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BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS

DANIELA MAIER

Abstract. We show the existence of breather solutions in a nonlinear Klein-Gordon system

on a discrete graph with periodic junctions. The proof is based on the Theorem of Crandall-

Rabinowitz.

1. Introduction

We are interested in the dynamics of some nonlinear lattice differential equations

on an infinite discrete graph with periodically ordered junctions. There is a compe-

tition between linear decay and the focusing effect of the nonlinearity, which allows

for the existence of localized solutions. From a mathematical point of view, existence

of real-valued, time-periodic and spatially localized solutions, also known as (discrete)

breather solutions, is an interesting topic. Breather solutions in nonlinear PDEs are very

rare. Denzler [3] showed that the breathers of the Sine-Gordon equation

∂ 2
t u(x,t)− ∂ 2

x u(x,t)+ sin(u(x,t)) = 0, x,t ∈ R,

disappear if the nonlinearity is perturbed. The rareness of breathers in PDEs makes it

hard to believe that these non-generic, structurally unstable objects describe phenom-

ena in nature. However, the situation is different on lattices and breather solutions come

back. MacKay and Aubry [11] constructed breathers in Hamiltonian lattices with an-

harmonic on-site potentials and weak coupling. In their proof breathers are obtained

by continuation from the uncoupled case in which trivial breathers exist. This means

that only one oscillator is excited and the others are at rest. With the same technique,

the existence of breathers was proved for diatomic Fermi-Pasta-Ulam (FPU) chains,

cf. [10]. Aubry et al. [1] have proved the existence of breathers in FPU lattices with

frequencies above the phonon spectrum, when the interaction potential V is a strictly

convex polynomial of degree 4. These results are obtained via a variational method.

There is an important condition for the existence of breathers, namely that the

square of integer multiples of the breather frequency lie in the resolvent set of the lin-

earized right hand side. Since the spectrum of a lattice problem is bounded, there is a

good chance to find breather solutions, cf. [4].
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Here, we consider the discrete Klein-Gordon system

∂ 2
t u j(t) = f (v+

j (t)−u j(t))+ f (v−j (t)−u j(t))−h(u j(t)−w j−1(t))− ru(u j(t)),

∂ 2
t v+

j (t) =g(w j(t)− v+
j (t))− f (v+

j (t)−u j(t))− rv(v
+
j (t)),

∂ 2
t v−j (t) =g(w j(t)− v−j (t))− f (v−j (t)−u j(t))− rv(v

−
j (t)),

∂ 2
t w j(t) =h(u j+1(t)−w j(t))−g(w j(t)− v+

j (t))−g(w j(t)− v−j (t))− rw(w j(t)),

(1)

with interaction potentials f ,g,h : R → R , local potentials ru,rv,rw : R → R and coor-

dinates u j,v
±
j ,w j ∈ R , for all j ∈ Z and t ∈ R , on the subsequent discrete graph with

periodic branching.
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Figure 1: Topology of the discrete necklace graph

The coordinates

(u j,v
+
j ,v−j ,w j)

T = Z j ∈ R4, (2)

correspond to the horizontal displacement of the mass particles from its equilibrium

positions. We assume that all forces vanish at the origin and consider Taylor expansions

f (x) = f1x + f2x2 + ... of the forces. Further, let f1,g1,h1 > 0 and r1 > 0.

Thus, the main result (cf. Theorem 2) can be stated as follows:

Let −ω2
0 = −( f1 +g1 +(rv)1) be the eigenvalue of the linear part L in (1), which

corresponds to the straight line of the spectral picture in Figure 3. Suppose that the

non-resonance condition −m2ω2
0 /∈ σac(L) is fulfilled for all m ∈ N0 . Then, there

exists a one-parameter family of real-valued solutions that are periodic in time and

spatially localized. The constructed breather solutions bifurcate from eigenstates that

are localized in a single ring of the periodic graph, cf. Figure 2. Hence, these non-

symmetric solutions are strongly localized.

To our knowledge there are no existence results for breathers on discrete graphs

with periodic branching so far. In [12], symmetric breathers have been constructed on

a metric version of the graph in Figure 1, using spatial dynamics and center manifold

reduction.
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Figure 2: Antisymmetric eigenstate with support in the k th periodicity cell. Only the

masses v+
k and v−k are displaced from their equilibrium positions.

This article is organized as follows. We compute the spectral picture for the Klein-

Gordon system in Section 2. In Section 3 we apply the bifurcation theorem of Crandall-

Rabinowitz in order to construct the one-parameter family of breathers.

