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Abstract. In 2015, Yanni Chen, Don Hadwin and Junhao Shen proved a noncommutative version
of Beurling’s theorems for a continuous unitarily invariant norm α on a tracial von Neumann
algebra (M ,τ) , where α is ‖·‖1 -dominating with respect to τ . In the paper, we first define a
class of norms NΔ (M ,τ) on M , called determinant, normalized, unitarily invariant continuous
norms on M . If α ∈ NΔ (M ,τ) , then there exists a faithful normal tracial state ρ on M such
that ρ (x) = τ (xg) for some positive g ∈ L1 (Z ,τ) and the determinant of g is positive. For
every α ∈ NΔ (M ,τ) , we study the noncommutative Hardy spaces Hα (M ,τ) , then prove that
the Chen-Hadwin-Shen theorem holds for Lα (M ,τ) . The key ingredients in the proof of our
result include a factorization theorem and a density theorem for Lα (M ,ρ) .

1. Introduction

It has long been of great importance to operator theorist and operator algebraist
to study noncommutative Beurling’s theorem[1],[4],[5],[7],[10],[16]. We recall some
concepts in noncommutative Hardy spaces with finite von Neumann algebras. Given
a finite von Neumann algebra M acting on a Hilbert space H , the set of possibly un-
bounded closed and densely defined operators on H which are affiliated to M , form
a topological algebra where the topology is the (noncommutative) topology of conver-
gence in measure. We denote this algebra by M̃ . The trace τ extends naturally from
M to the positive operators in M̃ . The important fact regarding this algebra, is that it is
large enough to accommodate all the noncommutative Lp spaces corresponding to M .
Specifically, if 1 � p < ∞ , then we define the space Lp(M ,τ) = {x ∈ M̃ : τ(|x|p) <
∞} , where the ambient norm is given by ‖ · ‖p = τ(‖ · ‖p)1/p . The space L∞(M ,τ)
is defined to be M itself. These spaces capture all the usual properties of Lp spaces,
with the dual action of Lp on Lq (q conjugate to p ) given by (a,b) → τ(ab) . For
any subset S of M , we write [S ]p for the p-norm closure of S in Lp(M ,τ) , with
the understanding that [S ]p will denote the weak* closure in the case p = ∞ . W.
Arveson [1] introduced a concept of maximal subdiagonal algebra in 1967, also known
as a noncommutative H∞ space, to study the analyticity in operator algebras. Let M
be a finite von Neumann algebra with a faithful normal tracial state τ. Let A be a
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weak* closed unital subalgebra of M and A is called a finite maximal subalgebra of
M with respect to Φ if (i) A + A ∗ is weak* dense in M ; (ii) Φ(xy) = Φ(x)Φ(y)
for ∀x,y ∈ A ; (iii) τ ◦Φ = τ ; and (iv) D = A ∩A ∗. Such a finite maximal subdi-
agonal subalgebra A of M is also called an H∞ space of M . For each 1 � p � ∞ ,
let Hp be the completion of Arveson’s noncommutative H∞ with respect to ‖·‖p . Af-
ter Arveson’s introduction of noncommutative Hp spaces, many researchers obtained
Beurling theorems for invariant subspaces in noncommutative Hp spaces (for example,
see [2],[5],[7]).

Y. Chen, D. Hadwin, and J. Shen obtained a version of the Blecher-Labuschagne-
Beurling invariant subspace theorem on H∞ -right invariant subspace in a noncommu-
tative Lα(M ,τ) space, where α is a normalized unitarily invariant, ‖·‖1 -dominating,
continuous norm.

In this paper, we will extend Chen-Hadwin-Shen’s result in [7] by considering
drop the condition that α is ‖·‖1 -dominating. By defining a generalized α norm, we
have a version of Chen-Hadwin-Shen’s result for noncommutative Hardy spaces.

THEOREM 4.7. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ and α be a determinant, normalized, unitarily invariant, continuous
norm on M . Then there exists a faithful normal tracial state ρ on M such that α ∈
N1 (M ,ρ) . Let H∞ be a finite subdiagonal subalgebra of M and D = H∞∩(H∞)∗ . If
W is a closed subspace of Lα(M ,τ)such that W H∞ ⊆ W , then there exists a closed
subspace Y of Lα(M ,τ) and a family {uλ}λ∈Λ of partial isometries in M such that:

(1) u∗λ Y = 0 for all λ ∈ Λ;

(2) u∗λ uλ ∈ D and u∗λ uμ = 0 for all λ ,μ ∈ Λwith λ 
= μ ;

(3) Y = [H∞
0 Y ]α ;

(4) W = Y ⊕col (⊕col
λ∈Λuλ Hα) .

Many tools used in [7] are no longer available in an arbitrary Lα (M ,τ) space
and new techniques need to be invented. First, we need using the Fuglede-Kadison
determinant , and inner, outer factorization for noncommutative Hardy spaces, more
details seen in [2]. Let Δ be Fuglede-Kadison determinant on M defined by

Δ(x) = exp(τ(log|x|)) = exp(
∫ ∞

0
log(t)dν|x|(t)),

where dν|x|(t) denotes the probability measure on R+ , Also, the definition of this

determinant can be extended to the ∗ -algebra M̃ .
In order to prove our main result of the paper, we first get the following theorem.

THEOREM 2.10. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ and α be a normalized, unitarily invariant, continuous norm on (M ,τ) .
Then there exists a positive g∈ L1(Z ,τ) such that: (i) ρ(·) = τ(·g) is a faithful normal
tracial state on M ; (ii) α is c‖·‖1,ρ -dominating, for some c > 0 ; (iii), ρ(x) = τ(xg)
for every x ∈ L1(M ,ρ) .
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THEOREM 3.11. If α ∈NΔ(M ,τ) , then there exists a faithful normal tracial state
ρ such that Hα(M ,ρ) = H1(M ,ρ)∩Lα(M ,ρ) .

Then we get a factorization theorem and a density theorem for Lα(M ,τ) to get
the main theorem.

THEOREM 4.2. Suppose α ∈ NΔ (M ,τ) , there exists a faithful normal tracial
state ρ on M such that ρ (x) = τ (xg) for some positive g ∈ L1 (Z ,τ) and the deter-
minant of g is positive. If x ∈ M and x−1 ∈ Lα (M ,ρ) , then there are unitary opera-
tors u1,u2 ∈M and s1,s2 ∈H∞ such that x = u1s1 = s2u2 and s−1

1 ,s−1
2 ∈Hα(M ,ρ) .

