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C –SYMMETRIC SECOND ORDER DIFFERENTIAL OPERATORS

HORST BEHNCKE AND DON HINTON

Abstract. We consider a C -Symmetric second order linear differential operator on a half interval
or the real line. We determine the spectrum and construct the resolvent and m -function. In
addition we analyze the resolvent and m -function near their poles. Under the conditions of
Theorem 2.2 we prove the essential spectrum is empty, and the operator has a compact resolvent.
Integral conditions on the operator coefficients are given in Theorem 3.4 for the operator to be
Hilbert-Schmidt. These conditions are new even in the selfadjoint case. This analysis is based
on asymptotic integration. A central role is played by the Titchmarsh-Weyl m -function which is
defined by square integrable functions and not by a nesting circle analysis.
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