Notation: We equip the vector-valued sequence spaces with the norm

‖(Z j) j∈Z‖ℓp(Z,R4) =

(

∑
j∈Z

|Z j|pR4

) 1
p

< ∞

for p ∈ [1,∞) .

2. Spectral situation

The linearized discrete Klein Gordon system









∂ 2
t u j

∂ 2
t v+

j

∂ 2
t v−j

∂ 2
t w j









=









f (v+
j −u j)+ f (v−j −u j)−h(u j −w j−1)− ruu j

g(w j − v+
j )− f (v+

j −u j)− rvv+
j

g(w j − v−j )− f (v−j −u j)− rvv−j
h(u j+1 −w j)−g(w j − v+

j )−g(w j − v−j )− rww j









(3)

is of the form

∂ 2
t Z j = LZ j = M0Z j + M−Z j−1 + M+Z j+1, j ∈ Z, (4)

with Z j = (u j,v
+
j ,v−j ,w j)

T and matrices M0,M−,M+ ∈ R4×4 with constant coeffi-

cients. Due to its periodic structure, it is solved by so called Bloch waves

Z j(t) = eiωteil jZ̃(l), l ∈ R, (5)

with ω ∈R and 2π -periodic functions Z̃(l) = (ũ(l), ṽ+(l), ṽ−(l), w̃(l))T . This leads to

the eigenvalue problem

M(l)Z̃(l) = −ω2(l)Z̃(l), (6)
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with

M(l) := M0 + e−ilM− + eilM+ =








−(2 f1 + h1 +(ru)1) f1 f1 h1e−il

f1 −(g1 + f1 +(rv)1) 0 g1

f1 0 −(g1 + f1 +(rv)1) g1

h1eil g1 g1 −(h1 + 2g1 +(rw)1)









.

Floquet-Bloch theory, cf. [13], implies that the spectrum of L has band gap structure

and

σ(L) =
⋃

l∈[−π ,π)

σ(M(l)). (7)

For a fixed number l , the matrix M(l) has four real eigenvalues. Therefore, σ(L)
consists of four bands, cf. Figure 3. The spectrum has an absolutely continuous part

plus an eigenvalue of infinite multiplicity, which corresponds to the flat spectral band,

cf. [9].

The stiffness parameters f1,g1 and h1 determine whether the eigenvalue −ω2
0 =

−( f1 +g1 +(rv)1) is isolated or located within the continuous spectrum. Typical spec-

tral pictures are sketched in Figure 3.

Point spectrum: The eigenspace contains anti-symmetric sequences with respect

to the junctions. An eigenbasis {Ek}k∈Z can be chosen compactly supported in the

circles. In particular, for a fixed k ∈ Z , the sequence Ek is defined by

v+
k (t) =

1√
2

= −v−k (t), v±j = 0 ∀ j 6= k, u j = w j = 0 ∀ j, (8)

cf. Figure 2.

Continuous spectrum: The (generalized) eigenfunctions corresponding to the ab-

solutely continuous spectrum are symmetric w.r.t. the semi-circles, i.e. v+
j = v−j for all

j ∈ Z , which we refer to as Ṽsym .

Let p ∈ N , p > 2 be the power of the nonlinearity, which is of the form

N p









u j

v+
j

v−j
w j









=









fp(v
+
j −u j)

p + fp(v
−
j −u j)

p −hp(u j −w j−1)
p − rpu

p
j

gp(w j − v+
j )p − fp(v

+
j −u j)

p − rp(v
+
j )p

gp(w j − v−j )p − fp(v
−
j −u j)

p − rp(v
−
j )p

hp(u j+1 −w j)
p −gp(w j − v+

j )p −gp(w j − v−j )p − rpw
p
j









.

We decompose the sequence space into its symmetric and anti-symmetric parts,

Ṽsym ⊕ (⊕k∈Zspan{Ek}) .
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Figure 3: Spectral picture for four examples of parameter sets.

Upper panel: isolated eigenvalue. Left: Vanishing local forces: f1 = 1, g1 = 0.3,

h1 = 2; Right: Non-vanishing local forces: f1 = 1, g1 = 0.3, h1 = 2 and r1 = 0.5
Lower panel: embedded eigenvalue. Left: Vanishing local forces: f1 = 0.5, g1 = 1,

h1 = 1; Right: Non-vanishing local forces: f1 = 0.5, g1 = 1, h1 = 1 and r1 = 0.5
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An explicit computation shows

LEk = −ω2
0 Ek, N p(Ek) ⊂

{

span{Ek}, for p odd,

Ṽsym, for p even.
(9)

This means that discrete eigenfunctions that are not present in the initial data will not

be excited at any time. Further,

Z ∈ Ṽsym ⇒ LZ,N p(Z) ∈ Ṽsym, (10)

i.e., the subspace Ṽsym is invariant under the actions of L and N p .

