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A HIAI–LIN TYPE LOG–MAJORIZATION VIA BLOCK–MATRICES

JIAN SHI

(Communicated by F. Kittaneh)

Abstract. A Hiai-Lin type log-majorization, which is a simultaneous extension of [3, Corollary
3.1] and [4, Corollaries 3.3 and 3.4], is obtained via a block-matrix technique.

1. Introduction

A capital letter, such as T , stands for an n×n matrix. T � O means that T is a
positive semidefinite matrix; T > O means that T is a positive definite matrix.

Recall that for X ,Y � O , the log-majorization X �
(log)

Y means that

⎧⎪⎪⎨
⎪⎪⎩

k
∏
i=1

λi(X) �
k
∏
i=1

λi(Y ); k = 1,2, · · · ,n−1

k
∏
i=1

λi(X) =
k
∏
i=1

λi(Y ), k = n

where λ1(X) � λ2(X) � · · ·� λn(X) are the eigenvalue of X in decreasing order count-
ing multiplicities.

For A,B > O and α ∈ [0,1] , the α -power mean or α -weighted geometric mean
of A and B , which is an operator mean in the Kubo-Ando sense, denoted by A�αB ,
means that

A�αB = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 ,

and it can be extended to A,B � O by

lim
ε→∞

(A+ εI)�α(B+ εI),

where I is the n×n identity matrix.
Recently, F. Hiai and M. Lin obtained a log-majorization in [2, Theorem 2.5] as

follows.
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THEOREM 1.1. (Hiai-Lin log-majorization, [2]) If A,B � O, then

A
1
2 BA

1
2 �
(log)

(A�αB)
1
2 (A�1−αB)(A�αB)

1
2 (1.1)

holds for α ∈ [0,1] .

As an extension of Hiai-Lin log-majorization, R. Lemos and G. Soares proved the
following result in [3, Corollary 3.1].

THEOREM 1.2. ([3]) If A,B,X � O, then

A
1
2 XBXA

1
2 �
(log)

(A�αB)
1
2 X(A�1−αB)X(A�αB)

1
2 (1.2)

holds for α ∈ [0,1] .

Lemos and Soares proved Theorem 1.2 as a corollary of an eigenvalue inequality,
involving of matrix connections. Very recently, we showed another extensions of Hiai-
Lin log-majorization in [4, Corollaries 3.3 and 3.4] as follows.

THEOREM 1.3. ([4, Corollary 3.3]) If A,B > O, then

(A
1
2 BA

1
2 )−r �

(log)
(A�t−r−1B)

1
2 A−1−r(A�1−tB)A−1−r(A�t−r−1B)

1
2 (1.3)

holds for t ∈ [0, 1
2 ] and 1 � −r � 1− t � 1

2 .

THEOREM 1.4. ([4, Corollary 3.4]) If A,B > O, then (1.3) holds for t ∈ [ 1
2 ,1]

and 1 � −r � 1− t � 0 .

Put α = t and β = −r in Theorem 1.3 and Theorem 1.4. It is obvious to obtain
the following theorem together with them.

THEOREM 1.5. If A,B > O, then

(A
1
2 BA

1
2 )β �

(log)
(A�α+β−1B)

1
2 A−1+β (A�1−αB)A−1+β (A�α+β−1B)

1
2 (1.4)

holds for α,β ∈ [0,1] and α + β � 1 .

In this paper, we will show a Hiai-Lin type log-majorizationwhich is a simultaneus
extension of Theorem 1.2 and Theorem 1.5, by block-matrix technique.

2. Main result

In this section, we will state the main result. Then we will introduce some lemmas
refer to block-matrix. Lastly, we will prove the main result.

First, let us state the main result as follows.



A HIAI-LIN TYPE LOG-MAJORIZATION VIA BLOCK-MATRICES 911

THEOREM 2.1. If A,B,X > O, then

(A
1
2 XBXA

1
2 )β �

(log)
(A�α+β−1B)

1
2 (A−1�β X)(A�1−αB)(A−1�β X)(A�α+β−1B)

1
2 (2.1)

holds for α,β ∈ [0,1] and α + β � 1 .

