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Abstract. In 2015, Yanni Chen, Don Hadwin and Junhao Shen proved a noncommutative version
of Beurling’s theorems for a continuous unitarily invariant norm o on a tracial von Neumann
algebra (., 7), where o is |-, -dominating with respect to 7. In the paper, we first define a
class of norms N (.#,T) on . , called determinant, normalized, unitarily invariant continuous
norms on . . If o0 € Ny (4 ,T), then there exists a faithful normal tracial state p on .# such
that p (x) = 7(xg) for some positive g € L' (2°,7) and the determinant of g is positive. For
every & € Np (.#,7), we study the noncommutative Hardy spaces H* (.#,7), then prove that
the Chen-Hadwin-Shen theorem holds for L* (.#,7). The key ingredients in the proof of our
result include a factorization theorem and a density theorem for L* (., p).

1. Introduction

It has long been of great importance to operator theorist and operator algebraist
to study noncommutative Beurling’s theorem[1],[4],[5],[7],[10],[16]. We recall some
concepts in noncommutative Hardy spaces with finite von Neumann algebras. Given
a finite von Neumann algebra .# acting on a Hilbert space H, the set of possibly un-
bounded closed and densely defined operators on H which are affiliated to .#, form
a topological algebra where the topology is the (noncommutative) topology of conver-
gence in measure. We denote this algebra by A . The trace T extends naturally from
A to the positive operators in .# . The important fact regarding this algebra, is that it is
large enough to accommodate all the noncommutative L” spaces corresponding to M.
Specifically, if 1 < p < e, then we define the space LF (.4 ,7) = {x € .4 : 1(|x|P) <
oo}, where the ambient norm is given by ||-||, = (|| -|[?)"/?. The space L™(.# )
is defined to be . itself. These spaces capture all the usual properties of L? spaces,
with the dual action of L” on LY (g conjugate to p) given by (a,b) — t(ab). For
any subset S of .#, we write [.”],, for the p-norm closure of . in LP(.#,t), with
the understanding that [.%], will denote the weak* closure in the case p =co. W.
Arveson [ 1] introduced a concept of maximal subdiagonal algebra in 1967, also known
as a noncommutative H* space, to study the analyticity in operator algebras. Let .#
be a finite von Neumann algebra with a faithful normal tracial state 7. Let </ be a

Mathematics subject classification (2010): 46E20, 30H10, 30J99, 47L.10.
Keywords and phrases: Gauge norm, von Neumann algebra, Beurling theorem.

© &1€P€N’ Zagreb 777
Paper OaM-14-49


http://dx.doi.org/10.7153/oam-2020-14-49

778 H. FAN, D. HADWIN AND W. LIU

weak* closed unital subalgebra of .# and 7 is called a finite maximal subalgebra of
A with respect to @ if (i) o/ + o/* is weak* dense in .Z ; (ii) ®(xy) = P(x)D(y)
for Vx,y € &7 (iii) To® = 7; and (iv) Z = &/ N.&/*. Such a finite maximal subdi-
agonal subalgebra <7 of . is also called an H* space of .#. Foreach 1 < p < oo,
let H” be the completion of Arveson’s noncommutative H= with respect to [|-||,. Af-
ter Arveson’s introduction of noncommutative H” spaces, many researchers obtained
Beurling theorems for invariant subspaces in noncommutative H?” spaces (for example,
see [21,[5LI7D.

Y. Chen, D. Hadwin, and J. Shen obtained a version of the Blecher-Labuschagne-
Beurling invariant subspace theorem on H® -right invariant subspace in a noncommu-
tative L*(.# ,7) space, where o is a normalized unitarily invariant, ||-||, -dominating,
continuous norm.

In this paper, we will extend Chen-Hadwin-Shen’s result in [7] by considering
drop the condition that o is ||-||, -dominating. By defining a generalized o norm, we
have a version of Chen-Hadwin-Shen’s result for noncommutative Hardy spaces.

THEOREM 4.7. Let .4 be a finite von Neumann algebra with a faithful, normal,
tracial state Tand o be a determinant, normalized, unitarily invariant, continuous
norm on A . Then there exists a faithful normal tracial state p on 4 such that o €
Ny (A ,p). Let H” be a finite subdiagonal subalgebra of A and 9 = H* N (H*)*. If
W is a closed subspace of L*( A ,T)such that W H™ C W', then there exists a closed
subspace % of L* (A ,t) and a family {u; }) ca of partial isometries in .# such that:

(1) uz% =0 forall A € A;

(2) wyuy € 7 and wyuy =0 forall A,u € Awith A # u;
(3) ¥ =[Hg¥]os

(4) W =W & (B HY).

Many tools used in [7] are no longer available in an arbitrary L*(.#,T) space
and new techniques need to be invented. First, we need using the Fuglede-Kadison
determinant, and inner, outer factorization for noncommutative Hardy spaces, more
details seen in [2]. Let A be Fuglede-Kadison determinant on .# defined by

A) = exp(z(logh)) = exp( | Tog(t)dvi (1)),

where dv|x| (1) denotes the probability measure on R, Also, the definition of this

determinant can be extended to the *-algebra M.
In order to prove our main result of the paper, we first get the following theorem.

THEOREM 2.10. Let .# be a finite von Neumann algebra with a faithful, normal,
tracial state T and o be a normalized, unitarily invariant, continuous normon (M, 7).
Then there exists a positive g € L' (2, 1) such that: (i) p(-) = 7(-g) is a faithful normal
tracial state on A ; (ii) o is c||-||, , -dominating, for some ¢ > 0; (iii), p(x) = 7(xg)

forevery x e L\ ,p).
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THEOREM 3.11. If o0 € NA(# ,7), then there exists a faithful normal tracial state
p such that H*(.# ,p) = H' (. ,p) NL* (A ,p).