3. Existence of breather solutions for non-vanishing local forces

Discrete breathers arise from the combined effect of nonlinearity and discreteness.

We will prove the existence of nontrivial solutions by means of bifurcation analysis.

Therefore, we fix an integer k0 ∈ Z and define the time-independent spaces

Vsym :=
{

((u j,v
+
j ,v−j ,w j)

T ) j∈Z ∈ ℓ2(Z,R4)|v+
j = v−j forall j ∈ Z

}

, (11)

V (k0) := Vsym ⊕ span{Ek0
}, (12)

Let I =
[

− π
ω0

, π
ω0

]

with −ω2
0 the eigenvalue of L and define the time-dependent Ba-

nach spaces

X(k0) := C2
per (I,V (k0)) , (13)

with ‖Z‖X(k0) := max
t∈I

‖Z(t)‖ℓ2 + max
t∈I

‖Ż(t)‖ℓ2 + max
t∈I

‖Z̈(t)‖ℓ2 and

Y (k0) := C0
per (I,V (k0)) , (14)

with ‖Z‖Y (k0) := max
t∈I

‖Z(t)‖ℓ2 of periodically extendable functions with values in V (k0) .

Moreover, we restrict to even functions in time Xeven(k0) := C2
per,even (I,V (k0)) if the

power p of the nonlinearity is even and use Xodd(k0) := C2
per,odd (I,V (k0)) if p is odd.

We suppress the indices even and odd until it becomes important. The choice of the

Banach spaces is motivated by our interest in (possibly) bifurcating solutions that are

real-valued, periodic in time and localized in space. We consider the mapping

F : X(k0)×R → Y (k0),

F(Z,µ)(t) = (1 + µ)Z̈(t)−LZ(t)−N p(Z)(t).
(15)

The mapping F is well-defined due to observations (9), (10) and

‖N p(Z)(t)‖2
ℓ2(Z,R4) 6 C( f ,g,h,r)‖Z(t)‖2p

ℓ2p(Z,R4)
6 C( f ,g,h,r, p)‖Z(t)‖2p

ℓ2(Z,R4)
,

with parameter-depending constants C , where we made use of the embedding ℓ2 ⊂
ℓ2p . In particular, we will apply the Theorem of Crandall-Rabinowitz (see [8, Theorem

I.5.1.]):
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THEOREM 1. We consider a mapping F : U ×V → Y , where U ×V ⊂ X ×R is

an open neighborhood of (0,0) and X and Y are Banach spaces. Suppose that

(H0) F(0,µ) = 0 for all µ ∈ R ,

(H1) F ∈C2(U ×V,Y) ,

(H2) F(·,0) is a Fredholm operator of index zero with

dim(Ker(DZF(0,0))) = codim(Ran(DZF(0,0))) = 1,

(H3) Let E ∈ X , ‖E‖X = 1 such that span{E} = Ker(DZF(0,0))) . Then

[D2
µZF(0,0)](E) /∈ Ran(DZF(0,0)).

Then there exists a nontrivial branch of solutions described by a C1 -curve

{(Zs,µs) : s ∈ (−s0,s0), (Z0,µ0) = (0,0)},

which satisfies F(Zs,µs) = 0 locally, and all solutions in a neighborhood of (0,0) are

either the trivial solution or on the nontrivial curve.

We verify the hypotheses of the previous theorem for the mapping F with Banach

spaces X(k0) and Y (k0) , defined in (15). First, we observe F(0,µ) = 0 for all µ ∈ R ,

which means that we have a trivial solution branch, i.e. (H0) is fulfilled. Hypothesis

(H1) is fulfilled due to the polynomial structure of (1).

We compute the required Frechet derivatives

[DZF(0,µ)](H) = (1 + µ)∂ 2
t H(t)−LH(t), (16)

[D2
µZF(0,µ)](H) = ∂ 2

t H(t), (17)

for X(k0) and identify D2
µZF with an element of L (X(k0),Y (k0)) . Further, let

Xsym,even := C2
per,even (I,Vsym) , Xsym,odd := C2

per,odd (I,Vsym) ,

and

Ysym,even := C0
per,even (I,Vsym) , Ysym,odd := C0

per,odd (I,Vsym) .

