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ON REAL OR INTEGRAL SKEW LAPLACIAN SPECTRUM OF DIGRAPHS

S. PIRZADA, HILAL A. GANIE AND BILAL A. CHAT

(Communicated by R. A. Brualdi)

Abstract. For a simple connected graph G with n vertices and m edges, let
−→
G be a digraph

obtained by giving an arbitrary direction to the edges of G . In this paper, we consider the skew
Laplacian matrix of a digraph

−→
G and we obtain the skew Laplacian spectrum of the orientations

of a complete bipartite graph, complete split graph and the join of two graphs. We prove that
deleting an edge of a Hamiltonian path in a transitive tournament does not effect the skew Lapla-
cian spectrum. We show the existence of various families of skew Laplacian integral digraphs.

1. Introduction

Consider a simple graph G with n vertices and m edges and having the vertex set
V = {v1,v2, . . . ,vn} . Let

−→
G be a digraph obtained by assigning arbitrarily a direction

to each of the edges of G . The digraph
−→
G is called an orientation of G or oriented

graph corresponding to G . Also, the graph G is called the underlying graph of
−→
G .

Let d+
i = d+(vi), d−i = d−(vi) and di = d+

i + d−i , i = 1,2, . . . ,n , be respectively the

out-degree, in-degree and degree of the vertices of
−→
G . The out-adjacency matrix of the

digraph
−→
G is the n×n matrix A+ = A+(

−→
G ) = (ai j) , where ai j = 1, if (vi,v j) is an arc

and ai j = 0, otherwise. The in-adjacency matrix of the digraph
−→
G is the n×n matrix

A− = A−(
−→
G ) = (ai j) , where ai j = 1, if (v j,vi) is an arc and ai j = 0, otherwise. We

note that A− = (A+)t . The skew adjacency matrix of a digraph
−→
G is the n×n matrix

S = S(
−→
G ) = (si j) , where

si j =

⎧⎨⎩
1, if there is an arc from vi to v j,
−1, if there is an arc from v j to vi,
0, otherwise.

Clearly S(
−→
G ) is a skew symmetric matrix, so all its eigenvalues are zero or purely

imaginary. For recent developments on the theory of skew spectrum, we refer to [1, 14].
Let D+ = D+(

−→
G ) = diag(d+

1 ,d+
2 , . . . ,d+

n ) , D−= D−(
−→
G ) = diag(d−1 ,d−2 , . . . ,d−n )

and D(
−→
G ) = diag(d1,d2, . . . ,dn) be respectively, the diagonal matrices of vertex out-

degrees, vertex in-degrees and vertex degrees of
−→
G . Further, let A+ and A− be re-

spectively, the out-adjacency and in-adjacency matrices of a digraph
−→
G . If S(

−→
G ) is
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the skew adjacency matrix of
−→
G and A(G) is the adjacency matrix of the underlying

graph G of the digraph
−→
G , then A(G) = A+ + A− and S(

−→
G ) = A+− A− . Analo-

gous to the definition of Laplacian matrix of a graph, Cai et al. [4] called the matrix
S̃L(
−→
G ) = D̃(

−→
G )− S(

−→
G ) , where D̃(

−→
G ) = D+(

−→
G )−D−(

−→
G ) , as the skew Laplacian

matrix of the digraph
−→
G . Clearly the matrix S̃L(

−→
G ) is not symmetric and so its eigen-

values need not be real. The characteristic polynomial

Psl(
−→
G ,x) = xn +a1x

n−1 +a2x
n−2 + · · ·+an

of the matrix S̃L(
−→
G ) is called the skew Laplacian characteristic polynomial of the

digraph
−→
G . The zeros of the polynomial Psl(

−→
G ,x) , that is, the eigenvalues of the

matrix S̃L(
−→
G ) are the skew Laplacian eigenvalues of the digraph

−→
G and are denoted

by ν1,ν2, . . . ,νn . The sign of the even cycle Ck = u1u2 . . .uku1 , denoted by sgn(Ck) ,
is defined as sgn(Ck) = s12s23 . . .sk−1ksk1 , where si j is the (i, j)th entry of the ma-

trix S̃L . An even oriented cycle Ck is called evenly-oriented (oddly-oriented) if its
sign is positive (negative). If every even cycle in

−→
G is evenly-oriented, then

−→
G is

called evenly-oriented. An even oriented cycle C2k is said to be uniformly oriented if
sgn(C2k) = (−1)k . The following observations are immediate from the definition of
S̃L .

THEOREM 1.1. [4]

(i) If ν1,ν2, . . . ,νn are the eigenvalues of S̃L(
−→
G ) , then

n
∑
i=1

νi = 0 .

(ii) 0 is an eigenvalue of S̃L(
−→
G ) with multiplicity at least p , where p is the num-

ber of components of
−→
G with all ones vector (1,1, . . . ,1) as the corresponding

eigenvector.

(iii) If Psl(
−→
G ,x) = xn +

n
∑
i=1

aixn−i is the skew Laplacian characteristic polynomial of

digraph
−→
G , then a1 = 0, a2 = m+ ∑

i< j
(d+

i −d−i )(d+
j −d−j ), an = 0.

As usual, we denote the complete graph on n vertices by Kn , the complete bi-
partite graph on s + t vertices by Ks,t and the cycle on n vertices by Cn . For other
undefined notations and terminology from graphs and spectral graph theory, the read-
ers are referred to [3, 17]. Evidently much research has been done on spectral theory
of skew matrices of oriented graphs, see [11, 14, 18, 19, 21], but the research on the
skew Laplacian spectrum of a digraph

−→
G has recently started and it will be of great

interest to develop the theory in this direction. Although the skew Laplacian matrix
of a digraph was so defined that it uses the structure of the digraph and at the same
time enjoys the same characteristics as possessed by the Laplacian matrix of a graph, it
seems the definition of S̃L uses the structure of the digraph, but not all the properties
of L(G) are possessed by S̃L . It is well-known that 0 is an eigenvalue of L(G) with
multiplicity equal to the number of components of G . In fact, the eigenvalue 0 in the
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spectrum of L(G) decides the connectedness of the graph G . This need not be true for
the matrix S̃L , as is clear from the following observation, the proof of which follows
from Theorem 2.1 in [20].

THEOREM 1.2. Let G be a bipartite graph and let
−→
G be the corresponding di-

graph of G. If
−→
G is an Eulerian digraph such that each even cycle of G is oriented

uniformly in
−→
G , then the multiplicity of 0 in the spectrum of S̃L is same as the multi-

plicity of 0 in the spectrum of A(G) .

Let Kr,s be the complete bipartite graph with both r and s even. Orient the edges

of Kr,s in such a way that in the resulting digraph
−→
G all the even cycles are oriented

uniformly. Since 0 is an adjacency eigenvalue of Kr,s of multiplicity r + s− 2, from

Theorem 1.2, it follows that 0 is the skew Laplacian eigenvalue of
−→
G of multiplicity

r+ s−2. For some recent papers on skew Laplacian spectrum, we refer to [2, 5, 9, 10].
A graph is said to be adjacency (Laplacian, signless Laplacian) integral if all of

its adjacency (Laplacian, signless Laplacian) eigenvalues are integers. Since there is
no general characterization (besides the definition) of adjacency (Laplacian, signless
Laplacian) integral graphs, the problem of finding (or characterizing) adjacency (Lapla-
cian, signless Laplacian) integral graphs has to be treated in some special classes of
graphs. Several papers can be found in the literature on the adjacency (Laplacian, sign-
less Laplacian) integral graphs. For some recent papers, we refer to [6, 7, 8, 12, 13, 15,
16] and the references therein.