Then we get a factorization theorem and a density theorem for L*(.#, 1) to get
the main theorem.

THEOREM 4.2. Suppose o € Nx (A ,T), there exists a faithful normal tracial
state p on . such that p (x) = T(xg) for some positive g € L' (2, 1) and the deter-
minant of g is positive. If x € .# and x~' € L* (. ,p), then there are unitary opera-
tors uy,u> € A and s1,5, € H* such that x = uys| = saup and sfl,sgl EH*(A,p).

THEOREM 4.3. Let ot € Np (A ,T), then there exists a faithful normal tracial
state p on ./ such that p (x) = T(xg) for some positive g € L' (2°,7) and the de-
terminant of g is positive. Also, if W is a closed subspace of L*(.# ,p) and N is a
weak* closed linear subspace of M such that W H> C W and N H” C N, then:

(1) N =[NagNA;
(2) W OM is weak* closed in M ;
(3) W =WNMa;

(4) if 7 is a subspace of .M such that SH= C .7, then [#]q =" |o , where
7" is the weak*-closure of & in M .

The organization of the paper is as follows. In Section 2, we introduce deter-
minant, normalized, unitarily invariant continuous norms. In Section 3, we study the
relations between noncommutative Hardy spaces H*(.#,p) and H* (.#,7). In Sec-
tion 4, we prove the main result of the paper, a version of Chen-Hadwin-Shen’s result
for noncommutative Hardy spaces associated with new norm. In Section 5, we get a
generalized noncommutative Beurling’s theorem for special von Neumann algebras.

2. Determinant, normalized, unitarily invariant continuous norms

Let .# be a finite von Neumann algebra with a faithful, normal, tracial state T,
the ||-[|,, is a mapping from . to [0,) defined by x|, = (T(‘x|p))l/l” Vxe . #,0<
p <eo. Itis known that |-, is anormif 1 < p < e, and a quasi-normif 0 < p < 1.

DEFINITION 2.1. Let .# be a finite von Neumann algebra with a faithful, nor-
mal, tracial state T. Assume o : .# — [0,°°) is a norm satisfying:

(1) a(l)=1,ie., a isnormalized;
(2) a(x)=a(|x]) forall x € .# and |x| = (x*x)'/?, i.e., o is a gauge;
(3) o(u*xu)=oa(x),uc () and x € A ,i.e., o is unitarily invariant;

(4) limg)_oo(e) =0 as e ranges over the projections in .. i.e. if {e;} is a
net of projections in .# and 7(e;) — 0, then o (e;) — 0, which means o is
continuous.
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Then we call o is a normalized unitarily invariant continuous norm. And we denote
N(# ,7) to be the collection of all such norms.

DEFINITION 2.2. We denote by N; (.#,7), the collection of all these norms o :
M — [0,00) such that:

(1) aeN(A,1);
(2) Vxe A, o.(x) = c||x||;, for some ¢ > 0.

A norm a in N; (4 ,7) is called a normalized, unitarily invariant ||-||, -dominating
continuous norm on . .

DEFINITION 2.3. We denote by Na (., T), the collection of all these norms o :
M — [0,00) such that:

(1) aeN(A,1);

(2) there exists a positive g € L! (., ) such that A(g) > 0 and «(x) > c7(|x|g)
for some ¢ > 0.

A norm « in Na (.4 ,7) is called a determinant, normalized, unitarily invariant con-
tinuous norm on . .

EXAMPLE 2.4. For the Definition 2.3, if we take g = 1, then oo € N; (A, 7), i.e.,
Na (A, 7T) CNy (A, 7).

EXAMPLE 2.5. Each p-norm |||, isin N(.#,t), Ni(.#,7), and Na(# , 7) for
1< p<oo.

EXAMPLE 2.6. Let .# be a finite von Neumann algebra with a faithful, normal,
tracial state 7. Let £(0,1) be a symmetric Banach function space on (0, 1) and E(7)
be the noncommutative Banach function space with a norm || - ||(;) corresponding
to E£(0,1) and associated with (.#,7). If E(0,1) is also order continuous, then the
restriction of the norm || - ||g(7) to .# liesin N(.#,7) and Ny (4, 7).

In order to prove the first theorem in this paper, we need the following lemmas,
the first lemma is proved by H. Fan, D. Hadwin and W. Liu in [9].

LEMMA 2.7. Suppose (X,Z,L) is a probability space and o is a continuous
normalized gauge norm on L=(l). Then there exists 0 < ¢ < 1 and a probability
measure A on X such that A < W and y < A, such that o is c|| - ||, ; -dominating.

Before we give the next lemma, we first introduce the property of central valued
traces in [15], and introduce a class of determinant, normalized, unitarily invariant con-
tinuous norms on finite von Neumann algebras and some interesting examples from this
class. In the end of this section, we will obtain our first theorem.
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PROPOSITION 2.8. If . is a finite von Neumann algebra with the center 2 of
M , then there is a unique positive linear mapping ¢ from # into & such that:

(1) @(xy) = @(yx), foreach x and y in A ;

(2) @(z) =2z, foreach z in Z;

(3) o(x)>0if x>0, forxin M ;

(4) ¢(zx) =z (x), foreach z in % and x in M ;
(5) lleM)l <

(6) @ is ultraweakly continuous;

(7) for any x € A, @(x) is the unique central element in the norm closure of the
convex hull of {uxu*|lu € U (M )};

(8) every tracial state on M is of the form To @ where T is a state on %, i.e. every
state on the center 2 of M extends uniquely to a tracial state on M ;

(9) o is faithful.