THEOREM 4.3. Let α ∈ NΔ (M ,τ) , then there exists a faithful normal tracial
state ρ on M such that ρ (x) = τ (xg) for some positive g ∈ L1 (Z ,τ) and the de-
terminant of g is positive. Also, if W is a closed subspace of Lα (M ,ρ) and N is a
weak* closed linear subspace of M such that W H∞ ⊂ W and N H∞ ⊂ N , then:

(1) N = [N ]α ∩M ;

(2) W ∩M is weak* closed in M ;

(3) W = [W ∩M ]α ;

(4) if S is a subspace of M such that S H∞ ⊂ S , then [S ]α = [S w∗]α , where
S

w∗
is the weak*-closure of S in M .

The organization of the paper is as follows. In Section 2, we introduce deter-
minant, normalized, unitarily invariant continuous norms. In Section 3, we study the
relations between noncommutative Hardy spaces Hα(M ,ρ) and Hα (M ,τ) . In Sec-
tion 4, we prove the main result of the paper, a version of Chen-Hadwin-Shen’s result
for noncommutative Hardy spaces associated with new norm. In Section 5, we get a
generalized noncommutative Beurling’s theorem for special von Neumann algebras.

2. Determinant, normalized, unitarily invariant continuous norms

Let M be a finite von Neumann algebra with a faithful, normal, tracial state τ ,
the ‖·‖p is a mapping from M to [0,∞) defined by ‖x‖p = (τ(|x|p))1/p , ∀x∈M ,0 <
p < ∞. It is known that ‖·‖p is a norm if 1 � p < ∞ , and a quasi-norm if 0 < p < 1.

DEFINITION 2.1. Let M be a finite von Neumann algebra with a faithful, nor-
mal, tracial state τ . Assume α : M → [0,∞) is a norm satisfying:

(1) α (I) = 1, i.e., α is normalized;

(2) α (x) = α (|x|) for all x ∈ M and |x| = (x∗x)1/2 , i.e., α is a gauge;

(3) α (u∗xu) = α (x) ,u ∈ U (M ) and x ∈ M , i.e., α is unitarily invariant;

(4) limτ(e)→0 α (e) = 0 as e ranges over the projections in M . i.e., if {eλ} is a
net of projections in M and τ (eλ ) → 0, then α (eλ ) → 0, which means α is
continuous.
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Then we call α is a normalized unitarily invariant continuous norm. And we denote
N(M ,τ) to be the collection of all such norms.

DEFINITION 2.2. We denote by N1 (M ,τ) , the collection of all these norms α :
M → [0,∞) such that:

(1) α ∈ N (M ,τ) ;

(2) ∀x ∈ M , α (x) � c‖x‖1 , for some c > 0.

A norm α in N1 (M ,τ) is called a normalized, unitarily invariant ‖·‖1 -dominating
continuous norm on M .

DEFINITION 2.3. We denote by NΔ (M ,τ) , the collection of all these norms α :
M → [0,∞) such that:

(1) α ∈ N (M ,τ) ;

(2) there exists a positive g ∈ L1 (M ,τ) such that Δ(g) > 0 and α (x) � cτ (|x|g)
for some c > 0.

A norm α in NΔ (M ,τ) is called a determinant, normalized, unitarily invariant con-
tinuous norm on M .

EXAMPLE 2.4. For the Definition 2.3, if we take g = 1, then α ∈ N1 (M ,τ) , i.e.,
NΔ (M ,τ) ⊂ N1 (M ,τ) .

EXAMPLE 2.5. Each p -norm ‖·‖p is in N(M ,τ), N1(M ,τ) , and NΔ(M ,τ) for
1 � p < ∞ .

EXAMPLE 2.6. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ . Let E(0,1) be a symmetric Banach function space on (0,1) and E(τ)
be the noncommutative Banach function space with a norm ‖ · ‖E(τ) corresponding
to E(0,1) and associated with (M ,τ) . If E(0,1) is also order continuous, then the
restriction of the norm ‖ · ‖E(τ) to M lies in N(M ,τ) and N1(M ,τ) .

In order to prove the first theorem in this paper, we need the following lemmas,
the first lemma is proved by H. Fan, D. Hadwin and W. Liu in [9].

LEMMA 2.7. Suppose (X ,Σ,μ) is a probability space and α is a continuous
normalized gauge norm on L∞(μ) . Then there exists 0 < c < 1 and a probability
measure λ on Σ such that λ  μ and μ  λ , such that α is c‖ · ‖1,λ -dominating.

Before we give the next lemma, we first introduce the property of central valued
traces in [15], and introduce a class of determinant, normalized, unitarily invariant con-
tinuous norms on finite von Neumann algebras and some interesting examples from this
class. In the end of this section, we will obtain our first theorem.
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PROPOSITION 2.8. If M is a finite von Neumann algebra with the center Z of
M , then there is a unique positive linear mapping ϕ from M into Z such that:

(1) ϕ(xy) = ϕ(yx) , for each x and y in M ;

(2) ϕ(z) = z, for each z in Z ;

(3) ϕ(x) > 0 if x > 0 , for x in M ;

(4) ϕ(zx) = zϕ(x) , for each z in Z and x in M ;

(5) ‖ϕ(x)‖ � ‖x‖ , for x in M ;

(6) ϕ is ultraweakly continuous;

(7) for any x ∈ M , ϕ(x) is the unique central element in the norm closure of the
convex hull of {uxu∗|u ∈ U (M )} ;

(8) every tracial state on M is of the form τ ◦ϕ where τ is a state on Z , i.e. every
state on the center Z of M extends uniquely to a tracial state on M ;

(9) ϕ is faithful.

LEMMA 2.9. Let M be a finite von Neumann algebra with a faithful, normal, tra-
cial state τ . Suppose α ∈N (M ,τ) , then the central valued trace ϕ satisfy α(ϕ(x)) �
α(x) , for every x ∈ M .

Proof. By proposition 2.8 (7), for any x ∈ M , the central value trace ϕ(x) is in
the norm closure of the convex hull of {uxu∗|u∈U (M )} , so there exist a net {xλ}λ∈Λ
in the convex hull of {uxu∗|u ∈ U (M )} such that xλ converges to ϕ (x) . Since α is
a continuous norm, α (xλ −ϕ (x)) → 0, i.e., α (ϕ (x)) = lim

λ
α (xλ ) . Since xλ is in the

convex hull of {uxu∗|u ∈ U (M )} , α (xλ ) � α (x) . Therefore, α(ϕ(x)) � α(x) . �

THEOREM 2.10. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ and α be a normalized, unitarily invariant, continuous norm on (M ,τ) .
Then there exists a positive g∈ L1(Z ,τ) such that: (i) ρ(·) = τ(·g) is a faithful normal
tracial state on M ; (ii) α is c‖·‖1,ρ -dominating for some c > 0 ; (iii) ρ(x) = τ(xg)
for every x ∈ L1(M ,ρ).