As is clear from the definition, the skew Laplacian matrix of a digraph
−→
G is not

symmetric and so its eigenvalues need not be real. The following problems will be of
interest in the theory of matrices which are not symmetric and have real entries.

PROBLEM 1.3. Which digraphs
−→
G have all skew Laplacian eigenvalues real.

PROBLEM 1.4. Which digraphs
−→
G have all skew Laplacian eigenvalues integers.

Although, like the case in graphs both these problems seem to be difficult for all
digraphs in general. However, in case we restrict to a special class of digraphs, we may
get an insight of the possible solution of these problems. In this paper, we will focus on
the above mentioned problems and show the existence of various families of digraphs
having real or integral skew Laplacian spectrum.

We call a digraph
−→
G real digraph if all its skew Laplacian eigenvalues are real and

a partial real digraph if some of its skew Laplacian eigenvalues are real. A real digraph−→
G is said to be skew Laplacian integral digraph if all its skew Laplacian eigenvalues
are integers.

The rest of the paper is organized as follows. In Section 2, we obtain the skew
Laplacian spectrum of orientations of complete bipartite graphs. We also show the ex-
istence of some families of skew Laplacian integral digraphs. In Section 3, we obtain
the skew Laplacian spectrum of transitive tournaments and show that deleting a partic-
ular edge does not change the skew Laplacian spectrum. In Section 4, we obtain the
skew characteristic polynomial of the orientations of join of two graphs in terms of the
skew characteristic polynomial of the parent digraphs. Also, we obtain the skew Lapla-
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cian spectrum of orientations of complete split graphs. We also show the existence of
some families of skew Laplacian integral digraphs.

2. Skew Laplacian spectrum of oriented complete bipartite graphs

In this section, we obtain the skew Laplacian spectrum of the orientations of a
complete bipartite graph. We show the existence of various families of skew Laplacian
integral digraphs and skew Laplacian equienergetic digraphs.

A subset U of the vertex set V (G) is said to be an independent set if the subgraph
induced by the vertices in U is an empty graph. Let N+

i = N+(vi) = {v j : viv j ∈E(
−→
G )}

and N−i = N−(vi) = {v j : v jvi ∈ E(
−→
G )} , be respectively, the set of out-neighbours and

in-neighbours of the vertex vi in
−→
G . Clearly, N+

i ∪N−i = Ni , the neighbourhood set of
the vertex vi and N+

i ∩N−i = /0 .
The following lemma gives the information about the skew Laplacian eigenvalues

together with the corresponding eigenvectors, when
−→
G has an independent set with the

same set of neighbours.

LEMMA 2.1. Let G be a graph of order n having vertex set V (G) and let
−→
G be

an orientation of G. Let U = {v1,v2, . . . ,vk} be an independent subset of the vertex
set V (G) having the same set of neighbours in G. If N+(vi) is same for all vi ∈
U and N−(vi) is same for all vi ∈U , then |N+(vi)| − |N−(vi)| is a skew Laplacian

eigenvalue of
−→
G of multiplicity at least k−1 with the corresponding k−1 eigenvectors

(1,−1,0, . . . ,0, . . . ,0)t , (1,0,−1, . . . ,0, . . . ,0)t , . . . , (1,0,0, . . . ,−1, . . . ,0)t .

Proof. Let
−→
G be an orientation of a graph G having vertex set

V (G) = {v1,v2, . . . ,vk,vk+1, . . . ,vn}.
With out loss of generality, let U = {v1,v2, . . . ,vk} be an independent set in G and

so in
−→
G . Suppose that all the vertices in U have the same neighbourhood set, say

U
′
= {vk+1,vk+2, . . . ,vs} in G . Let the edges be oriented so that N+(vi) is same for

all vi ∈U and N−(vi) is same for all vi ∈U in
−→
G . We label the rows and columns of

the matrix S̃L(
−→
G ) in the same order as in V (G) . Let X = (x1,x2, . . . ,xn)t be an eigen-

vector corresponding to an eigenvalue ν of S̃L(
−→
G ) . So S̃L(

−→
G )X = νX . It can be eas-

ily seen that the eigenvalue |N+(vi)|− |N−(vi)| with corresponding eigenvectors X1 =
(1,−1,0, . . . ,0, . . . ,0)t , X2 = (1,0,−1, . . . ,0, . . . ,0)t , . . . , Xk−1 = (1,0,0, . . . ,−1, . . . ,0)t

satisfy this relation. Since these (k− 1) eigenvectors are linearly independent, it fol-
lows that |N+(vi)|−|N−(vi)| is an eigenvalue of S̃L(

−→
G ) with multiplicity at least k−1

having the above mentioned (k−1) vectors as corresponding eigenvectors. �

Let M be a complex matrix of order n described in the following block form

M =

⎛⎜⎜⎜⎝
A11 A12 · · · A1s

A21 A22 · · · A2s
...

... · · · ...
As1 As2 · · · Ass

⎞⎟⎟⎟⎠ ,
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where the blocks Ai j are ni×n j matrices for any 1 � i, j � s and n = n1 + . . .+ns . For
1 � i, j � s , let bi j denote the average row sum of Ai, j . The quotient matrix B = (bi j)
is an s× s matrix whose entries are the average row sums of the blocks Ai j of M . If
each block Ai j of M has constant row sum, the matrix B is called equitable quotient
matrix of M . We can find a relation between the spectrum of a complex matrix and its
equitable quotient matrix in the following theorem [22].

THEOREM 2.2. [22] The eigenvalues of the equitable quotient matrix B are the
eigenvalues of the matrix M , where M is the matrix described above.

Let V1 = {x1,x2, . . . ,xr} and V2 = {y1,y2, . . . ,ys} be the partite sets of Kr,s , with

n = r+ s . We give different orientations to Kr,s one by one. Let
−→
H 1 be the orientation

when all the edges are directed from V1 to V2 ,
−→
H 2 be the orientation when all the

edges are directed from V2 to V1 ,
−→
H 3 be the orientation when each xi ∈ V1 has same

out-neighbours N+(xi) in V2 ,
−→
H 4 be the orientation when each y j ∈V2 has same out-

neighbours N+(y j) in V1 . For V1 = U1∪U2∪ . . .∪Uk , let
−→
H 5 be the orientation such

that N+(Ui) = V2,N−(Ui) = /0 , for i = 1,2, . . . ,t and N+(Ui) = /0,N−(Ui) = V2 , for
i = t + 1, . . . ,k . For V1 = U1 ∪U2 , V2 = U3 ∪U4 , let

−→
H 6 be the orientation such that

N+(U1) = U4,N−(U1) =U3,N+(U2) = U3,N−(U2) = U4 . For V1 = U1∪U2∪ . . .∪Uk

and V2 = W1 ∪W2 ∪ . . .∪Wk , let
−→
H 7 be the orientation with N+(Ui) = Wi,N−(Ui) =

Wk+1−i,N+(W1) = Uk+1−i,N−(Wi) = Ui .
Now, we obtain the skew Laplacian spectrum of the digraphs

−→
H 1 and

−→
H 2 .

