions
may also be applied to the more involved case of non-equilateral pumpkin chains.

To construct cycle generalized cycle double covers for P we start by considering
the cycle double covers of the single pumpkins Pi constructed previously: we set

Ci, j := ei, j ∪ ei, j+1, i = 1, . . . ,n, j = 1, . . . ,mi −1 (4.6)
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and

Ci,mi := ei,mi ∪ ei,1, i = 1, . . . ,n. (4.7)

This already defines a cycle double cover of P , but the corresponding vicinity graph
is just the disjoint union of n (combinatorial) cycle graphs and, thus, it does not see
the structure of the whole pumpkin chain anymore. Therefore, our aim is to “glue” the
cycles Ci, j to obtain generalized cycle double covers of P that represent the structure
of P more appropriately.

4.1. Layered double covering

To obtain a generalized double cover U of an arbitrary pumpkin chain P let us
glue the cycles Ci, j defined in (4.6) and (4.7) as follows:

• the first covering element consists of the pumpkin chain comprising all cycles
that run along the “bottom” of G :

⋃
1�i�n

Ci,1;

its spectral gap is π2

D2 , where D denotes the diameter of the pumpkin chain, i.e.,
D := ∑n

i=1 �i .

• we continue with the following layer:

⋃
1�i�n,
2<mi

Ci,2

where we stipulate that we pass to the connected components if this metric sub-
graph is not connected, which might be the case when any of the cycles in this
union is missing;

• this process is repeated (max
i

mi)− 1 times, thus exhausting all layers of the

pumpkin chain with the covering elements:

⋃
1�i�n,
j<mi

Ci, j

for j = 1, . . . ,mi −1;

• finally, we “lock up” each pumpkin with the final covering element:

⋃
1�i�n

Ci,mi .
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Now, consider the graph in Figure 6: the vicinity graph that arises by means of the
above construction is depicted in Figure 7.

�1 +2�2 + �3 �3

�3

�3
�1

�1

123

123 3

3

1

Figure 7: The layered graph of the graph in Figure 6. Each vertex is a cycle and the
text in the vertex summarizes the pumpkins touched by the corresponding cycle.

Let us now look at the pumpkin chain obtained swapping the second and third
pumpkin, thus obtaining the graph in Figure 8.

Figure 8: A pumpkin chain obtained swapping pumpkins inside the graph in Figure 6.
We refer to the original graph and regard the central pumpkin as pumpkin #3.

The “layered” vicinity graph becomes the one depicted in Figure 9.

�1 +2�2 + �3 �3

�1 + �3

�3

�1

123

123 13

3

Figure 9: The layered vicinity graph of the graph in Figure 8

If pumpkins are swapped in order to avoid disconnected layers, then the vicinity
graph Γ becomes smaller and tends to be more strongly connected, leading to improved
estimates; but at the same time to estimates (via (2.5)) only for a lower number of
eigenvalues of P .
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4.2. Concatenated double covering

In layered double coverings the vicinity graph Γ does not detect the position of
the pumpkins: whether they are peripheral (which, based on considerations in [7, § 5],
should heuristically lead to lower α2(Γ)) or rather more central. This suggests yet one
different approach to the task of double-covering a metric graph P :

• the first n−1 covering elements U1, . . . ,Un−1 consist of

Ui = Ci,1∪Ci+1,2, i = 1, . . . ,n−1,

thus linking successive pumpkins within P ;

• for the other elements of the double covering we choose the remaining cycles
Ci, j in (4.6) and (4.7) that do not appear in any of the elements Ui constructed
in the previous step.

The corresponding vicinity graph has 1− n + ∑n
i=1 mi vertices; it consists of a

“backbone” given by the vertices U1, . . . ,Un−1 ; by two (possibly degenerate) cycles
on mi edges attached to U1 and Un−1 (corresponding to the cycles inside the first and
the n -th pumpkin); and, for all i = 1, . . . ,n− 1, by paths on mi − 1 edges attached
to both vertices Ui and Ui+1 , corresponding to the remaining cycles inside the i-th
pumpkin.

2�2

�1

�1

�1

�3 �3

�3�3

12

1

1

23

3

3

3

Figure 10: The concatenated vicinity graph of the graph in Figure 6

Intuitively, in comparison with the vicinity graph based on the layered construc-
tion, η will be much larger but α2 will be smaller, too. In the example of the graph in
Figure 6, if �1 = �2 = �3 , then

• η = π2

9 for the layered construction, while we have found the value α2(Γ) �
0.629, leading to the estimate λ2(P) � 0.345;

• η = π2

4 for the concatenated construction, while we have found the value α2(Γ)�
0.229, leading to the estimate λ2(P) � 0.282;
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In the case of the pumpkin chain in Figure 6 the estimates in [9, Thm. 2.1], [14,
Thm. 1.1], and Proposition 4.2 yield

λ2(P) � 0.487, λ2(P) � 0.055, and λ2(P) � 0.244, (4.8)

respectively. If we pass to the graph in Figure 8, α2(Γ) � 0.322 for the concatenated
construction, leading to the estimate λ2 � 0.398, and α2(Γ) � 0.974 for the layered
construction, leading to λ2 � 0.533; the latter is sharper than the estimates in (4.8),
which are all invariant under pumpkin swapping and hence do not distinguish between
the graphs in Figure 6 and 8.

RE F ER EN C ES

[1] O. AMINI AND D. COHEN-STEINER, A transfer principle and applications to eigenvalue estimates
for graphs, Comment. Math. Helv., 93:203–223, 2018.

[2] S. ARITURK, Eigenvalue estimates on quantum graphs, arXiv:1609.07471, 2016.
[3] D. BORTHWICK, L. CORSI AND K. JONES, Sharp diameter bound on the spectral gap for quantum

graphs, arXiv:1905.03071, 2019.
[4] J. VON BELOW, A characteristic equation associated with an eigenvalue problem on c2 -networks,

Lin. Algebra Appl., 71:309–325, 1985.
[5] G. BERKOLAIKO AND P. KUCHMENT, Introduction to Quantum Graphs, volume 186 of Math. Sur-

veys and Monographs, Amer. Math. Soc., Providence, RI, 2013.
[6] G. BERKOLAIKO, J.B. KENNEDY, P. KURASOV AND D. MUGNOLO, Edge connectivity and the

spectral gap of combinatorial and quantum graphs, J. Phys. A, 50:365201, 2017.
[7] G. BERKOLAIKO, J.B. KENNEDY, P. KURASOV AND D. MUGNOLO, Surgery principles for the

spectral analysis of quantum graphs, Trans. Amer. Math. Soc., (to appear).
[8] F. BAUER, M. KELLER, AND R. WOJCIECHOWSKI, Cheeger inequalities for unbounded graph

Laplacians, J. European Math. Soc., 17:259–271, 2015.
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