LEMMA 2.9. Let .4 be a finite von Neumann algebra with a faithful, normal, tra-
cial state T. Suppose o0 € N (M ,T), then the central valued trace @ satisfy o(@(x)) <
o(x), forevery x € M .

Proof. By proposition 2.8 (7), for any x € .# , the central value trace ¢(x) is in
the norm closure of the convex hull of {uxu*|u € % (.#)}, so there exist anet {x; }, -x
in the convex hull of {uxu*|u € % (.#)} such that x; convergesto ¢ (x). Since o is
a continuous norm, o (x; — @ (x)) — 0, ie., a(p(x)) = li}{na (x2)- Since x; is in the

convex hull of {uxu®|u € % ()}, o (x)) < o (x). Therefore, o(p(x)) < or(x). O

THEOREM 2.10. Let .# be a finite von Neumann algebra with a faithful, normal,
tracial state T and o be a normalized, unitarily invariant, continuous normon (M, 7).
Then there exists a positive g € L' (2, T) such that: (i) p(-) = t(-g) is a faithful normal
tracial state on A ; (ii) o is c||-|, ,-dominating for some ¢ > 0; (iii) p(x) = 7(xg)
forevery x € L'( ,p).

Proof. Since the center 2 of . is an abelian von Neumann algebra, there is a
compact subset X of R and a regular Borel probability measure on X such that the
mapping 7 from 2 to L”(X,u) is *-isomorphic and WOT-homeomorphic. Since
o is a continuous normalized unitarily invariant norm on (.#,7), it is easy to check
@ = aon ! satisfying:

@) a()=aox '()=a(x'(1)=a(l)=1.
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(i) a(f)=aon!(f)=alun"!(f))=oa(r" (wf)) = a(x"'(|f])) =o(|f]), where

|f| =wf,|w| =1 and there is a unitary u such that (u) =w.

(iii) For given borel set {E,} CX, there exists a sequence {e,} C 2 such that
Y (xg,) = ey forevery n € N. If u(E,) — 0, then 7(e,) — 0. So a(e,) — 0
since ¢ is continuous. Thus lim@(yg,) = lim oo~ (yg,) = lim o(e,) — 0.

Thus @ is a continuous normalized gauge norm on L= (X, ).

By the Lemma 2.7, there exists a probability measure A such that A <y and
u < A and there exists ¢ > 0 such that Vf € L”(X,u) = L™(X,4),0(f) = c[|f]l1.1-
Define po(x) = [y m(x)dA, we check py is a faithful normal tracial state on 2.

(1) po(l) = [y w(I)dA = [y 1dA =1.
(2) polxy) = Jxy w(xy)dA = [x m(yx)dA = po(yx).
(3) Since x, — x in WOT topology, 7(x,) — m(x) in weak* topology, i.e., [y 7(x,)dA

= [y w(xy)gdu — [y m(x)gdu = [y w(x)dA. Thus po(x,) — po(x). Therefore
po is normal.

(4) For every x € 2,py(x*x) = [y m(x*x)dA = [y w(x)?dA =0, so 7(x)? =0 and
x =0, which means py is faithful.

Define p = pp o ¢, now claim that o is c| - [/ p-dominating on (.#,p). For some
constant ¢ >0, Vx € 2, a(x) = aon(x) = a(n(x)) > c[|n(x)[|, 1 = c [y |m(x)|dA =
¢ Jy n(|x|)dA = cp(|x]) = c[|x[|1,p. So we have a(x) > c|[x][1p,Vx € Z. Also, we have

M2 7 P, where ¢ is the mapping in proposition 2.8. Then p is a state on .,
and Vx € A, 0(x) = a(@(x)) = c||@(x)||1,p, = cl|@(x)||1,p = c[|x]|1,p - Therefore, there
exists a faithful normal tracial state p on .# such that o is a c|| - ||1 » -dominating on
(A ,p).

Since p(x) = [y w(x)dA = [y w(x)hdp, where h = % € L'(X,u), we can choose
simple functions {#;}?* , suchthat 0 <Ay < hy <--- and h, — h as n — oo. And also
we can choose 0 < x; <xp < -+ in & so that ©(x,) = h, for each n. Therefore,

p(x) = po(@(x)) = lim 7(x,@(x)) = lim 7(@(xxx)) = lim 7(x,x)) = 7(xg),

n—oo n—so0

where g € LY(2,1). O

EXAMPLE 2.11. Given any finite von Neumann algebra .# with a faithful nor-
mal tracial state T and oo € N(.#,7), by Theorem 2.10, there exists a positive g €
L' (. ,7) such that o (x) > c7(|x|g) forsome ¢ > 0. If A(g) >0, then o € NA(A, 7).
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3. Noncommutative Hardy spaces

Let .# be a finite von Neumann algebra with a faithful, normal, tracial state 7.
Given a von Neumann subalgebra 2 of .# , a conditional expectation ®: .#Z — 2 is
a positive linear map satisfying ®(7) =1 and @ (x;yxz) = x;P(y)xz for all x;,x € ¥
and y € .. There exists a unique conditional expectation ®;: .#Z — 2 satisfying
To®;(x) = 7(x) for every x € .#. Now we recall noncommutative classical Hardy
spaces H” in [1].

DEFINITION 3.1. Let <7 be a weak™ closed unital subalgebra of .# , and let ®;
be the unique faithful normal trace preserving conditional expectation from .# onto
the diagonal von Neumann algebra & = o/ N.o7*. Then &/ is called a finite, maximal
subdiagonal subalgebra of .# with respect to ®; if:

(1) & + «* is weak* dense in .Z ;
(2) Dr(xy) = Di(x)D(y) forall x,y € &7

Such 7 will be denoted by H*, and 7 is also called a noncommutative Hardy space.