THEOREM 2.3. The skew Laplacian spectrum of
−→
H 1 is {s−r,0,s[r−1],(−r)[s−1]}

and the skew Laplacian spectrum of
−→
H 2 is {−(s− r),0,(−s)[r−1],r[s−1]} .

Proof. Assume that the edges are oriented in such a way so that all the edges
are oriented from V1 to V2 . Since V1 is an independent set and the orientation

−→
H 1

is chosen so that, for all xi ∈ V1 , we have N+(xi) = V2 and N−(xi) = /0 , therefore
from Lemma 2.1, it follows that |N+(xi)| − |N−(xi)| = |V2| = s is a skew Laplacian
eigenvalue of

−→
H 1 with multiplicity at least r− 1. Again, V2 is an independent set

and the orientation
−→
H 1 is chosen so that, for all yi ∈ V2 , we have N+(yi) = /0 and

N−(yi) = V1 . From Lemma 2.1, it follows that |N+(yi)| − |N−(yi)| = −|V1| = −r
is a skew Laplacian eigenvalue of

−→
H 1 with multiplicity at least s− 1. Since 0 is

always an eigenvalue of S̃L(
−→
H 1) and tr(S̃L(

−→
H 1)) = 0, it follows that the remaining

two skew Laplacian eigenvalues are 0,s−r . Thus, the skew Laplacian spectrum of
−→
H 1

is {s− r,0,s[r−1],(−r)[s−1]} , completing the proof of the first part.
The proof of the second part follows by using the fact that S̃L(

−→
H 2) = −S̃L(

−→
H 1) ,

see [2]. �

Now, we obtain the skew Laplacian spectrum of the digraphs
−→
H 3 and

−→
H 4 .

THEOREM 2.4. The skew Laplacian spectrum of
−→
H 3 is

{ν1,ν2,(2t− s)[r−1],0,r[s−t−1],(−r)[t−1]},
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where ν1 and ν2 are the zeros of the polynomial p(x) = x2− (2t− s)x+ rs− r2 and
|N+(xi)|= t . The skew Laplacian spectrum of

−→
H 4 is

{ν1,ν2,(2t− r)[s−1],0,s[r−t−1],(−s)[t−1]},
where ν1 and ν2 are the zeros of the polynomial p(x) = x2− (2t− r)x+ rs− s2 and
|N+(yi)|= t .

Proof. Suppose that the edges are oriented in such a way that all the vertices
xi ∈ V1 have the same out-neighbourhood set N+(xi) . With out loss of generality,
let N+(xi) = {y1,y2, . . . ,yt} . Then N−(xi) = {yt+1,yt+2, . . . ,ys} . Since V1 is an in-
dependent set, from Lemma 2.1, it follows that |N+(xi)| − |N−(xi)| = t − (s− t) =
2t − s is a skew Laplacian eigenvalue of

−→
H 3 with multiplicity at least r− 1. Now,

N+(xi) is an independent set and the orientation
−→
H 3 is chosen so that for all yi ∈

N+(xi) , we have N+(yi) = /0 , and so N−(yi) = V1 . From Lemma 2.1, it follows that
|N+(yi)|− |N−(yi)| = −|V1| = −r is a skew Laplacian eigenvalue of

−→
H 3 with multi-

plicity at least t − 1. Also, N−(xi) is an independent set and the orientation
−→
H 3 is

chosen so that, for all yi ∈ N−(xi) , we have N+(yi) = V1 , and therefore N−(yi) = /0 .
From Lemma 2.1, it follows that |N+(yi)| − |N−(yi)| = |V1| = r is a skew Lapla-
cian eigenvalue of

−→
H 3 with multiplicity at least s− t − 1. Since 0 is always an

eigenvalue of S̃L(
−→
H 3) , let ν1,ν2,0 be the remaining three skew Laplacian eigen-

value of
−→
H 3 . Using the fact that tr(S̃L(

−→
H 3)) = 0, we get ν1 + ν2 = 2t− s . Again,

tr(S̃L
2
(
−→
H 3)) =

n
∑
i=1

(d+
i − d−i )2− 2m , implying that ν2

1 + ν2
2 = (2t − s)2 + 2r2− 2rs .

Using the relation (ν1 + ν2)2 = ν2
1 + ν2

2 +2ν1ν2 , we see that ν1 and ν2 are the zeros
of the polynomial p(x) = x2− (2t− s)x+ rs− r2 . Thus, the skew Laplacian spectrum
of
−→
H 3 is {ν1,ν2,(2t− s)[r−1],0,r[s−t−1],(−r)[t−1]} , where ν1 and ν2 are the zeros of

the polynomial p(x) = x2− (2t− s)x+ rs− r2 , completing the proof of first part. The
second part can be proved in a similar way. �

The next result gives the skew Laplacian spectrum of the digraphs
−→
H 5 and

−→
H 6 .

THEOREM 2.5. The skew Laplacian spectrum of
−→
H 5 is

{ν1,ν2,s
[∑t

i=1(|Ui|)−1],(−s)[∑
k
i=t+1(|Ui |)−1],(α)[s−1],0},

where ν1,ν2 are the zeros of the polynomial g(x) = x2 − (α − s)x− s
(
α + 2|Uk|+

2|Uk−1|−2∑k−2
i=t+1 |Ui|

)
and α = ∑k

i=t+1 |Ui|−∑t
i=1 |Ui| . The skew Laplacian spectrum

of
−→
H 6 is

{ν1,ν2,ν3,(|U4|−|U3|)[|U1|−1],(|U3|−|U4|)[|U2|−1],(|U1|−|U2|)[|U3|−1],(|U2|−|U1|)[|U4|−1]},
where ν1,ν2 and ν3 are the zeros of the polynomial p(x) = x3−ax2 +bx− c with a =
2(|U1|−1)(|U4|−|U3|) , b = a2

2 −
[
(|U1|−|U2|)2 +(|U4|−|U3|)2−(|U1|+ |U2|)(|U4|+

|U3|)
]
, 3c = |U1||U3|(|U3|− |U1|)+ |U1||U4|(|U1|− |U4|)+ |U2||U3|(|U2|− |U3|)
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+ |U2||U4|(|U4| − |U2|)− a
[
2(|U1| − |U2|)2 + 2(|U4| − |U3|)2 − 2(|U1|+ |U2|)(|U4|+

|U3|)−b
]
.