Again we suppress the indices even and odd until it becomes important. The simple

observation

DZF(0,0)Xsym ⊆ Ysym, (18)

follows from (10). Let Ek0
be the normalized eigenvector of the stationary problem

supported in the k0 -th circle with eigenvalue −ω2
0 . We denote the corresponding time-

dependent solution of (1) by Ek0
(t) = Ek0

sin(ω0t) ∈ X(k0) .

Obviously, Ker(DZF(0,0)) = span{Ek0
(t)} .
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To verify (H3), we check whether it is true that

[D2
µZF(0,0)]Ek0

(t) = ∂ 2
t Ek0

(t) = −ω2
0 Ek0

(t) /∈ Ran(DZF(0,0)), (19)

or equivalently, formulated as a question, does there exist an element H ∈ X(k0) such

that

−ω2
0 Ek0

(t) = ∂ 2
t H(t)−LH(t).

By means of (18), we have H(t) = αEk0
(t) with a constant α ∈ R . The occurring

algebraic equation has no solution w.r.t α , i.e., (H3) is true.

It remains to find conditions under which codim(Ran(DZF(0,0))) = 1. Relation (18)

implies span{Ek0
(t)} * [DZF(0,0)]Xsym . Hence,

codim(Ran(DZF(0,0))) = 1

⇔ DZF(0,0) invertible on Xsym → Ysym.
(20)

So, it remains to check under which conditions the equation

ξ = [DZF(0,0)]η = (∂ 2
t −L)η (21)

will be invertible on the symmetric subspace. In the case of 2π/ω0 -periodic and odd

functions in time, we consider the expansion

ξ (t) = ∑
m∈N

ξmsin(mω0t), η(t) = ∑
m∈N

ηmsin(mω0t) (22)

with ξm , ηm ∈Vsym for m ∈N . This leads to the time-independent system of equations

ξm = (−m2ω2
0 −L)ηm, m ∈ N. (23)

Hence, we require that −m2ω2
0 /∈ σac(L) for all m ∈N . In particular, F is a (nonlinear)

Fredholm operator of index 0. (The index does not depend on (Z,µ) , since DF de-

pends continuously on Z and µ , cf. [8, Remark I.2.2.].) In the case of 2π/ω0 -periodic

and even functions in time we replace the sines in (22) by cosines with m ∈ N0 . This

leads to the requirement −m2ω2
0 /∈ σac(L) for all m ∈ N0 . The spectral picture of a

possible set of parameters is sketched in Figure 4.

Thus, Theorem 1 gives the existence of a non-trivial solution branch satisfying

(1 + µs)Z̈s(t)−LZs(t)−N p(Zs)(t) = 0, (24)

with Zs ∈ X(k0) for s ∈ (−s0,s0) with s0 > 0 sufficiently small. A rescaling in time

leads to the following theorem.

THEOREM 2. Let −ω2
0 = −( f1 + g1 +(rv)1) be the eigenvalue of the linear part

in (1). Suppose that −m2ω2
0 /∈ σac(L) for all m ∈N0 (non-resonance condition). Then,

there exists a one-parameter family of real-valued solutions of (1) that are periodic in

time and spatially localized.
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Figure 4: Spectral picture for a set of parameters satisfying the non-resonance condition

( f1 = 0.3, g1 = 1, h1 = 2 and (rv)1 = 0.5).

REMARK 1. To satisfy the non-resonance condition in Theorem 2, the eigenvalue

−ω2
0 has to be isolated, i.e., −ω2

0 /∈ σac(L) . Moreover, one explicitly verifies that

−ω2
0 ∈ σac(L) for stiffness parameters f1 = g1 . Hence, a symmetry breaking is re-

quired to fulfill the assumptions.

In particular, the non-resonance condition in Theorem 2 requires 0 /∈ σac(L) for even

powers of the nonlinearity. However, the proof does not need this requirement for odd

powers. Hence, Theorem 2 can make a statement for vanishing local forces (FPU sys-

tem) in the case of odd powers of the nonlinearity.

REMARK 2. James et al. showed the existence of breathers on various Fermi-

Pasta-Ulam chains in a series of papers [5, 6]. We expect that the ideas can be trans-

ferred to construct symmetric breather solutions on our discrete necklace graph with

sufficiently small power of the nonlinearity (i.e. an Fermi-Pasta-Ulam chain with three

alternating masses and vanishing local forces).

Breathers arising from more than one linear eigenvector may exist, too. There are

analytical tools to solve more-dimensional bifurcation equations, but the verification of

the assumptions becomes more complicated, cf. [8]. Besides, possible future research

topics concern interaction and stability of breathers. For instance, asymptotic stability

for time-periodic localized solutions of discrete nonlinear Schrödinger equations on the

lattice Z has been proven in [2, 7].
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