Proof. Since the center Z of M is an abelian von Neumann algebra, there is a
compact subset X of R and a regular Borel probability measure on X such that the
mapping π from Z to L∞(X ,μ) is ∗ -isomorphic and WOT-homeomorphic. Since
α is a continuous normalized unitarily invariant norm on (M ,τ) , it is easy to check
α = α ◦π−1 satisfying:

(i) α(1) = α ◦π−1(1) = α(π−1(1)) = α(I) = 1.
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(ii) α( f )= α ◦π−1( f )= α(uπ−1( f ))= α(π−1(wf ))= α(π−1(| f |))= α(| f |) , where
| f | = wf , |w| = 1 and there is a unitary u such that π(u) = w .

(iii) For given borel set {En}∞
n=1⊆X , there exists a sequence {en} ⊆ Z such that

π−1(χEn) = en for every n ∈ N. If μ(En) → 0, then τ(en) → 0. So α(en) → 0
since α is continuous. Thus lim

n→∞
α(χEn) = lim

n→∞
α ◦π−1(χEn) = lim

n→∞
α(en) → 0.

Thus α is a continuous normalized gauge norm on L∞(X ,μ) .

By the Lemma 2.7, there exists a probability measure λ such that λ  μ and
μ  λ and there exists c > 0 such that ∀ f ∈ L∞(X ,μ) = L∞(X ,λ ),α( f ) � c‖ f‖1,λ .
Define ρ0(x) =

∫
X π(x)dλ , we check ρ0 is a faithful normal tracial state on Z .

(1) ρ0(I) =
∫
X π(I)dλ =

∫
X 1dλ = 1.

(2) ρ0(xy) =
∫
X π(xy)dλ =

∫
X π(yx)dλ = ρ0(yx) .

(3) Since xn → x in WOT topology, π(xn)→ π(x) in weak* topology, i.e.,
∫
X π(xn)dλ

=
∫
X π(xn)gdμ → ∫

X π(x)gdμ =
∫
X π(x)dλ . Thus ρ0(xn) → ρ0(x). Therefore

ρ0 is normal.

(4) For every x ∈ Z ,ρ0(x∗x) =
∫
X π(x∗x)dλ =

∫
X π(x)2dλ = 0, so π(x)2 = 0 and

x = 0, which means ρ0 is faithful.

Define ρ = ρ0 ◦ϕ , now claim that α is c‖ · ‖1,ρ -dominating on (M ,ρ) . For some
constant c > 0, ∀x ∈ Z , α(x) = α ◦π(x) = α(π(x)) � c‖π(x)‖1,λ = c

∫
X |π(x)|dλ =

c
∫
X π(|x|)dλ = cρ(|x|) = c‖x‖1,ρ . So we have α(x) � c‖x‖1,ρ ,∀x∈Z . Also, we have

M
ϕ→ Z

ρ0→ C , where ϕ is the mapping in proposition 2.8 . Then ρ is a state on M ,
and ∀x∈M ,α(x) � α(ϕ(x)) � c‖ϕ(x)‖1,ρ0 = c‖ϕ(x)‖1,ρ = c‖x‖1,ρ . Therefore, there
exists a faithful normal tracial state ρ on M such that α is a c‖ · ‖1,ρ -dominating on
(M ,ρ) .

Since ρ(x) =
∫
X π(x)dλ =

∫
X π(x)hdμ , where h = dλ

dμ ∈ L1(X ,μ), we can choose
simple functions {hi}∞

i=1 such that 0 � h1 � h2 � · · · and hn → h as n → ∞. And also
we can choose 0 � x1 � x2 � · · · in Z so that π(xn) = hn for each n. Therefore,

ρ(x) = ρ0(ϕ(x)) = lim
n→∞

τ(xnϕ(x)) = lim
n→∞

τ(ϕ(xnx)) = lim
n→∞

τ(xnx)) = τ(xg),

where g ∈ L1(Z ,τ). �

EXAMPLE 2.11. Given any finite von Neumann algebra M with a faithful nor-
mal tracial state τ and α ∈ N(M ,τ), by Theorem 2.10, there exists a positive g ∈
L1 (M ,τ) such that α (x) � cτ (|x|g) for some c > 0. If Δ(g)> 0, then α ∈NΔ(M ,τ).
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3. Noncommutative Hardy spaces

Let M be a finite von Neumann algebra with a faithful, normal, tracial state τ.
Given a von Neumann subalgebra D of M , a conditional expectation Φ : M → D is
a positive linear map satisfying Φ(I) = I and Φ(x1yx2) = x1Φ(y)x2 for all x1,x2 ∈ D
and y ∈ M . There exists a unique conditional expectation Φτ : M → D satisfying
τ ◦Φτ(x) = τ(x) for every x ∈ M . Now we recall noncommutative classical Hardy
spaces H∞ in [1].

DEFINITION 3.1. Let A be a weak* closed unital subalgebra of M , and let Φτ
be the unique faithful normal trace preserving conditional expectation from M onto
the diagonal von Neumann algebra D = A ∩A ∗ . Then A is called a finite, maximal
subdiagonal subalgebra of M with respect to Φτ if:

(1) A +A ∗ is weak* dense in M ;

(2) Φτ(xy) = Φτ (x)Φτ (y) for all x,y ∈ A .

Such A will be denoted by H∞ , and A is also called a noncommutative Hardy space.

EXAMPLE 3.2. Let M = L∞(T,μ) , and τ( f ) =
∫

f dμ for all f ∈ L∞(T,μ) . Let
A = H∞(T,μ) , then D = H∞(T,μ)∩H∞(T,μ)∗ = C . Let Φτ be the mapping from
L∞(T,μ) onto C defined by Φτ ( f ) =

∫
f dμ . Then H∞(T,μ) is a finite, maximal

subdiagonal subalgebra of L∞(T,μ) .

EXAMPLE 3.3. Let M = Mn(C) be with the usual trace τ . Let A be the sub-
algebra of lower triangular matrices, now D is the diagonal matrices and Φτ is the
natural projection onto the diagonal matrices. Then A is a finite maximal subdiagonal
subalgebra of Mn(C) .