Proof. Let V1 = U1 ∪U2 ∪ ·· · ∪Uk . Assume that the edges are oriented so that
N+(Ui) = V2,N−(Ui) = /0 , for i = 1,2, . . . ,t and N+(Ui) = /0,N−(Ui) = V2 , for i =
t +1, . . . ,k . Since Ui , i = 1,2, . . . ,t , is an independent set, from Lemma 2.1, it follows
that |N+(Ui)|− |N−(Ui)| = s is a skew Laplacian eigenvalue of

−→
H 5 with multiplicity

at least
t
∑
i=1

(|Ui|− 1) . Again, Ui is an independent set for i = t + 1,t + 2, . . . ,k , from

Lemma 2.1, it follows that |N+(Ui)|− |N−(Ui)| = −s is a skew Laplacian eigenvalue

of
−→
H 5 with multiplicity at least

k
∑

i=t+1
(|Ui|−1) . Further, V2 is an independent set, from

Lemma 2.1, it follows that
k
∑

i=t+1
|Ui| −

t
∑
i=1
|Ui| is a skew Laplacian eigenvalue of

−→
H 5

with multiplicity at least s− 1. This way we have obtained n− k− 1 skew Laplacian
eigenvalues of

−→
H 5 . To find the other eigenvalues, we label the vertices of V1 first and

then the vertices of V2 . Under this labelling the skew Laplacian matrix takes the form

S̃L(
−→
H 5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sI|U1| · · · 0|U1|×|Ut | 0|U1|×|Ut+1| · · · 0|U1|×|Uk | −J|U1|×s
... · · · ...

... · · · ...
...

0|Ut |×|U1| · · · sI|Ut | 0|Ut |×|Ut+1| · · · 0|Ut |×|Uk| −J|U1|×s

0|Ut+1|×|U1| · · · 0|Ut+1|×|Ut | −sI|Ut+1| · · · 0|Ut+1|×|Uk| J|U1|×s
... · · · ...

... · · · ...
...

0|Uk|×|U1| · · · 0|Uk|×|Ut | 0|Uk |×|Ut+1| · · · −sI|Uk| J|U1|×s

Js×|U1| · · · Js×|Ut | −Js×|Ut+1| · · · −Js×|Uk| B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where B =
(

∑k
i=t+1 |Ui|−∑t

i=1 |Ui|
)
Is .

The equitable quotient matrix of S̃L(
−→
H 5) is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s · · · 0 0 · · · 0 −s
0 · · · 0 0 · · · 0 −s
... · · · ...

... · · · ...
...

0 · · · s 0 · · · 0 −s
0 · · · 0 −s · · · 0 s
... · · · ...

... · · · ...
...

0 · · · 0 0 · · · −s s
|U1| · · · |Ut | −|Ut+1| · · · −|Uk| α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, where α =

k

∑
i=t+1

|Ui|-
t

∑
i=1

|Ui|.

Let P(x,M) = |xIk+1−M| be the characteristic polynomial of M . Operating C1→C1 +
C2 + · · ·+Ck+1 in P(x,M) and then Ck+1 →Ck+1− rC1 in the resulting determinant,
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it can be seen that the characteristic polynomial of M is

P(x,M) = x(x− s)t−1

∣∣∣∣∣∣∣∣∣∣∣

x+ s 0 · · · 0 −2s
0 x+ s · · · 0 −2s
...

... · · · ...
...

0 0 · · · x+ s −2s
−|Ut+1| −|Ut+2| · · · −|Uk| x−α

∣∣∣∣∣∣∣∣∣∣∣
k−t

.

Now, evaluating along first row repeatedly, we arrive at

P(x,M) = x(x− s)t−1(x+ s)k−t−1
[
x2− (α− s)x− s

(
α +2|Uk|+2|Uk−1|−2

k−2

∑
i=t+1

|Ui|
)]

.

Since, by Theorem 2.2, any eigenvalue of M is an eigenvalue of S̃L(
−→
H 5) , the result

follows for the first part.

For the second part, using the fact that [8] tr(S̃L
2
) =−2m+

n
∑
i=1

(d+
i −d−i )2 ,

tr(S̃L
3
) =

n

∑
i=1

(d+
i −d−i )3 +3M−1 (

−→
H 6)−3M+

1 (
−→
H 6)−6

(
t+(
−→
H 6)− t−(

−→
H 6)

)
,

together with the Newton’s identities and proceeding similarly as in the case of
−→
H 5 ,

we arrive at the result. �

The skew Laplacian spectrum of the digraphs
−→
H 7 can be computed as follows.

THEOREM 2.6. The skew Laplacian spectrum of
−→
H 7 is

{ν1,ν2, . . .ν2k,(|Wi|− |Wk+1−i|)[|Ui|−1],(|Uk+1−i|− |Ui|)[|Wi|−1], i = 1,2, . . . ,k},

where ν1,ν2, . . . ,ν2k are the eigenvalues of the matrix M given by (1).

Proof. Let V1 = U1 ∪U2 ∪ . . .∪Uk and V2 = W1 ∪W2 ∪ . . .∪Wk . Suppose that
the edges are oriented so that N+(Ui) = Wi , N−(Ui) = Wk+1−i , N+(W1) = Uk+1−i ,
N−(Wi) =Ui , for i = 1,2, . . . ,k . Since Ui , i = 1,2, . . . ,k , is an independent set, so from
Lemma 2.1, it follows that |N+(Ui)|− |N−(Ui)|= |Wi|− |Wk+1−i| is a skew Laplacian
eigenvalue of

−→
H 7 with multiplicity at least |Ui|−1. Again, Wi is an independent set for

i = 1,2, . . . ,k , so from Lemma 2.1, it follows that |N+(Wi)|− |N−(Wi)| = |Uk+1−i|−
|Ui| is a skew Laplacian eigenvalue of

−→
H 7 with multiplicity at least |Wi| − 1. This

way we have obtained n− 2k skew Laplacian eigenvalues of
−→
H 7 . To find the other

eigenvalues, we label the vertices of V1 first and then the vertices of V2 . With this
labelling the skew Laplacian matrix takes the form

S̃L(
−→
H 7) =

(
P Q
−Qt S

)
,
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where P= diag(δ1Iα1 ,δ2Iα2 , . . . ,δkIαk) , δi = |Wi|−|Wk+1−i| , αi = |Ui| , S = diag(γ1Iβ1
,

γ2Iβ2
, . . . ,γkI|βk

) , γi = |Uk+1−i|− |Ui| , βi = |Wi|, for i = 1,2, . . . ,k and

Q =

⎛⎜⎜⎜⎜⎜⎝
−Jα1×β1

0α1×β2
0α1×β3

· · · 0α1×βk−1
Jα1×βk

0α2×β1
−Jα2×β2

0α1×β3
· · · Jα2×βk−1

0α2×βk
...

...
... · · · ...

...
0αk−1×β1

Jαk−1×β2
0αk−1×β3

· · · −Jαk−1×βk−1
0αk−1×βk

Jαk×β1
0αk×β2

0αk×β3
· · · 0αk×βk−1

−Jαk×βk

⎞⎟⎟⎟⎟⎟⎠
k

.

The equitable quotient matrix of S̃L(
−→
H 7) is

M =
(

P1 Q1

−Qt
1 S1

)
, (1)

where P1 = diag(δ1,δ2, . . . ,δk) , S1 = diag(γ1,γ2, . . . ,γk) and

Q1 =

⎛⎜⎜⎜⎜⎜⎝
−β1 0 · · · 0 βk

0 −β2 · · · βk−1 0
...

... · · · ...
...