EXAMPLE 3.2. Let .# =L*(T,u), and t©(f) = [ fdu forall f e L*(T,u). Let
of =H(T,u), then 2 =H*(T,u)NH*(T,u)* = C. Let ®; be the mapping from
L=(T,u) onto C defined by ®;(f) = [ fdu. Then H*(T,u) is a finite, maximal
subdiagonal subalgebra of L=(T, ).

EXAMPLE 3.3. Let .# = .#,(C) be with the usual trace 7. Let </ be the sub-
algebra of lower triangular matrices, now 2 is the diagonal matrices and ®; is the
natural projection onto the diagonal matrices. Then .7 is a finite maximal subdiagonal
subalgebra of .#,(C).

Let .# be a finite von Neumann algebra with a faithful, normal, tracial state T,
@ be the conditional expectation and & be a determinant, normalized, unitarily invari-
ant, continuous norm on . . Let L*(.# ,7) be the o closure of .# ,i.e., L*(.#,T) =
(M. Similarly, H* (A ,©) = [H* (M, 7))o, H (A ,T) = ker(®;) NH* (.4 ,T) and
H§ (M ,7) = ker(®r) NH* (A 7). If we take oo = || - ||, then LP (.4, T) = [ 4],
HP (A ,v) = [H” (A ,7)]p. Recall p is a faithful normal tracial state on .# satis-
fying all three conditions in Theorem 2.10. We define the noncommutative Hardy

spaces H'(.#,p) and H} (.4 ,p) by H' (M ,p) = “(M/,T)H"h"’ and H} (4 ,p) =

HE (A ,T)H"h’p . In [17], K. S. Satio characterized the noncommutative Hardy spaces
HP (A ,v) and HY (A, 7). Recall HP (4 ,T) ={x € LP (4 ,7), T(xy) =0, forall y €
H} for 1 < p <o, alsowe have H) (#,7)={x € LP(4 ,7), T(xy) =0,Vy € H}.
In this paper, we get similar result for noncommutative Hardy spaces H?(.#,p) and
HY (. ,p) by using the inner-outer factorization and the properties of outer functions
in noncommutative Hardy spaces from papers [4] and [5]. Let A be Fuglede-Kadison
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determinant on .# defined by

Ax) = exp(e(logl))) = expl [ “log(t)dv (1)),

where dv|x| (1) denotes the probability measure on R, Also, the definition of this

determinant can be extended to the *-algebra M.

DEFINITION 3.4. Let 1 < p < oo. An element x € HP (., 7) is outer if I €
[XxHP (. ,7)),, and x € HP (.4 ,7) is strongly outer if x is outer and A(x) > 0. An
element u is inner if u € H*(.#,t) and u is unitary.

LEMMA 3.5. (from [5])If H* is a maximal subdiagonal algebra, then x € HP (L, T)
with A(x) > 0 iff x = uy for an inner u and a strongly outer y € HP(.# 1), for
1 < p < oo. The factorization is unique up to a unitary in 9.

LEMMA 3.6. (from [5]) Let @ be the conditional expectation on A . Then x €

HP( A7) is outer if and only if ®¢(x) is outer in LP(Z) and xH{f’(//,T)MN =
Hf (A7), for 1 < p < eo.

LEMMA 3.7. If a € Na(#,7), then there exits a faithful tracial state p and
a strongly outer h in H' (.#,7) such that g = |h|,where g as in Theorem 2.10 and

hHY (A ,p) =H' (7).

Proof. Since o € No(#,7), A(g) > 0. By Lemma 3.5, g = |h| for a strongly
outer h € H'(.#,7). Let p (x) = 7(xg), Vx € .4 , by Theorem 2.10, p is a faithful
normal tracial state on .# . Then we define U : L' (.#,p) — L' (.#,1) by Ux = hx,
which is a surjective isometry:

IO 2 = lIxglly - = 7(lxgl) = T(|x|g) = p(Ix]) =[xl , -

= ||, g = vh, where v is modular. Thus vhH“(//A CgH' (M ,p)=vhH' (A ,p)
= hHl(// p). Since & is a strongly outer in H'(.#,7),we have hH'(.# ,p) =
H' (7). O

SincegEgH (M ,p) and H' (A ,7) CH (M ,p), gH” (M ,T) CgH' (M ,p). Since
7)C
7)

COROLLARY 3.8. Let ®; be the conditional expectationon A . If ot € NA(A ,T),
then there exists a faithful normal tracial state p such that:

(1) H (A ,p) ={xe L' (A ,p):p(xy) =0 forall y € Hy};
(2) Ho(AM,p)={xecL'(M,p):p(xy)=0forall yc H*};
(3) Hy(M,p) ={xc H'(A,p): Dc(xh) = 0}.
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Proof. Since o € NA(.#,7), there exists a positive g € L' (.#,1) and A(g) >0
such that a (x) > ¢t (|x|g) for some ¢ > 0. We define p (x) = 7(xg),Vx € .#, p is
a faithful normal tracial state on .. By Lemma 3.7 and H' (. ,7) = {x € L' (.4 ,7),

7(xy) =0 forall y € Hy } , we have (1). For (2), We know HS"(///,T)H"M"’ =H} (A ,p),

and hHY} (A ,p) = hHS"(//,I)H'H”’ = hH(‘;"({///J)H'H"T = H}(.#,7) since h is outer
in H'(.#, 7). The last statement is clearly by [17]. O

PROPOSITION 3.9. If o € NA(A ,7), then there exists a faithful normal tracial
state p such that

Ha('//vp) ={xe La(*///7p) :p(xy)=0forally e H&(*///7P)O(La('/lvp))#}v

where (L*(# ,p))* is the dual space of L*(A ,p).