Let M be a finite von Neumann algebra with a faithful, normal, tracial state τ ,
Φτ be the conditional expectation and α be a determinant, normalized, unitarily invari-
ant, continuous norm on M . Let Lα(M ,τ) be the α closure of M ,i.e., Lα(M ,τ) =
[M ]α . Similarly, Hα(M ,τ) = [H∞(M ,τ)]α , H∞

0 (M ,τ) = ker(Φτ )∩H∞(M ,τ) and
Hα

0 (M ,τ) = ker(Φτ)∩Hα(M ,τ). If we take α = ‖ · ‖p , then Lp(M ,τ) = [M ]p ,
Hp(M ,τ) = [H∞(M ,τ)]p. Recall ρ is a faithful normal tracial state on M satis-
fying all three conditions in Theorem 2.10. We define the noncommutative Hardy

spaces H1(M ,ρ) and H1
0 (M ,ρ) by H1(M ,ρ) = H∞(M ,τ)

‖·‖1,ρ and H1
0 (M ,ρ) =

H∞
0 (M ,τ)

‖·‖1,ρ . In [17], K. S. Satio characterized the noncommutative Hardy spaces
Hp(M ,τ) and Hp

0 (M ,τ) . Recall Hp (M ,τ) = {x ∈ Lp(M ,τ), τ (xy) = 0, for all y ∈
H∞

0

}
for 1 � p < ∞ , also we have Hp

0 (M ,τ) = {x ∈ Lp(M ,τ), τ (xy) = 0, ∀y ∈ H∞} .
In this paper, we get similar result for noncommutative Hardy spaces Hp(M ,ρ) and
Hp

0 (M ,ρ) by using the inner-outer factorization and the properties of outer functions
in noncommutative Hardy spaces from papers [4] and [5]. Let Δ be Fuglede-Kadison
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determinant on M defined by

Δ(x) = exp(τ(log|x|)) = exp(
∫ ∞

0
log(t)dν|x|(t)),

where dν|x|(t) denotes the probability measure on R+ , Also, the definition of this

determinant can be extended to the ∗ -algebra M̃ .

DEFINITION 3.4. Let 1 � p � ∞ . An element x ∈ Hp(M ,τ) is outer if I ∈
[xHp(M ,τ)]p , and x ∈ Hp(M ,τ) is strongly outer if x is outer and Δ(x) > 0. An
element u is inner if u ∈ H∞(M ,τ) and u is unitary.

LEMMA 3.5. (from [5]) If H∞ is a maximal subdiagonal algebra, then x∈Hp(M ,τ)
with Δ(x) > 0 iff x = uy for an inner u and a strongly outer y ∈ Hp(M ,τ) , for
1 � p � ∞ . The factorization is unique up to a unitary in D .

LEMMA 3.6. (from [5]) Let Φτ be the conditional expectation on M . Then x ∈
Hp(M ,τ) is outer if and only if Φτ (x) is outer in Lp(D) and xH∞

0 (M ,τ)
‖·‖p,τ =

Hp
0 (M ,τ) , for 1 � p � ∞ .

LEMMA 3.7. If α ∈ NΔ(M ,τ), then there exits a faithful tracial state ρ and
a strongly outer h in H1(M ,τ) such that g = |h| ,where g as in Theorem 2.10 and
hH1(M ,ρ) = H1(M ,τ) .

Proof. Since α ∈ NΔ(M ,τ), Δ(g) > 0. By Lemma 3.5, g = |h| for a strongly
outer h ∈ H1(M ,τ) . Let ρ (x) = τ (xg) , ∀x ∈ M , by Theorem 2.10, ρ is a faithful
normal tracial state on M . Then we define U : L1(M ,ρ) −→ L1(M ,τ) by Ux = hx ,
which is a surjective isometry:

‖U(x)‖1,τ = ‖xg‖1,τ = τ(|xg|) = τ(|x|g) = ρ(|x|) = ‖x‖1,ρ .

Since g∈ gH1(M ,ρ) and H1(M ,τ)⊆H1(M ,ρ) , gH∞(M ,τ)⊆ gH1(M ,ρ) . Since
g = |h| , g = vh , where v is modular. Thus vhH∞(M ,τ)⊆ gH1(M ,ρ) = vhH1(M ,ρ)
= hH1(M ,ρ). Since h is a strongly outer in H1(M ,τ) ,we have hH1(M ,ρ) =
H1(M ,τ) . �

COROLLARY 3.8. Let Φτ be the conditional expectation on M . If α ∈NΔ(M ,τ),
then there exists a faithful normal tracial state ρ such that:

(1) H1(M ,ρ) = {x ∈ L1(M ,ρ) : ρ(xy) = 0 for all y ∈ H∞
0 } ;

(2) H1
0 (M ,ρ) = {x ∈ L1(M ,ρ) : ρ(xy) = 0 for all y ∈ H∞} ;

(3) H1
0 (M ,ρ) = {x ∈ H1(M ,ρ) : Φτ (xh) = 0} .
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Proof. Since α ∈ NΔ(M ,τ), there exists a positive g ∈ L1 (M ,τ) and Δ(g) > 0
such that α (x) � cτ (|x|g) for some c > 0. We define ρ (x) = τ (xg) ,∀x ∈ M , ρ is
a faithful normal tracial state on M . By Lemma 3.7 and H1 (M ,τ) =

{
x ∈ L1(M ,τ),

τ (xy) = 0 for all y ∈ H∞
0

}
, we have (1). For (2), We know H∞

0 (M ,τ)
‖·‖1,ρ = H1

0 (M ,ρ) ,

and hH1
0 (M ,ρ) = hH∞

0 (M ,τ)
‖·‖1,ρ = hH∞

0 (M ,τ)
‖·‖1,τ = H1

0 (M ,τ) since h is outer
in H1(M ,τ) . The last statement is clearly by [17]. �

PROPOSITION 3.9. If α ∈ NΔ(M ,τ), then there exists a faithful normal tracial
state ρ such that

Hα(M ,ρ) = {x ∈ Lα (M ,ρ) : ρ(xy) = 0 for all y ∈ H1
0 (M ,ρ)∩ (Lα(M ,ρ))#},

where (Lα(M ,ρ))# is the dual space of Lα(M ,ρ).

Proof. Since α ∈ NΔ(M ,τ), then there exists a faithful normal tracial state ρ
on M such that ρ (x) = τ (xg) for some positive g ∈ L1 (Z ,τ) and the determinant
of g is positive, which means α ∈ N1(M ,ρ) . Let J = {x ∈ Lα(M ,ρ) : ρ(xy) = 0
for all y ∈ H1

0 (M ,ρ)∩ (Lα(M ,ρ))#} . Suppose x ∈ H∞(M ,ρ) . If y ∈ H1
0 (M ,ρ)∩

(Lα(M ,ρ))# ⊆ H1
0 (M ,ρ) , then it follows from Corollary 3.8 that ρ(xy) = 0, for all

x ∈ J , and so H∞(M ,ρ) ⊆ J . We claim that J is α -closed in Lα (M ,ρ) . In
fact, suppose {xn} is a sequence in J and x ∈ Lα (M ,ρ) such that α(xn − x) → 0.
If y ∈ H1

0 (M ,ρ)∩(Lα (M ,ρ))# , then by the generalized Holder’s inequality in[7], we
have

|ρ(xy)−ρ(xny)| = |ρ((x− xn)y)| � α(x− xn)α ′ → 0.