0 β2 · · · −βk−1 0
β1 0 · · · 0 −βk

⎞⎟⎟⎟⎟⎟⎠ , Qt
1 =

⎛⎜⎜⎜⎜⎜⎝
−α1 0 · · · 0 αk

0 −α2 · · · αk−1 0
...

... · · · ...
...

0 α2 · · · −αk−1 0
α1 0 · · · 0 −αk

⎞⎟⎟⎟⎟⎟⎠ .

Since, by Theorem 2.2, the eigenvalues of M are the eigenvalues of S̃L(
−→
H 7) , it follows

that the remaining 2k eigenvalues are given by the matrix M . �

Let
−→
G be an orientation of a complete k -partite graph Kr1,r2,...,rk . Using the same

procedure as in the above theorems, we can obtain the skew Laplacian spectrum of
−→
G

for various orientations. The following observation is immediate from Theorem 2.3.

THEOREM 2.7. The digraphs
−→
H 1 and

−→
H 2 are skew Laplacian integral digraph.

The next observation follows from Theorem 2.4.

THEOREM 2.8. The digraph
−→
H 3 is skew Laplacian integral digraph, provided

(2|N+(xi)|−|V2|)2−4(|V1||V2|−|V1|2) is a perfect square. In particular, if |V1|= |V2| ,
then

−→
H 3 is always skew Laplacian integral digraph. The digraph

−→
H 4 is skew Lapla-

cian integral digraph, provided (2|N+(yi)| − |V1|)2− 4(|V1||V2| − |V2|2) is a perfect
square. In particular, if |V1| = |V2| , then

−→
H 4 is always skew Laplacian integral di-

graph.

Now, we have the following result which follows from Theorem 2.5.

THEOREM 2.9. The digraph
−→
H 5 is skew Laplacian integral digraph, provided

(α−|V2|)2−4|V2|(4|Uk−1|+4|Uk|−|V1|) is a perfect square. The digraph
−→
H 6 is skew

Laplacian integral digraph, provided all the zeros of the polynomial p(x) = x3−ax2 +
bx− c with a = 2(|U1| − 1)(|U4| − |U3|), b = a2

2 −
[
(|U1| − |U2|)2 + (|U4| − |U3|)2−
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(|U1|+ |U2|)(|U4|+ |U3|)
]
, 3c = |U1||U3|(|U3|−|U1|)+ |U1||U4|(|U1|−|U4|)+ |U2||U3|

(|U2| − |U3|) + |U2||U4|(|U4| − |U2|)− a
[
2(|U1| − |U2|)2 + 2(|U4| − |U3|)2− 2(|U1|+

|U2|)(|U4|+ |U3|)−b
]

are integers.

The next observation follows from Theorem 2.6.

THEOREM 2.10. The digraph
−→
H 7 is a skew Laplacian integral digraph, provided

all the eigenvalues of the matrix M are integers.

3. Skew Laplacian spectrum of transitive tournament

In this section, we obtain the skew Laplacian spectrum of a transitive tournament.
We show by deleting a particular edge in a transitive tournament does not alter the skew
Laplacian spectrum. Let Kn be a complete graph on n vertices. Any orientation of Kn

is said to be a tournament. If vi→ v j is an arc in a tournament, the vertex vi is said to
dominate the vertex v j . For three vertices u , v and w in a tournament, if v dominates
u and u dominates w implies v dominates w , for all u,v,w in the tournament, the
tournament is said to be a transitive tournament. We denote a transitive tournament of
order n by Tn . The following theorem determines the skew Laplacian spectrum of a
transitive tournament.

THEOREM 3.1. The skew Laplacian spectrum of a transitive tournament Tn of
order n is equal to {±(n−2 j) : j = 1,2,3, . . .� n

2�} , or {0,±(n−2 j) : j = 1,2, . . . ,� n
2� ,

according as n is even or odd.

Proof. Let Tn be a transitive tournament on n vertices having vertex set V (Tn) =
{v1,v2, . . . ,vn} . With out loss of generality, we orient all the edges incident on v1 in
the direction away from v1 , all the edges incident at v2 in the direction away from v2 ,
except the edge v1v2 which is already oriented, and in general all the edges incident at
vk , 2 � k � n , in the direction away from vk , except the edges v1vk,v2vk, . . . ,vk−1vk

which are already oriented. If we label the rows and columns of S̃L(Tn) in the same
order as in V (Tn) , then it can be seen that the skew Laplacian characteristic polynomial
of Tn is given by

Psl(Tn,x) =

∣∣∣∣∣∣∣∣∣∣∣

x− (n−1) 1 1 · · · 1 1
−1 x− (n−3) 1 · · · 1 1
...

... · · · ...
...

−1 −1 −1 · · · x+(n−3) 1
−1 −1 −1 · · · −1 x+(n−1)

∣∣∣∣∣∣∣∣∣∣∣
.

Operating C1→C1 +C2 + · · ·+Cn and then Ci→Ci−C1, for i = 2,3, . . . ,n , we get
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Psl(Tn,x) = x

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
1 x− (n−2) 0 · · · 0 0
1 −2 x− (n−4) · · · 0 0
...

... · · · ...
...

1 −2 −2 · · · x+(n−4) 0
1 −2 −2 · · · −2 x+(n−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is now clear that the skew Laplacian spectrum of Tn is {±(n−2 j) : j = 1,2,3, . . .� n
2�} ,

when n is even and equal to {0,±(n−2 j) : j = 1,2, . . . ,� n
2� , when n is odd, complet-

ing the proof. �

Let v1→ v2→ ··· → vn be a Hamiltonian path. Further, for i = 1,2, . . . ,n−1, let
e = vivi+1 be an arc in a transitive tournament Tn . Let Tn− e be the digraph obtained
by removing the arc e = vivi+1 from Tn . The following result gives the skew Laplacian
spectrum of digraph Tn− e .

THEOREM 3.2. For digraph Tn−e defined above, the skew Laplacian spectrum is
equal to {±(n−2 j) : j = 1,2,3, . . .� n

2�} , or {0,±(n−2 j) : j = 1,2, . . . ,� n
2� , according

as n is even or odd.

Proof. Let Tn be a transitive tournament on n vertices having vertex set V (Tn) =
{v1,v2, · · · ,vn} . With out loss of generality, we orient all the edges incident on v1 in
the direction away from v1 , all the edges incident at v2 in the direction away from v2 ,
except the edge v1v2 which is already oriented and in general all the edges incident at
vk , 2 � k � n , in the direction away from vk , except the edges v1vk,v2vk, . . . ,vk−1vk

which are already oriented. Let Tn− e be the digraph obtained by removing the edge
e = vivi+1 from Tn . With out loss of generality, suppose that e = v1v2 . If we label the
rows and columns of S̃L(Tn− e) in the same order as in V (Tn) , it can be seen that the
skew Laplacian characteristic polynomial of Tn− e is given by

Psl(Tn− e,x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− (n−2) 0 1 · · · 1 1
0 x− (n−2) 1 · · · 1 1
−1 −1 x− (n−5) · · · 1 1
...

... · · · ...
...