Proof. Since o € No(.#,7), then there exists a faithful normal tracial state p
on . such that p (x) = 7 (xg) for some positive g € L' (2, 7) and the determinant
of g is positive, which means oo € Ny (.4 ,p). Let 7 ={xc L*(4,p) : p(xy) =0
forall y € H} (A ,p) N (L*(#,p))*}. Suppose x € H*(.#,p). If y € H} (4 ,p) N
(L*( ,p))* C H} (A ,p), then it follows from Corollary 3.8 that p(xy) = 0, for all
x€ ¢ ,and so H*(#,p) C #. We claim that ¢ is a-closed in L*(.#,p). In
fact, suppose {x,} is a sequence in ¢ and x € L*(.#,p) such that a(x, —x) — 0.
If y€ H{ (A ,p)N(L* (4 ,p))*, then by the generalized Holder’s inequality in[7], we
have

Ip(xy) = p ()| = [P ((x —x0)y)| < (x —xa)a’ — 0.
Which follows that p(xy) = lim p(x,y) = 0 forall y € H} (.#,p) N (L* (4 ,p))*. By

n—soo

the definition of ¢, we know x € _# . Hence ¢ is closed in L*(.#,p). Therefore,
HY (A ,p)=[H(A,p)]a C e
Next, we show that H*(.#,p) = # . Assume, via contradiction, that H*(.Z ,p) C
7 CL*(#,p). By the Hahn-Banach theorem, there is a linear functional ¢ €
(L*(A,p))* and x € _# such that:

@ ¢(x) #0;
(b) ¢(y) =0 forall yec H*(#,p).

In the beginning of this proof, we know o € Ny (.#,p), which means ¢ is normalized,
unitarily invariant || - ||, -dominating, continuous norm on (.#,p), it follows from [7]
that there exists a & € (L¥(.#,p))* such that

©) ¢(z) =p(z&) forall ze L* (A ,p).
Hence from (b) and (c) we can conclude that

(d) p(y&)=¢(y) =0 forevery y € H* (.4 ,p) CH*(M ,p) C L*(A ,p).
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Since ¢ € (L*(4,p))* CL (A ,p),s0 & €HY (A ,p), whichmeans § € H} (4, p)N
(L*(#,p))*. Combining with the fact that x € ¢ = {x € L*(.#,p) : p(xy) =0,
Vy € Hi (4 ,p) N (L*(#,p))*}, we obtain that p(x§) = 0. Note, again, that x €
I CL*(A,p). From (a) and (c), it follows that p(x&) = ¢(x) # 0. This is a contra-
diction. Therefore

H( M ,p)={x€ L*(M,p):p(xy=0) forall y € H} (A ,p)N(L* (A ,p))*}. O

LEMMA 3.10. (from [2]) The conditional expectation @ is multiplicative on Hardy
spaces. More precisely, ®¢(xy) = ©¢(x)®(y) for x € H? (M ,T), y € HI(A ,7) and
xy € H" (A ,T) with 0 < p,q,r < e and 11—7—1-% = %

THEOREM 3.11. If o € No(#,7), then there exists a faithful normal tracial
state p such that H*(.# ,p) = H' (A ,p) N L* (A ,p).

Proof. Since o € Na(.#,7), there exists a positive g € L' (.#,7) and A(g) >
0 such that o (x) > ¢t (|x|-g), for some ¢ > 0. We define a faithful normal tracial
state p (x) = 7(xg), Vx € 4. Since a(x) > ct(|x[-g) =cp (|x]) =cllx]|,,, a is
| -||1,p -dominating, so o-convergence implies |- [|1 , -convergence, thus H* (. ,p) =

—

H=(Ap)" CHA(Ap) " = (A, p). Also, H (.t ,p) = H=(A,p)"
L%(#,p). Therefore, H*(.# ,p) C H' (M ,p) N L* (A ,p).

To prove H'(.#,p)NLX A ,p) CHX A ,p). Suppose x € H\(.,p)NL*( A, p),
then x € L*(.#,p). Assume that y € H} (4 ,p) N (L* (4 ,p))*. So @ (hy) =0. Note
that hx € H'(.2,7), hy € H}(.#,7) and hxhy € H' (.20, T)H} (A ,T) C H? (M, 7).
From Theorem 2.1 in [2], and Lemma 3.10 we know that ®;(hxhy) € L? (2,7) and
@ (hxhy) = @ (hx)®;(hy) = 0. Moreover, x € L*(.#,p) and y € (L*(4,p))*,
from [7], xy € L*(4,p) C L' (4 ,p). So hxy € L' (#,7), and ®;(hxy) is also in
L' ,7). Thus p(xy) = t(hxy) = 7(®;(hxhy)) = 7(0) = 0.

Now we check ®;(hxy) = 0. Since h is strongly outer in H'(.#,p), there is a
sequence {a,} in H” such that a,h — 1 in || -||; norm. Therefore, ||Axyha, — hxy|| 1=
|| ixy(hay, — l)||% < ||hxy||1||hay — 1)) — 0 as n — e. And by Theorem 2.1 in [2],
@ (hxyha,) — @1 (hxy). Also, we have @ (hxyha,) = @ (hx)®;(hy)®;(a,) =0, so
®;(hxy) = 0. By the definition of _# in Proposition 3.9, we conclude that x € ¢ .
Therefore H' (.4 ,p)NL* (M ,p) C F =H*(M ,p). O

4. Beurling’s invariant subspace theorem

In this section, we extend the Chen-Hadwin-Shen theorem for continuous normal-
ized unitarily invariant norms on (.#,7).