Which follows that ρ(xy) = lim
n→∞

ρ(xny) = 0 for all y ∈ H1
0 (M ,ρ)∩ (Lα(M ,ρ))# . By

the definition of J , we know x ∈ J . Hence J is closed in Lα(M ,ρ) . Therefore,
Hα(M ,ρ) = [H∞(M ,ρ)]α ⊆ J .
Next, we show that Hα(M ,ρ) = J . Assume, via contradiction, that Hα(M ,ρ) �
J ⊆ Lα (M ,ρ) . By the Hahn-Banach theorem, there is a linear functional φ ∈
(Lα(M ,ρ))# and x ∈ J such that:

(a) φ(x) 
= 0;

(b) φ(y) = 0 for all y ∈ Hα(M ,ρ) .

In the beginning of this proof, we know α ∈ N1(M ,ρ) , which means α is normalized,
unitarily invariant ‖ · ‖1 -dominating, continuous norm on (M ,ρ) , it follows from [7]
that there exists a ξ ∈ (Lα (M ,ρ))# such that

(c) φ(z) = ρ(zξ ) for all z ∈ Lα (M ,ρ) .

Hence from (b) and (c) we can conclude that

(d) ρ(yξ ) = φ(y) = 0 for every y ∈ H∞(M ,ρ) ⊆ Hα(M ,ρ) ⊆ Lα(M ,ρ) .
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Since φ ∈ (Lα(M ,ρ))# ⊆ L1(M ,ρ) , so ξ ∈H1
0 (M ,ρ) , which means ξ ∈H1

0 (M ,ρ)∩
(Lα(M ,ρ))# . Combining with the fact that x ∈ J = {x ∈ Lα(M ,ρ) : ρ(xy) = 0,
∀y ∈ H1

0 (M ,ρ)∩ (Lα(M ,ρ))#} , we obtain that ρ(xξ ) = 0. Note, again, that x ∈
J ⊆ Lα (M ,ρ) . From (a) and (c), it follows that ρ(xξ ) = φ(x) 
= 0. This is a contra-
diction. Therefore
Hα(M ,ρ) = {x ∈ Lα(M ,ρ) : ρ(xy = 0) for all y ∈ H1

0 (M ,ρ)∩ (Lα(M ,ρ))#} . �

LEMMA 3.10. (from [2]) The conditional expectation Φτ is multiplicative on Hardy
spaces. More precisely, Φτ (xy) = Φτ(x)Φτ (y) for x ∈ Hp(M ,τ) , y ∈ Hq(M ,τ) and
xy ∈ Hr(M ,τ) with 0 < p,q,r < ∞ and 1

p + 1
q = 1

r .

THEOREM 3.11. If α ∈ NΔ(M ,τ), then there exists a faithful normal tracial
state ρ such that Hα(M ,ρ) = H1(M ,ρ)∩Lα(M ,ρ) .

Proof. Since α ∈ NΔ(M ,τ), there exists a positive g ∈ L1 (M ,τ) and Δ(g) >
0 such that α (x) � cτ (|x| ·g) , for some c > 0. We define a faithful normal tracial
state ρ (x) = τ (xg) , ∀x ∈ M . Since α (x) � cτ (|x| ·g) = cρ (|x|) = c‖x‖1,ρ , α is
‖·‖1,ρ -dominating, so α -convergence implies ‖·‖1,ρ -convergence, thus Hα(M ,ρ) =

H∞(M ,ρ)
α ⊆ H∞(M ,ρ)

‖·‖1,ρ = H1(M ,ρ) . Also, Hα(M ,ρ) = H∞(M ,ρ)
α ⊆

Lα(M ,ρ) . Therefore, Hα(M ,ρ) ⊆ H1(M ,ρ)∩Lα(M ,ρ) .
To prove H1(M,ρ)∩Lα(M ,ρ)⊆Hα(M ,ρ) . Suppose x∈H1(M,ρ)∩Lα(M,ρ) ,

then x∈ Lα(M ,ρ) . Assume that y∈H1
0 (M ,ρ)∩(Lα (M ,ρ))# . So Φτ (hy) = 0. Note

that hx ∈ H1(M ,τ) , hy ∈ H1
0 (M ,τ) and hxhy ∈ H1(M ,τ)H1

0 (M ,τ) ⊆ H
1
2 (M ,τ) .

From Theorem 2.1 in [2], and Lemma 3.10 we know that Φτ (hxhy) ∈ L
1
2 (D ,τ) and

Φτ(hxhy) = Φτ (hx)Φτ(hy) = 0. Moreover, x ∈ Lα(M ,ρ) and y ∈ (Lα (M ,ρ))# ,
from [7], xy ∈ Lα(M ,ρ) ⊆ L1(M ,ρ) . So hxy ∈ L1(M ,τ) , and Φτ(hxy) is also in
L1(M ,τ) . Thus ρ(xy) = τ(hxy) = τ(Φτ (hxhy)) = τ(0) = 0.

Now we check Φτ(hxy) = 0. Since h is strongly outer in H1(M ,ρ) , there is a
sequence {an} in H∞ such that anh→ 1 in ‖·‖1 norm. Therefore, ‖hxyhan−hxy‖ 1

2
=

‖hxy(han − 1)‖ 1
2

� ‖hxy‖1‖han − 1‖1 → 0 as n → ∞ . And by Theorem 2.1 in [2],

Φτ(hxyhan) → Φτ(hxy) . Also, we have Φτ (hxyhan) = Φτ (hx)Φτ(hy)Φτ (an) = 0, so
Φτ(hxy) = 0. By the definition of J in Proposition 3.9, we conclude that x ∈ J .
Therefore H1(M ,ρ)∩Lα(M ,ρ) ⊆ J = Hα(M ,ρ) . �

4. Beurling’s invariant subspace theorem

In this section, we extend the Chen-Hadwin-Shen theorem for continuous normal-
ized unitarily invariant norms on (M ,τ).

First, we will prove the factorization theorem, in order to do this, we need the
following lemma.

LEMMA 4.1. (from [10]) Let x ∈ Lp(M ,τ) , p > 0 , then we have:

(1) Δ(x) = Δ(x∗) = Δ(|x|);
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(2) Δ(xy) = Δ(x)Δ(y) = Δ(yx) , for any y ∈ Ls(M ,τ) , s > 0 .

THEOREM 4.2. Suppose α ∈ NΔ (M ,τ) , there exists a faithful normal tracial
state ρ on M such that ρ (x) = τ (xg) , for some positive g ∈ L1 (Z ,τ) and the deter-
minant of g is positive. If x ∈ M and x−1 ∈ Lα (M ,ρ) , then there are unitary opera-
tors u1,u2 ∈M and s1,s2 ∈H∞ such that x = u1s1 = s2u2 and s−1

1 ,s−1
2 ∈Hα(M ,ρ) .