−1 −1 −1 · · · x+(n−3) 1
−1 −1 −1 · · · −1 x+(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Operating C1→C1 +C2 + · · ·+Cn and then Ci→Ci−C1, for i = 3,4, . . . ,n , we get

Psl(Tn,x) = x

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
1 x− (n−2) 0 · · · 0 0
1 −2 x− (n−4) · · · 0 0
...

... · · · ...
...

1 −2 −2 · · · x+(n−4) 0
1 −2 −2 · · · −2 x+(n−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Clearly the skew Laplacian spectrum of Tn−e is {±(n−2 j) : j = 1,2,3, . . .� n
2�} , when

n is even and equal to {0,±(n−2 j) : j = 1,2, . . . ,� n
2� , when n is odd, completing the

proof. �

Theorem 3.2 shows that by deleting any arc in a Hamiltonian path of a transitive
tournament Tn does not effect the skew Laplacian spectrum. So, the digraphs Tn and
Tn− e are always non-isomorphic skew Laplacian cospectral digraphs. Theorems 3.1
and 3.2 together imply the following result.

THEOREM 3.3. The transitive tournament Tn and the digraph Tn− e obtained
from Tn by deleting an arc in a Hamiltonian path are skew Laplacian integral digraphs.

It is clear that all the skew Laplacian eigenvalues of a transitive tournament Tn

are even integers when n is even, and odd integers when n is odd. Moreover, the
eigenvalues are symmetric about the origin, a property similar to the property enjoyed
by the bipartite graphs with respect to the adjacency spectrum.

4. Skew Laplacian spectrum of join and complete split digraphs

In this section, we obtain the skew characteristic polynomial of the orientations
of join of two graphs in terms of the skew characteristic polynomial of the component
digraphs. Also, we obtain the skew Laplacian spectrum of the orientations of the com-
plete split graph. We show the existence of some families of skew Laplacian integral
digraphs. The join (complete product) of G1 and G2 is a graph G = G1 ∨G2 with
vertex set V (G1)∪V (G2) and an edge set consisting of all the edges of G1 and G2

together with the edges joining each vertex of G1 with every vertex of G2 . Let
−→
G1

and
−→
G2 be orientations of G1 and G2 respectively. Let

−→
G =

−→
G1→−→G2 , be the digraph

obtained by taking union of digraphs
−→
G1 and

−→
G2 and joining each vertex v in

−→
G1 with

every vertex u in
−→
G2 by an arc directed from v to u . It is clear that the underlying

graph of
−→
G is the join of G1 and G2 .

Recall that a square matrix is said to be diagonalizable if it is similar to a diag-
onal matrix. Since the skew Laplacian matrix S̃L(

−→
G ) of a digraph is not symmetric,

therefore it need not be diagonalizable. For example, the skew Laplacian matrix of
the orientations of a k -matching

−→
G = k

−→
K 2 is not diagonalizable, as it is a nilpotent

matrix. We call a digraph
−→
G diagonalizable if its skew Laplacian matrix is a diagonal-

izable matrix.
Now, we obtain the skew characteristic polynomial of the digraph

−→
G =

−→
G1→−→G2

in terms of the skew characteristic polynomial of the digraphs
−→
G1 and

−→
G2 .

THEOREM 4.1. Let
−→
G1 and

−→
G2 be diagonalizable digraphs of order n1 and n2 ,

respectively. If
−→
G =

−→
G1→−→G2 , then

Psl(
−→
G ,x) =

x(x−n2 +n1)
(x+n1)(x−n2)

Psl(
−→
G1,x−n2)Psl(

−→
G2,x+n1).
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Proof. For i = 1,2, let S̃L(
−→
Gi) be the skew Laplacian matrix and Psl(

−→
Gi,x) be the

skew characteristic polynomial of the digraph
−→
Gi having order ni . Let

−→
G =

−→
G1→−→G2 .

With out loss of generality, we can label the vertices of
−→
G so that its skew Laplacian

matrix can be put into the form

S̃L(
−→
G ) =

(
n2In1 + S̃L(

−→
G1) −Jn1×n2

Jn2×n1 S̃L(
−→
G2)−n1In2

)
,

where Jn1×n2 is an all one matrix.
It is well known that eni = (1,1, . . . ,1)t , the all ones vector of order ni , is an

eigenvector corresponding to eigenvalue 0 of S̃L(
−→
Gi) . Let x be a vector orthogonal

to en1 , satisfying S̃L(
−→
G1)x = λx . Taking X =

(
x
0

)
and using −Jn1×n2x = 0, we have

S̃L(
−→
G )X = (n2 + λ )X . This shows that n2 + λ is an eigenvalue of S̃L(

−→
G ) corre-

sponding to the eigenvalue λ of S̃L(
−→
G1) . Let y be a vector orthogonal to en2 , satis-

fying S̃L(
−→
G2)x = λx . Taking Y =

(
0
y

)
and using Jn2×n1y = 0, we have S̃L(

−→
G )Y =

(λ − n1)Y . This shows that λ − n1 is an eigenvalue of S̃L(
−→
G ) corresponding to the

eigenvalue λ of S̃L(
−→
G2) . Since the matrices S̃L(

−→
G1) and S̃L(

−→
G2) are diagonalizable

implies that the multiplicity of the eigenvalue ρi of S̃L(
−→
Gi) will be the multiplicity of

the eigenvalue n j + ρi of S̃L(
−→
G ) , where 1 � i 
= j � 2. Thus, in this way, we get

n1 +n2−2 eigenvalues of S̃L(
−→
G ) . The equitable quotient matrix of S̃L(

−→
G ) is

M =
(

n2 −n2

n1 −n1

)
.

Since the characteristic polynomial of M is x(x + n1− n2) and by Theorem 2.2 any
eigenvalue of M is an eigenvalue of S̃L(

−→
G ) , the result follows. �

Let
−→
G =
−→
G1←−→G2 be the digraph obtained by taking the union of digraphs

−→
G1 and−→

G2 and joining each vertex v in
−→
G1 with every vertex u in

−→
G2 by an arc directed from

u to v . Proceeding similarly as in Theorem 4.1, we arrive at the following observation.

THEOREM 4.2. Let
−→
G1 and

−→
G2 be diagonalizable digraphs of order n1 and n2 ,

respectively. If
−→
G =

−→
G1←−→G2 , then

Psl(
−→
G ,x) =

x(x−n1 +n2)
(x+n2)(x−n1)

Psl(
−→
G1,x+n2)Psl(

−→
G2,x−n1).

Next we construct skew Laplacian integral digraphs from a given pair of skew
Laplacian integral digraphs.

THEOREM 4.3. Let
−→
G1 and

−→
G2 be diagonalizable digraphs of order n1 and n2 ,

respectively. Then the digraphs
−→
G1→−→G2 and

−→
G1←−→G2 are skew Laplacian integral if

and only if both the digraphs
−→
G1 and

−→
G2 are skew Laplacian integral.
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Proof. If νi,0, for i = 1,2, . . . ,n1−1, are the skew Laplacian eigenvalues of G1 ,
and ξi,0, for i = 1,2, . . . ,n2−1, are the skew Laplacian eigenvalues of G2 , then from
Theorem 4.1, it is clear that the skew Laplacian eigenvalues of

−→
G1→−→G2 are

νi +n2, ξk−n1, n2−n1, 0, i = 1,2, . . . ,n1−1, k = 1,2, . . . ,n2−1.