First, we will prove the factorization theorem, in order to do this, we need the
following lemma.

LEMMA 4.1. (from [10]) Let x € LP(.# ,7), p > 0, then we have:
(1) Alx) =A(x") =A(|x]);
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(2) Alxy) =Ax)A(y) = A(yx), forany y € L* (A ,T), s > 0.

THEOREM 4.2. Suppose o € Nx (4 ,7T), there exists a faithful normal tracial
state p on M suchthat p (x) = T(xg), for some positive g € L' (2, 7) and the deter-
minant of g is positive. If x € M and x~' € L* (. ,p), then there are unitary opera-
tors uy,uy € A and sy,s, € H” such that x = uys1 = spun and 51_1732_1 ceHY( A ,p).

Proof. Since o € Np (A, T), the first statement is clear from Theorem 2.10. Sup-
pose x € .# with x™! € L¥(.#,p). Assume that x = v|x| is the polar decomposition
of x in ., where v is a unitary in .# and |x| € .#. Since log(|x]) < |x|,log(|h|) —
log(1x]) = log(Allx| 1) < [#llx] and —log(lx]) < |hllx| — log(1hl), llog(lx))| < x| +
(|1]|x| — Log(|h])), so A(|x]) = e*1°ek) > 0 and |x| € L'(.#)*. By Corollary 4.17 in
[5], there exists a strongly outer s € H' (.#,T) and s = u; |s| is the polar decomposition
of s such that |x| = |s|. Since |x| € .#, |s| € .#, therefore, s € .4 and s € H' (M ,T)
implies s € H”(.#, 7). Also, we have |x| = u}s, so x = vujs = us, where u = vuj.

Now we check s=! € H*(.# ,p). First, x ' € L*( ,p) C L' (M ,p), so hx~! €

LY, 7). Since x ' = |x| v e L% ,p), |x| "' € L% ,p) C LN A ,p) and
| |x| "t e LY, 7).
A(r| x| ™Y = A(Jh])A(Jx| ") > 0 by Lemma 4.1. Then there exists a strongly outer
f e H' (1) such that |h||x|~" = |f|. Since H'(.#,t) = hH' (.4 ,p), there exists
fi € H'(.#,p) such that f = hf). Since A(fs) = A(f)A(s) > 0, by Lemma 3.5, fs
is outer. And |f||s| = |h||x|""|s|, so |k = |f||s|. Therefore, |h| = u}fuls, i.e., h =
W fuls, hfi = f = upushs 'uy, so s7' = i \wushfiu} = wius fiuy € H' (A ,p).
Also, we know s~! € L¥(.# ,p). Therefore, by Theorem 3.11, s~! € L*(.#,p) N
HY\ (A ,p)=H*(A,p). O

The following density theorem also plays an important role in the proof of our
main result of the paper.

THEOREM 4.3. Let o € Np (A ,7T), then there exists a faithful normal tracial
state p on M such that p (x) = t(xg) for some positive g € L' (2, 1) and the de-
terminant of g is positive. Also, if W is a closed subspace of L*(# ,p) and N isa
weak* closed linear subspace of M such that W H> C % and N H” C N, then:

(]) JV:[JV]O(Q%;
(2) W NAM is weak* closed in M ;

Wk

(4) if .7 is a subspace of .M such that SH” C .7, then [L)q = [/ |a, where
I is the weak*-closure of & in M.

Proof. Since o € Np(.#,7T), clearly, there exists a faithful normal tracial state
p on .# by Theorem 2.10. For (1), it is clear that .4 C [.A ] N.# . Assume, via
contradiction, that A" C [.A]o N.# . Note that .4 is a weak™* closed linear subspace
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of .# and L' (.# ,p) is the predual space of (.#,p). It follows from the Hahn-Banach
theorem that there exists a & € L' (.#,p) and an x € [.#"]o N .# such that

(@) p(Ex) #0 and (b) p(Ey) =0 forall y e A".

We claim that there exists a z € .# such that

(@’) p(zx) #0 and (b’) p(zy) =0 forall y € 4. Actually assume that & = [E*|v is the
polar decomposition of & € L'(.#,p), where v is a unitary element in .# and |E*| is
in L'(.,p) is positive. Let f be a function on [0,0) defined by the formula f(z) = 1
for 0 <7< 1 and f(r) =1/t for + > 1. We define k = f(|*|) by the functional
calculus. Then by the construction of f, we know that k € .# and k~! = f~1(|€*|) €
LY (. ,p). 1t follows from Theorem 4.2 that there exist a unitary operator u € .# and
s € H” such that k = us and s~! € H'(.# ,p). Therefore, we can further assume that
{t.}7_, is a sequence of elements in H> such that ||s~! —7,||1 ,. Observe that:

(i) since s,1, are in H”, for each y € .4 we have that yt,s € /H* C .4 and
P (1asGy) = p(Eytns) = 0;

(ii) we have s& = (u*u)s(|E*|v) = ux* (k|E*|)v € A , by the definition of k;
(iii) from (a) and (i), we have 0 # p(Ex) = p(s~'séx) = }}grgcp (tnséx).

Combining (i), (i) and (iii), we are able to find an N € Z such that z = tysé € A
satisfying

@) p(zx) #0 and (b") p(zy) =0 forall y € A",

Recall that x € [.4]4. Then there is a sequence {x,} C .4 such that a(x —x,) — 0.
We have [p(zx) — p(e)] = Ip(x — )| < |x— a1 pllz] — 0.

Combining with (b”) we conclude that p(zx) = limp (zx,) = 0. This contradicts with

the result (a’). Therefore, A" = [N |o N A .