Proof. Since α ∈ NΔ (M ,τ) , the first statement is clear from Theorem 2.10. Sup-
pose x ∈ M with x−1 ∈ Lα (M ,ρ). Assume that x = v |x| is the polar decomposition
of x in M , where v is a unitary in M and |x| ∈ M . Since log(|x|) � |x|, log(|h|)−
log(|x|) = log(|h||x|−1) � |h||x| and − log(|x|) � |h||x| − log(|h|), |log(|x|)| � |x|+
(|h||x|− log(|h|)) , so Δ(|x|) = eτ(log|x|) > 0 and |x| ∈ L1(M )+ . By Corollary 4.17 in
[5], there exists a strongly outer s∈H1(M ,τ) and s = u1 |s| is the polar decomposition
of s such that |x|= |s| . Since |x| ∈M , |s| ∈ M , therefore, s ∈M and s ∈ H1(M ,τ)
implies s ∈ H∞(M ,τ). Also, we have |x| = u∗1s, so x = vu∗1s = us, where u = vu∗1.

Now we check s−1 ∈ Hα(M ,ρ). First, x−1 ∈ Lα(M ,ρ)⊆ L1(M ,ρ), so hx−1 ∈
L1(M ,τ). Since x−1 = |x|−1 v∗ ∈ Lα (M ,ρ), |x|−1 ∈ Lα (M ,ρ) ⊆ L1(M ,ρ) and
|h| |x|−1 ∈ L1(M ,τ) .
Δ(|h| |x|−1) = Δ(|h|)Δ(|x|−1) > 0 by Lemma 4.1. Then there exists a strongly outer
f ∈ H1(M ,τ) such that |h| |x|−1 = | f | . Since H1(M ,τ) = hH1(M ,ρ), there exists
f1 ∈ H1(M ,ρ) such that f = h f1. Since Δ( f s) = Δ( f )Δ(s) > 0, by Lemma 3.5, f s
is outer. And | f | |s| = |h| |x|−1 |s| , so |h| = | f | |s| . Therefore, |h| = u∗2 f u∗1s, i.e., h =
u∗3u

∗
2 f u∗1s , h f1 = f = u2u3hs−1u1 , so s−1 = h−1u∗3u

∗
2h f1u∗1 = u∗3u

∗
2 f1u∗1 ∈ H1(M ,ρ) .

Also, we know s−1 ∈ Lα(M ,ρ). Therefore, by Theorem 3.11, s−1 ∈ Lα (M ,ρ)∩
H1(M ,ρ) = Hα(M ,ρ). �

The following density theorem also plays an important role in the proof of our
main result of the paper.

THEOREM 4.3. Let α ∈ NΔ (M ,τ) , then there exists a faithful normal tracial
state ρ on M such that ρ (x) = τ (xg) for some positive g ∈ L1 (Z ,τ) and the de-
terminant of g is positive. Also, if W is a closed subspace of Lα (M ,ρ) and N is a
weak* closed linear subspace of M such that W H∞ ⊂ W and N H∞ ⊂ N , then:

(1) N = [N ]α ∩M ;

(2) W ∩M is weak* closed in M ;

(3) W = [W ∩M ]α ;

(4) if S is a subspace of M such that S H∞ ⊂ S , then [S ]α = [S
w∗

]α , where
S

w∗
is the weak*-closure of S in M .

Proof. Since α ∈ NΔ (M ,τ) , clearly, there exists a faithful normal tracial state
ρ on M by Theorem 2.10. For (1), it is clear that N ⊆ [N ]α ∩M . Assume, via
contradiction, that N � [N ]α ∩M . Note that N is a weak* closed linear subspace
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of M and L1(M ,ρ) is the predual space of (M ,ρ) . It follows from the Hahn-Banach
theorem that there exists a ξ ∈ L1(M ,ρ) and an x ∈ [N ]α ∩M such that
(a) ρ(ξ x) 
= 0 and (b) ρ(ξ y) = 0 for all y ∈ N .
We claim that there exists a z ∈ M such that
(a ′ ) ρ(zx) 
= 0 and (b ′ ) ρ(zy) = 0 for all y∈N . Actually assume that ξ = |ξ ∗|v is the
polar decomposition of ξ ∈ L1(M ,ρ) , where v is a unitary element in M and |ξ ∗| is
in L1(M ,ρ) is positive. Let f be a function on [0,∞) defined by the formula f (t) = 1
for 0 � t � 1 and f (t) = 1/t for t > 1. We define k = f (|ξ ∗|) by the functional
calculus. Then by the construction of f , we know that k ∈ M and k−1 = f−1(|ξ ∗|) ∈
L1(M ,ρ) . It follows from Theorem 4.2 that there exist a unitary operator u ∈ M and
s ∈ H∞ such that k = us and s−1 ∈ H1(M ,ρ) . Therefore, we can further assume that
{tn}∞

n=1 is a sequence of elements in H∞ such that ‖s−1− tn‖1,ρ . Observe that:

(i) since s, tn are in H∞ , for each y ∈ N we have that ytns ∈ N H∞ ⊆ N and
ρ(tnsξ y) = ρ(ξ ytns) = 0;

(ii) we have sξ = (u ∗ u)s(|ξ ∗|v) = u ∗ (k|ξ ∗|)v ∈ M , by the definition of k ;

(iii) from (a) and (i), we have 0 
= ρ(ξ x) = ρ(s−1sξ x) = lim
n→∞

ρ(tnsξ x) .

Combining (i), (ii) and (iii), we are able to find an N ∈ Z such that z = tNsξ ∈ M
satisfying
(a ′ ) ρ(zx) 
= 0 and (b ′ ) ρ(zy) = 0 for all y ∈ N .
Recall that x ∈ [N ]α . Then there is a sequence {xn} ⊆ N such that α(x− xn) → 0.
We have |ρ(zxn)−ρ(zx)|= |ρ(x− xn)| � ‖x− xn‖1,ρ‖z‖→ 0.
Combining with (b ′ ) we conclude that ρ(zx) = lim

n→∞
ρ(zxn) = 0. This contradicts with

the result (a ′ ). Therefore, N = [N ]α ∩M .
For (2), let W ∩M

w∗
be the weak*-closure of W ∩M in M . In order to show

that W ∩M = W ∩M
w∗

, it suffices to show that W ∩M
w∗ ⊆ W . Assume, to the

contrary, that W ∩M
w∗

� W . Thus there exists an element x in W ∩M
w∗ ⊂ M ⊆

Lα(M ,ρ) , but x /∈ W . Since W is a closed subspace of Lα (M ,ρ) , by the Hahn-
Banach theorem, there exists a ξ ∈ L1(M ,ρ) such that ρ(ξ x) 
= 0 and ρ(ξ y) = 0, for
all y∈W . Since ξ ∈ L1(M ,ρ) , the linear mapping ρξ : M → C , defined by ρξ (a) =
ρ(ξa) , for all a ∈ M , is weak*-continuous. Note that x ∈ W ∩M