Similarly, from Theorem 4.2, the skew Laplacian eigenvalues of
−→
G1←−→G2 are

νi−n2, ξk +n1, n1−n2, 0, i = 1,2, . . . ,n1−1, k = 1,2, . . . ,n2−1.

The result now follows. �

EXAMPLE 4.4. Let Tr and Ts respectively be transitive tournaments on r and
s vertices, with r + s = n , where both r and s are odd. Let Tr − ei and Ts− e j be
the digraphs obtained by deleting the arcs ei = vivi+1 and e j = uiui+1 respectively
from the Hamiltonian paths in Tr and Ts . Since for odd natural number l , the skew
Laplacian eigenvalues of the transitive tournaments Tl and Ti− e , where e is an arc
in a Hamiltonian path in Tl are distinct, it follows that their skew Laplacian matrices
are diagonalizable. Consider the digraphs

−→
G1 = Tr → Ts,

−→
G2 = Tr → Ts− e j,

−→
G3 =

Tr− ei→ Ts,
−→
G4 = Tr− ei→ Ts− e j . Using Theorems 3.1, 3.2 and 4.1, it follows that

all these digraphs are skew Laplacian integral digraphs.

EXAMPLE 4.5. Let
−→
K 1,r−1 be an orientation of a star on r vertices, when all

the edges are directed away or towards the root vertex v1 and let Ts be a transitive
tournament on s vertices with r + s = n , where s is odd. It is clear from Theorem
2.3 that the skew Laplacian matrix of

−→
K 1,r−1 is a diagonalizable matrix.Now, using

Theorems 2.3, 3.1, 3.2 and 4.1, it follows that each of the digraphs
−→
G1 =

−→
K 1,r−1 →

Ts,
−→
G2 =

−→
K 1,r−1 → Ts− e j,

−→
G3 =

−→
K 1,r−1 ← Ts,

−→
G4 =

−→
K 1,r−1 ← Ts − e j are skew

Laplacian integral digraphs.

EXAMPLE 4.6. Let Tr1 , Tr2 and Tr3 be transitive tournaments respectively on
r1,r2 and r3 vertices with r1 + r2 + r3 = n , where ri is odd for i = 1,2,3. Let Tr1−ei ,
Tr2 − e j and Tr3 − ek be the digraphs obtained by deleting the arcs ei = vivi+1 , e j =
uiui+1 and ek = wkwk+1 from the Hamiltonian paths respectively in Tr1 , Tr2 and Tr3 .

Consider the digraphs
−→
G1 = Tr1 → (Tr2 ∪Tr3),

−→
G2 = Tr1→ (Tr2−e j∪Tr3),

−→
G3 = Tr1 →

(Tr2 ∪ Tr3 − ek),
−→
G4 = Tr1 → (Tr2 − e j ∪ Tr3 − ek),

−→
G5 = Tr1 − ei → (Tr2 − e j ∪ Tr3 −

ek),
−→
G6 = Tr1− ei→ (Tr2 ∪Tr3− ek),

−→
G7 = Tr1− ei→ (Tr2− e j∪Tr3),

−→
G8 = Tr1− ei→

(Tr2 ∪Tr3) . Using Theorems 3.1, 3.2, 4.1 and 4.2, it follows that each of these digraphs
are skew Laplacian integral digraphs.

If Kr is the complete graph on r vertices and Ks is an empty graph on s vertices
with r + s = n , the graph C(r,s) = Kr ∨Ks is called the complete split graph. The
following theorem gives the skew Laplacian spectrum of some orientations of C(r,s) .

THEOREM 4.7. Let
−→
G be an orientation of the complete split graph C(r,s) and

let ν1,ν2, . . . ,νr−1,0 be the skew Laplacian eigenvalues of Kr .
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(1). If
−→
G is obtained by orienting the edges in Kr in such a way that its skew

Laplacian matrix is diagonalizable and the edges between Kr ∨Ks directed from Kr

to Ks , then the skew Laplacian spectrum of
−→
G is {νi + s,(−r)[s−1],s− r,0 : i =

1,2, . . . ,r−1} .
(2). If

−→
G is obtained by orienting the edges in Kr in such a way that its skew

Laplacian matrix is diagonalizable and the edges between Kr∨Ks directed from Ks to
Kr , then the skew Laplacian spectrum of

−→
G is {νi− s,r[s−1],r− s,0 : i = 1,2, . . . ,r−

1} .
(3). If V (Ks)=U1∪U2 and N+(U1)=V (Kr),N−(U1)= /0,N+(U2)= /0,N−(U2)=

V (Kr) , then the skew Laplacian spectrum of
−→
G is {νi+(|U2|−|U1|),r[|U1|−1],(−r)[|U2|−1],

0,x1,x2 : i = 1,2, . . . ,r−1}, where x1,x2 are the zeros of the polynomial g(x) = x2−
(|U2|− |U1|)x− r2 .

(4). If V (Ks) =U1∪U2∪U3∪·· ·∪Uk and N+(Ui) =V (Kr),N−(Ui) = /0 , for i =
1,2, . . . ,t and N+(Ui) = /0,N−(Ui) = V (Kr) , for i = t +1, . . . ,k , then the skew Lapla-

cian spectrum of
−→
G is {νi + ∑k

i=t+1 |Ui| −∑t
i=1 |Ui|,r[∑k

i=1 |Ui |−1],(−r)[∑
k
i=t+1 |Ui |−1],0,

x1,x2 : i = 1,2, . . . ,r− 1}, where x1,x2 are the zeros of the polynomial g(x) = x2−
(α− r)x− r

(
α +2|Uk|+2|Uk−1|−2∑k−2

i=t+1 |Ui|
)
, α = ∑k

i=t+1 |Ui|−∑t
i=1 |Ui| .

Proof. Proofs of part 1 and 2 follow from Theorems 4.1 and 4.2 and the fact that
all the skew Laplacian eigenvalues of Ks are zeros.

(3). Suppose the edges in Kr be oriented in such a way that its skew Laplacian
matrix is diagonalizable. Let V (Ks) = U1 ∪U2 . With out loss of generality, we ori-
ent the edges between Kr and Ks in such a way that N+(U1) = V (Kr), N−(U1) =
/0, N+(U2) = /0,N−(U2) = V (Kr) . Since U1 is an independent set, from Lemma 2.1, it
follows that |N+(U1)|− |N−(U2)|= r is a skew Laplacian eigenvalue of

−→
G with mul-

tiplicity at least |U1|−1. Also, U2 is an independent set, from Lemma 2.1, it follows

that |N+(U2)|− |N−(U2)|=−r is a skew Laplacian eigenvalue of
−→
G with multiplicity

at least |U2| − 1. To find the other eigenvalues, we label the vertices of Ks first and
then the vertices of Kr . Under this labelling the skew Laplacian matrix takes the form