For (2), let # N.# " be the weak*-closure of # N.# in .# . In order to show
that # N4 =W ﬂ///w*, it suffices to show that # N.Z"" C ¥ . Assume, to the
contrary, that % N.# v g # . Thus there exists an element x in # N.Z " C # -
L%(#,p), but x ¢ W . Since # is a closed subspace of L*(.#,p), by the Hahn-
Banach theorem, there exists a & € L!(.#,p) such that p(Ex) #0 and p(Ey) =0, for
all ye # . Since & € L' (.#,p), the linear mapping pe : M — C, defined by pg (a) =
p(éa), forall a € .4, is weak*-continuous. Note that x € # N.Z" and p(Ey) =0
for all y € #. We know that p(£x) = 0, which contradicts with the assumption that
p(Ex)#0.Hence # N CHW . soWNM=HM".

For (3), since # is o-closed, it is easy to see [# N.#]q C # . Now we assume
(W N Mo C # CL*(A,p). By the Hahn-Banach theorem, there exists an x € #
and & € L'(.#,p) such that p(Ex) # 0 and p(Ey) =0, forall y € [# N.#]y. Let
x = v|x| be the polar decomposition of x in L*(.#,p), where v is a unitary element in
A . Let f be a function on [0,c0) defined by the formula f () =1, for 0 <7< 1 and
f(t)=1/t, for t > 1. We define k = f(|x|) by the functional calculus. Then by the
construction of f, we know that k € .# and k~! = f~!(|x]) € L*(#,p). It follows
from Theorem 4.2 that there exist a unitary operator u € .# and s € H® such that
k=suand s' € H*(.#,p). Alittle computation shows that |x|k € .# which implies
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that xs = xsuu® = xku* = v(|x|k)u* € .# . Since s € H”, we know xs € W H> C W/
and thus xs € # N .# . Furthermore, note that (# N.#Z)H” C W N.# . Thus, if
t€ H*( M ,p), we see xst € # N.A and p(Exst) =0. Since H*(#,p) is dense
in H*(.#,p) and & € L' (. ,p), it follows that p(Exst) =0, for all t € H* (.4 ,p).
Since s~! € H*(.#,p), we see that p(Ex) = p(Exss~!) = 0. This contradicts with
the assumption that p(Ex) # 0 . Therefore # = [# N.M .

For (4), assume that . is a subspace of .# such that H*(.#,p) C . and
" is weak*-closure of . in .# . Then [.#]qH" (.4 ,p) C [.#]¢. Note that .% C
[#)e N4 . From (2), we know that %] N.# is weak*-closed. Therefore, 7" C
[#)aN .l . Hence [#" ] C [L]g and [S]q = [ |a. O

Before we obtain our main result in the paper, we recall the definitions of internal
column sum of a family of subspaces, and the lemma in [4].

DEFINITION 4.4. Let X be a closed subspace of L*(.#,T) with o € Ny (A, 7).
Then X is called an internal column sum of a family of closed subspaces {X) }ca of
L*(#,7), denoted by X = @%AX;L if:

(1) X;X; = {0}, for all distinct A, € A, and;

(2) X =[span{X; : A € A}]q.

DEFINITION 4.5. Let X be a weak*-closed subspace of .# and o € Nx (A4, 7).
Then X is called an internal column sum of a family of weak*-closed subspaces {X) },ca
of L%(.#,7), denoted by X = @57\ X;, if:

() XXy = {0} for all distinct A, € A, and;

(2) X =span{X; : L €A} .

LEMMA 4.6. (from [4]) Let .# be a finite von Neumann algebra with a faithful,
normal, tracial state T and o be a normalized, unitarily invariant || - ||, ¢ -dominating
continuous norm on M . Let H* be a finite subdiagonal subalgebra of .# and 2 =
H”N(H™)". Assume that W C M is a weak*-closed subspace such that W H” C W .
Then there exists a weak*-closed subspace % of . and a family {u }; ¢ of partial
isometries in M such that:

(1) u; 9 =0, forall AEA;

(2) wyup € 2 and u;uy =0, forall A,pu € A with A # i;
(3) ¥ =Hg#@"";

(4) W = & (&L up H”).

Now we are ready to prove our main result of the paper, an extension of the Chen-
Hadwin-Shen theorem for noncommutative Hardy spaces associated with finite von
Neumann algebras.
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THEOREM 4.7. Let ./ be a finite von Neumann algebra with a faithful, normal,
tracial state T and o be a determinant, normalized, unitarily invariant, continuous
norm on A . Then there exists a faithful normal tracial state p on .# such that o €
Ny (A ,p). Let H” be a finite subdiagonal subalgebra of 4 and 9 = H”N(H*)*. If
W is a closed subspace of L*(.# ,T) such that W H* C W', then there exists a closed
subspace % of L* (A ,t) and a family {u) })ca of partial isometries in .# such that:

(1) u; 9 =0, forall AEA;

(2) uyup € 2 and usuy =0, forall A,pu € A with A # i;
(3) ¥ =[HgY a

(4) W = o (L \u H”).

Proof. Suppose # is a closed subspace of L*(.#,7) such that # H> C ¥ .
Then it follows from part (2) of the Theorem 4.3 that # N .# is weak* closed in
(A ,v)=(A,p),wealsonotice L (A, 1) =M =L"(M,p),L*( M, ,T)=L*(A,p)
and H*( A ,t) = H*( A ,p). It follows from the Lemma 4.6 that

col  col

VM= PEPuH),
ics

where ] is a closed subspace of L”(.#,p) such that %] = %HS"W*, and where u;
are partial isometries in % N.# with wju; =0 if i # j and with uu; € Z. Moreover,
for each i,u; % = {0}, left multiplication by the u;u; are contractive projections from
W N/ onto the summands u;H* and left multiplication by 7 — Y,;u;u; is a contractive
projection from # N.# onto % .