w∗
and ρ(ξ y) = 0

for all y ∈ W . We know that ρ(ξ x) = 0, which contradicts with the assumption that
ρ(ξ x) 
= 0. Hence W ∩M

w∗ ⊆ W , so W ∩M = W ∩M
w∗

.
For (3), since W is α -closed, it is easy to see [W ∩M ]α ⊆ W . Now we assume

[W ∩M ]α � M ⊆ Lα(M ,ρ) . By the Hahn-Banach theorem, there exists an x ∈ W
and ξ ∈ L1(M ,ρ) such that ρ(ξ x) 
= 0 and ρ(ξ y) = 0, for all y ∈ [W ∩M ]α . Let
x = v|x| be the polar decomposition of x in Lα(M ,ρ) , where v is a unitary element in
M . Let f be a function on [0,∞) defined by the formula f (t) = 1, for 0 � t � 1 and
f (t) = 1/t , for t > 1. We define k = f (|x|) by the functional calculus. Then by the
construction of f , we know that k ∈ M and k−1 = f−1(|x|) ∈ Lα(M ,ρ) . It follows
from Theorem 4.2 that there exist a unitary operator u ∈ M and s ∈ H∞ such that
k = su and s−1 ∈Hα(M ,ρ) . A little computation shows that |x|k ∈M which implies
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that xs = xsuu∗ = xku∗ = v(|x|k)u∗ ∈ M . Since s ∈ H∞ , we know xs ∈ W H∞ ⊆ W
and thus xs ∈ W ∩M . Furthermore, note that (W ∩M )H∞ ⊆ W ∩M . Thus, if
t ∈ H∞(M ,ρ) , we see xst ∈ W ∩M and ρ(ξ xst) = 0. Since H∞(M ,ρ) is dense
in Hα(M ,ρ) and ξ ∈ L1(M ,ρ) , it follows that ρ(ξ xst) = 0, for all t ∈ Hα(M ,ρ) .
Since s−1 ∈ Hα(M ,ρ) , we see that ρ(ξ x) = ρ(ξ xss−1) = 0. This contradicts with
the assumption that ρ(ξ x) 
= 0 . Therefore W = [W ∩M ]α .

For (4), assume that S is a subspace of M such that S H∞(M ,ρ) ⊂ S and
S

w∗
is weak*-closure of S in M . Then [S ]αH∞(M ,ρ) ⊆ [S ]α . Note that S ⊆

[S ]α ∩M . From (2), we know that [S ]α ∩M is weak*-closed. Therefore, S
w∗ ⊆

[S ]α ∩M . Hence [S
w∗

]α ⊆ [S ]α and [S ]α = [S
w∗

]α . �
Before we obtain our main result in the paper, we recall the definitions of internal

column sum of a family of subspaces, and the lemma in [4].

DEFINITION 4.4. Let X be a closed subspace of Lα (M ,τ) with α ∈ NΔ (M ,τ) .
Then X is called an internal column sum of a family of closed subspaces {Xλ}λ∈Λ of
Lα(M ,τ) , denoted by X =

⊕col
λ∈Λ Xλ if:

(1) X∗
μXλ = {0} , for all distinct λ ,μ ∈ Λ , and;

(2) X = [span{Xλ : λ ∈ Λ}]α .

DEFINITION 4.5. Let X be a weak*-closed subspace of M and α ∈ NΔ (M ,τ) .
Then X is called an internal column sum of a family of weak*-closed subspaces {Xλ}λ∈Λ
of Lα(M ,τ) , denoted by X =

⊕col
λ∈Λ Xλ if:

(1) X∗
μXλ = {0} for all distinct λ ,μ ∈ Λ , and;

(2) X = span{Xλ : λ ∈ Λ}w∗
.

LEMMA 4.6. (from [4]) Let M be a finite von Neumann algebra with a faithful,
normal, tracial state τ and α be a normalized, unitarily invariant ‖ · ‖1,τ -dominating
continuous norm on M . Let H∞ be a finite subdiagonal subalgebra of M and D =
H∞∩(H∞)∗ . Assume that W ⊆M is a weak*-closed subspace such that W H∞ ⊆W .
Then there exists a weak*-closed subspace Y of M and a family {uλ}λ∈Λ of partial
isometries in M such that:

(1) u∗λ Y = 0 , for all λ ∈ Λ;

(2) u∗λ uλ ∈ D and u∗λ uμ = 0 , for all λ ,μ ∈ Λ with λ 
= μ ;

(3) Y = H∞
0 Y

w∗
;

(4) W = Y ⊕col (⊕col
λ∈Λuλ H∞) .

Now we are ready to prove our main result of the paper, an extension of the Chen-
Hadwin-Shen theorem for noncommutative Hardy spaces associated with finite von
Neumann algebras.
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THEOREM 4.7. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ and α be a determinant, normalized, unitarily invariant, continuous
norm on M . Then there exists a faithful normal tracial state ρ on M such that α ∈
N1 (M ,ρ) . Let H∞ be a finite subdiagonal subalgebra of M and D = H∞∩(H∞)∗ . If
W is a closed subspace of Lα (M ,τ) such that W H∞ ⊆ W , then there exists a closed
subspace Y of Lα(M ,τ) and a family {uλ}λ∈Λ of partial isometries in M such that:

(1) u∗λ Y = 0 , for all λ ∈ Λ;

(2) u∗λ uλ ∈ D and u∗λ uμ = 0 , for all λ ,μ ∈ Λ with λ 
= μ ;

(3) Y = [H∞
0 Y ]α ;

(4) W = Y ⊕col (⊕col
λ∈Λuλ Hα) .

Proof. Suppose W is a closed subspace of Lα(M ,τ) such that W H∞ ⊂ W .
Then it follows from part (2) of the Theorem 4.3 that W ∩M is weak* closed in
(M ,τ)= (M ,ρ) , we also notice L∞(M ,τ)= M = L∞(M ,ρ),Lα (M ,τ)= Lα (M ,ρ)
and Hα(M ,τ) = Hα(M ,ρ) . It follows from the Lemma 4.6 that

W ∩M = Y1

col⊕
(

col⊕
i∈I

uiH
∞),

where Y1 is a closed subspace of L∞(M ,ρ) such that Y1 = Y1H∞
0

w∗
, and where ui

are partial isometries in W ∩M with u∗j ui = 0 if i 
= j and with u∗i ui ∈ D . Moreover,
for each i,u∗i Y1 = {0} , left multiplication by the uiu∗i are contractive projections from
W ∩M onto the summands uiH∞ and left multiplication by I−∑i uiu∗i is a contractive
projection from W ∩M onto Y1 .