S̃L(
−→
G ) =

⎛⎝ rI|U1| 0|U1|×|U2| −J|U1|×r

0|U2|×|U1| −rI|U2| J|U2|×r

Jr×|U1| −Jr×|U2| B

⎞⎠ , where B = S̃L(
−→
Kr)+ |U2|− |U1|

Since er = (1,1, . . . ,1)t , the all ones vector of order r is an eigenvector corresponding
to eigenvalue 0 of S̃L(

−→
Kr) . Let x be a vector orthogonal to er , satisfying S̃L(

−→
Kr)x =

λx . Taking X =

⎛⎝0
0
x

⎞⎠ and using −J|U1|×rx = 0, J|U2|×rx = 0, we have

S̃L(
−→
G )X =

⎛⎝ rI|U1| 0|U1|×|U2| −J|U1|×r

0|U2|×|U1| −rI|U2| J|U2|×r

Jr×|U1| −Jr×|U2| B

⎞⎠⎛⎝0
0
x

⎞⎠= (λ + |U2|− |U1|)X .
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This shows that λ + |U2|− |U1| is an eigenvalue of S̃L(
−→
G ) corresponding to the eigen-

value λ of S̃L(
−→
Kr) . The equitable quotient matrix of S̃L(

−→
G ) is

M =

⎛⎝ r 0 −r
0 −r r
|U1| −|U2| |U2|− |U1|

⎞⎠ .

Since the characteristic polynomial of M is x(x2−(|U2|−|U1|)x−r2) and, by Theorem
2.2, any eigenvalue of M is an eigenvalue of S̃L(

−→
G ) , the result follows.

(4). Assume that the edges in Kr are oriented in such a way that its skew Laplacian
matrix is diagonalizable. Let V (Ks) =U1∪U2∪U3 · · ·∪Uk . With out loss of generality,
we orient the edges between Kr and Ks in such a way that N+(Ui) =V (Kr),N−(Ui) =
/0, for i = 1,2, . . . ,t and N+(Ui) = /0,N−(Ui) = V (Kr) , for i = t + 1, . . . ,k . Since Ui

is an independent set for i = 1,2, . . . ,t , from Lemma 2.1, it follows that |N+(Ui)| −
|N−(Ui)|= r is a skew Laplacian eigenvalue of

−→
G with multiplicity at least ∑t

i=1(|Ui|−
1) . Also, for i = t +1, . . . ,k , Ui is an independent set, from Lemma 2.1, it follows that

|N+(Ui)| − |N−(Ui)| = −r is a skew Laplacian eigenvalue of
−→
G with multiplicity at

least ∑k
i=t+1(|Ui|− 1) . To find the other eigenvalues, we label the vertices of Ks first

and then the vertices of Kr . Under this labelling the skew Laplacian matrix takes the
form

S̃L(
−→
G ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rI|U1| · · · 0|U1|×|Ut | 0|U1|×|Ut+1| · · · 0|U1|×|Uk | −J|U1|×r
... · · · ...

... · · · ...
...

0|Ut |×|U1| · · · rI|Ut | 0|Ut |×|Ut+1| · · · 0|Ut |×|Uk| −J|U1|×r

0|Ut+1|×|U1| · · · 0|Ut+1|×|Ut | −rI|Ut+1| · · · 0|Ut+1|×|Uk | J|U1|×r
... · · · ...

... · · · ...
...

0|Uk|×|U1| · · · 0|Uk|×|Ut | 0|Uk |×|Ut+1| · · · −rI|Uk| J|U1|×r

Jr×|U1| · · · Jr×|Ut | −Jr×|Ut+1| · · · −Jr×|Uk| B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where B = S̃L(
−→
Kr)+

(
∑k

i=t+1 |Ui|−∑t
i=1 |Ui|

)
Ir .

Since er = (1,1, . . . ,1)t , the all ones vector of order r is an eigenvector corre-
sponding to eigenvalue 0 of S̃L(

−→
Kr) . Let x be a vector orthogonal to er , satisfying

S̃L(
−→
Kr)x = λx . Taking X =

⎛⎜⎜⎜⎝
0
0
...
x

⎞⎟⎟⎟⎠ and using −J|Ui|×rx = 0, J|Ui |×rx = 0, we have

S̃L(
−→
G )X = (λ +

k

∑
i=t+1

|Ui|−
t

∑
i=1
|Ui|)X .

This shows that λ + ∑k
i=t+1 |Ui|−∑t

i=1 |Ui| is an eigenvalue of S̃L(
−→
G ) corresponding
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to the eigenvalue λ of S̃L(
−→
Kr) . The equitable quotient matrix of S̃L(

−→
G ) is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r · · · 0 0 · · · 0 −r
0 · · · 0 0 · · · 0 −r
... · · · ...

... · · · ...
...

0 · · · r 0 · · · 0 −r
0 · · · 0 −r · · · 0 r
... · · · ...

... · · · ...
...

0 · · · 0 0 · · · −r r
|U1| · · · |Ut | −|Ut+1| · · · −|Uk| α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, where α =

k

∑
i=t+1

|Ui|-
t

∑
i=1

|Ui|.

Let P(x,M) = |xIk+1−M| , be the characteristic polynomial of M . Operating C1 →
C1 +C2 + · · ·+Ck+1 in P(x,M) and then Ck+1→Ck+1− rC1 in the resulting determi-
nant, it can be seen that the characteristic polynomial of M is

P(x,M) = x(x− r)t−1

∣∣∣∣∣∣∣∣∣∣∣

x+ r 0 · · · 0 −2r
0 x+ r · · · 0 −2r
...

... · · · ...
...

0 0 · · · x+ r −2r
−|Ut+1| −|Ut+2| · · · −|Uk| x−α

∣∣∣∣∣∣∣∣∣∣∣
k−t

.

Now, evaluating along the first row repeatedly, we obtain

P(x,M) = x(x−r)t−1(x+r)k−t−1
[
x2−(α−r)x−r

(
α +2|Uk|+2|Uk−1|−2

k−2

∑
i=t+1

|Ui|
)]

.

Since, by Theorem 2.2, any eigenvalue of M is an eigenvalue of S̃L(
−→
G ) , the result

follows. �

Some new families of skew Laplacian integral digraphs can be obtained as under.

COROLLARY 4.8. Let
−→
G be an orientation of the complete split graph C(r,s) .

(1). Let
−→
G be obtained by orienting the edges in Kr in such a way that its skew

Laplacian matrix is diagonalizable and the edges between Kr and Ks , are directed
from Kr to Ks or from Ks to Kr . Then

−→
G is skew Laplacian integral digraph if and

only if the orientation chosen for Kr is skew Laplacian integral digraph.
(2). Let V (Ks) = U1∪U2∪U3∪ . . .∪Uk with N+(Ui) = V (Kr),N−(Ui) = /0 , for

i = 1,2, . . . ,t and N+(Ui) = /0,N−(Ui) = V (Kr) , for i = t +1, . . . ,k . Then
−→
G is skew

Laplacian integral digraph if and only if the orientation chosen for Kr (where edges in
Kr are oriented in such a way that its skew Laplacian matrix is diagonalizable) is skew
Laplacian integral digraph provided( k

∑
i=t+1

|Ui|−
t

∑
i=1
|Ui|− r

)2−4r
(
s−4|Uk−1|−4|Uk|

)
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is a perfect square.
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