Let % = [#]¢. It is not hard to verify that for each i,uf.# = {0} . We also claim
that [u;H*] = u;H* . In fact it is obvious that [u;H"]q 2 u;H*. We will need only to
show that [u;H”]q C u;H*. Suppose x € [u;H”|q, there is a net {x,},_; C H* such
that o (u;x, —x) — 0. By the choice of u;, we know that u;u € 2 C H”, so uux, € H”,
for each n > 1. Combining with the fact that o(u}uix, —ux) < ot(uix, —x) — 0, we
obtain that u’x € H*. Again from the choice of u;, we know that w;u}u;x, = u;x, , for
each n > 1. This implies that x = u;(u’x) € u;H*. Thus we conclude that [u;H>]y C
uH*, so [uiH”]oq = u;H* . Now from parts (3) and (4) of the Theorem 4.3 and from
the definition of internal column sum, it follows that

W =W NMy=[span{2,uH= i€ I} o = [span{P,uH" i € I}]q.
col  col

= [span{? ,uH" : i € 7 }o = ¥ P(EPuH*).
i€y

Next, we will verify that %" = [#' H{] . Recall that %" = [#]],,. It follows from
part (1) of the Theorem 4.3, we have

[WHS oM =THT " = .
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Hence from part (3) of the Theorem 4.3 we have that

., [@Hma 2 [%H(T]a = [[%H(ﬂa m//]a = [%}a =%,

Thus % = [% H{|o.. Moreover, it is not difficult to verify that for each i, left multipli-
cation by the u;u; are contractive projections from 2" onto the summands u;H* and
left multiplication by I — Y u;u} is a contractive projection from %" onto % . Now the
proof is completed. [l

If we consider o as some specific norms, then we have some corollaries. If we
take o be a unitarily invariant, || - || ;-dominating, continuous norm, then we have
Chen-Hadwin-Shen’s result in [7].

COROLLARY 4.8. Let .# be a finite von Neumann algebra with a faithful, nor-
mal, tracial state T and o be a normalized, unitarily invariant, ||||; -dominating,
continuous norm on A . Let H” be a finite subdiagonal subalgebra of A . Let 9 =
H”N(H*)*. Assume that W is a closed subspace of L*(.# ,t) suchthat H*W C W .
Then there exist a closed subspace % of L*(.# ,t) and a family {u) };cp of partial
isometries in W N .# such that:

(1) u; 9 =0, forall AEA;

(2) uyup € P and u;uy =0, forall A,pu € A with A # i;
(3) ¥ = HVa

(4) W =7 & (&L Huy).

If we take o = ||-|[,, then we have D. Blecher and L. E. Labuschagne’s result in

[4].

COROLLARY 4.9. Let .# be a finite von Neumann algebra with a faithful, nor-
mal, tracial state T and H* be a finite subdiagonal subalgebra of M. Let 9 =
H”N(H™)*. Assume that W is a closed subspace of LP (. ,7T),1 < p < o such that
H=W C W . Thenthere exist a closed subspace % of LP (.# ,T) and a family {uj }jen
of partial isometries in W 0. such that:

(1) u;% =0, forall A € A;
(2) wyuy € P and wyuy =0, forall A,u € A with A # p;
(3) ¥ =[H;Y]p;

(4) W =¥ & (L HPuy).
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5. Generalized Beurling theorem for special von Neumann algebras

In Theorem 4.7, if let .# be classical Hardy space on unit circle T with Haar
measure, i.e., 4 = L*(T,u), H* = H*(T,u), then 2 =H* N (H*)* = C and the
center 2 of .# =L~(T, ) isitself. So 2° £ 2 = C. However, for a finite von Neu-
mann algebra .# with a faithful normal tracial state 7, let H* be a finite subdiagonal
subalgebra of .#, 2 =H” N (H*)*, if the center 2 C &, then generalized Beurling
theorem holds for normalized, unitarily invariant, continuous norms on (.#, 7).

THEOREM 5.1. Let ./ be a finite von Neumann algebra with a faithful, normal,
tracial state T. Let H” be a finite subdiagonal subalgebra of #, 2 = H” N (H™)*,
and the center 2 C 9. Let o be a normalized, unitarily invariant, continuous norm

n (A ,7). If W is a closed subspace of L*(# ,7) such that W H* C W, then there
exist a closed subspace % of L* (. ,T) and a family {uy }jcp of partial isometries in
M such that:

(1) ui@zo,foralll cA;
(2) wyup € P and uyuy =0, forall A,pu € A with A # i;
(3) @Z[Hg’@]a;

(4) W = & (&L uy H).

Proof. By Theorem 2.10, there exist a faithful normal tracial state p on .# and
a ¢ > 0 such that ¢ is a continuous normalized unitarily invariant c|| - ||| , -dominating
normon (.#,p). First, recall the definition of conditional expectation®¢ ;. We know
that ®4 ; is multiplicative on H*. In general, ®4 , won’t be multiplicative on H*,
however, the condition 2 C & makes sure Dy, is multiplicative on H”, because we
can choose 0 < x; <xp < --- in 2 such that, for every x € .#,

P (x) = lim 7 (x,x) = lim 7 (D ¢ (x,)) .

n—o00

Since 2 C 2, g 1 (xpx) = X, Py ¢ (x). Thus

p(x)=1m7T (5P (x) =p (Pyr(x)).

n—00

It follows that @4 ; = ®g , . This now reduces to the ¢ [|-||, -dominating version of the
Chen-Hadwin-Shen theorem in [7]. [
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