Let Y = [Y1]α . It is not hard to verify that for each i,u∗i M = {0} . We also claim
that [uiH∞]α = uiHα . In fact it is obvious that [uiH∞]α ⊇ uiHα . We will need only to
show that [uiH∞]α ⊆ uiHα . Suppose x ∈ [uiH∞]α , there is a net {xn}∞

n=1 ⊆ H∞ such
that α(uixn−x)→ 0. By the choice of ui, we know that uiu∈D ⊆H∞ , so uiuxn ∈H∞ ,
for each n � 1. Combining with the fact that α(u∗i uixn −u∗i x) � α(uixn − x) → 0, we
obtain that u∗i x ∈ Hα . Again from the choice of ui , we know that uiu∗i uixn = uixn , for
each n � 1. This implies that x = ui(u∗i x) ∈ uiHα . Thus we conclude that [uiH∞]α ⊆
uiHα , so [uiH∞]α = uiHα . Now from parts (3) and (4) of the Theorem 4.3 and from
the definition of internal column sum, it follows that

W = [W ∩M ]α = [span{Y1,uiH∞ : i ∈ I }w∗
]α = [span{Y1,uiH

∞ : i ∈ I }]α .

= [span{Y ,uiH
α : i ∈ I }]α = Y

col⊕
(

col⊕
i∈I

uiH
α).

Next, we will verify that Y = [Y H∞
0 ]α . Recall that Y = [Y1]α . It follows from

part (1) of the Theorem 4.3, we have

[Y1H
∞
0 ]α ∩M = Y1H∞

0
w∗

= Y1.



NEW CHEN-BEURLING THEOREM 791

Hence from part (3) of the Theorem 4.3 we have that

Y ⊇ [Y H∞
0 ]α ⊇ [Y1H

∞
0 ]α = [[Y1H

∞
0 ]α ∩M ]α = [Y1]α = Y .

Thus Y = [Y H∞
0 ]α . Moreover, it is not difficult to verify that for each i , left multipli-

cation by the uiu∗i are contractive projections from K onto the summands uiHα and
left multiplication by I−∑i uiu∗i is a contractive projection from W onto Y . Now the
proof is completed. �

If we consider α as some specific norms, then we have some corollaries. If we
take α be a unitarily invariant, ‖ · ‖1,τ -dominating, continuous norm, then we have
Chen-Hadwin-Shen’s result in [7].

COROLLARY 4.8. Let M be a finite von Neumann algebra with a faithful, nor-
mal, tracial state τ and α be a normalized, unitarily invariant, ‖‖1,τ -dominating,
continuous norm on M . Let H∞ be a finite subdiagonal subalgebra of M . Let D =
H∞∩(H∞)∗ . Assume that W is a closed subspace of Lα(M ,τ) such that H∞W ⊆W .
Then there exist a closed subspace Y of Lα(M ,τ) and a family {uλ}λ∈Λ of partial
isometries in W ∩M such that:

(1) u∗λ Y = 0 , for all λ ∈ Λ;

(2) u∗λ uλ ∈ D and u∗λ uμ = 0 , for all λ ,μ ∈ Λ with λ 
= μ ;

(3) Y = [H∞
0 Y ]α ;

(4) W = Y ⊕col (⊕col
λ∈ΛHαuλ ) .

If we take α = ‖·‖p , then we have D. Blecher and L. E. Labuschagne’s result in
[4].

COROLLARY 4.9. Let M be a finite von Neumann algebra with a faithful, nor-
mal, tracial state τ and H∞ be a finite subdiagonal subalgebra of M . Let D =
H∞ ∩ (H∞)∗ . Assume that W is a closed subspace of Lp(M ,τ),1 � p � ∞ such that
H∞W ⊆W . Then there exist a closed subspace Y of Lp(M ,τ) and a family {uλ}λ∈Λ
of partial isometries in W ∩M such that:

(1) u∗λ Y = 0 , for all λ ∈ Λ;

(2) u∗λ uμ ∈ D and u∗λ uμ = 0 , for all λ ,μ ∈ Λ with λ 
= μ ;

(3) Y = [H∞
0 Y ]p ;

(4) W = Y ⊕col (⊕col
λ∈ΛHpuλ ) .
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5. Generalized Beurling theorem for special von Neumann algebras

In Theorem 4.7, if let M be classical Hardy space on unit circle T with Haar
measure, i.e., M = L∞(T,μ), H∞ = H∞(T,μ), then D =H∞ ∩ (H∞)∗ = C and the
center Z of M = L∞(T,μ) is itself. So Z � D = C. However, for a finite von Neu-
mann algebra M with a faithful normal tracial state τ, let H∞ be a finite subdiagonal
subalgebra of M , D =H∞ ∩ (H∞)∗, if the center Z ⊆ D , then generalized Beurling
theorem holds for normalized, unitarily invariant, continuous norms on (M ,τ).

THEOREM 5.1. Let M be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let H∞ be a finite subdiagonal subalgebra of M , D = H∞ ∩ (H∞)∗ ,
and the center Z ⊆ D . Let α be a normalized, unitarily invariant, continuous norm
on (M ,τ) . If W is a closed subspace of Lα (M ,τ) such that W H∞ ⊆ W , then there
exist a closed subspace Y of Lα (M ,τ) and a family {uλ}λ∈Λ of partial isometries in
M such that:

(1) u∗λ Y = 0 , for all λ ∈ Λ;

(2) u∗λ uλ ∈ D and u∗λ uμ = 0 , for all λ ,μ ∈ Λ with λ 
= μ ;

(3) Y = [H∞
0 Y ]α ;

(4) W = Y ⊕col (⊕col
λ∈Λuλ Hα) .

Proof. By Theorem 2.10, there exist a faithful normal tracial state ρ on M and
a c > 0 such that α is a continuous normalized unitarily invariant c‖ ·‖1,ρ -dominating
norm on (M ,ρ) . First, recall the definition of conditional expectationΦD ,τ . We know
that ΦD ,τ is multiplicative on H∞ . In general, ΦD ,ρ won’t be multiplicative on H∞ ,
however, the condition Z ⊂ D makes sure ΦD ,ρ is multiplicative on H∞ , because we
can choose 0 � x1 � x2 � · · · in Z such that, for every x ∈ M ,

ρ (x) = lim
n→∞

τ (xnx) = lim
n→∞

τ
(
ΦD ,τ (xnx)

)
.

Since Z ⊂ D , ΦD ,τ (xnx) = xnΦD ,τ (x) . Thus

ρ (x) = lim
n→∞

τ
(
xnΦD ,τ (x)

)
= ρ

(
ΦD ,τ (x)

)
.

It follows that ΦD ,τ = ΦD ,ρ . This now reduces to the c‖·‖1 -dominating version of the
Chen-Hadwin-Shen theorem in [7]. �
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