In order to prove the main result, we introduce some lemmas here.

LEMMA 2.1. (Löwner-Heinz Inequality, [1, Theorem 4.2.1]) If A � B � O, then
Aα � Bα holds for α ∈ [0,1] .

LEMMA 2.2. ([1, Theorem 1.3.3]) For A,B > O,[
A X
X∗ B

]
� O

is equivalent to B � X∗A−1X .

LEMMA 2.3. For A,X > O, if [
A X
X I

]
� O,

then [
A1−α Xβ

Xβ Aα+β−1

]
� O,

where α,β ∈ [0,1] and α + β � 1 .

Proof. If [
A X
X I

]
� O,

according to Lemma 2.2, I � XA−1X holds. It follows that A � X2 . Notice that
α + β − 1 ∈ [0,1] and 1−α ∈ [0,1] . Applying Löwner-Heinz Inequality twice, we
have

Aα+β−1 � X2(α+β−1) = Xβ X2(α−1)Xβ � Xβ Aα−1Xβ . (2.2)

Thus, [
A1−α Xβ

Xβ Aα+β−1

]
� O

holds by Lemma 2.2. �

THEOREM 2.2. For A,B � O and X > O, if[
B X
X A

]
� O,

then [
A�1−αB A�β X
A�β X A�α+β−1B

]
� O,
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where α,β ∈ [0,1] and α + β � 1 .

Proof. Without loss of generality, we may consider A,B > O , otherwise we can
relpace A and B by A+ εI and B+ εI .

Notice that[
A− 1

2 O

O A− 1
2

][
B X
X A

][
A− 1

2 O

O A− 1
2

]
=

[
A− 1

2 BA− 1
2 A− 1

2 XA− 1
2

A− 1
2 XA− 1

2 I

]
. (2.3)

Thus, [
B X
X A

]
� O

is equivalent to [
A− 1

2 BA− 1
2 A− 1

2 XA− 1
2

A− 1
2 XA− 1

2 I

]
� O.

According to Lemma 2.3,[
(A− 1

2 BA− 1
2 )1−α (A− 1

2 XA− 1
2 )β

(A− 1
2 XA− 1

2 )β (A− 1
2 BA− 1

2 )α+β−1

]
� O

holds.
Therefore,[

A�1−αB A�β X
A�β X A�α+β−1B

]

=

[
A

1
2 O

O A
1
2

][
(A− 1

2 BA− 1
2 )1−α (A− 1

2 XA− 1
2 )β

(A− 1
2 XA− 1

2 )β (A− 1
2 BA− 1

2 )α+β−1

][
A

1
2 O

O A
1
2

]

is positive semidefinite. �

COROLLARY 2.1. For A,B � O and X > O, if[
B X
X A

]
� O,

then [
A�1−αB X

X A�αB

]
� O

if α ∈ [0,1] .

Next, we will present the proof of Theorem 2.1.

Proof of Theorem 2.1. Notice that

I � A
1
2 XBXA

1
2 . (2.4)
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is equivalent to A−1 � XBX and to[
B−1 X
X A−1

]
� O (2.5)

according to Lemma 2.2.
According to Theorem 2.2, (2.4) implies[

A−1�1−αB−1 A−1�β X
A−1�β X A−1�α+β−1B

−1

]
� O. (2.6)

Similarly, (2.6) is equivalent to

A−1�α+β−1B
−1 � (A−1�β X)(A−1�1−αB−1)−1(A−1�β X), (2.7)

and (2.7) is equivalent to

I � (A�α+β−1B)
1
2 (A−1�β X)(A�1−αB)(A−1�β X)(A�α+β−1B)

1
2 . (2.8)

At last, we will prove that the equality of the determinants of the matrices in the
right hand side and the left hand side of (2.1).

Notice that detX�γY = (detX)1−γ(detY )γ . We have that

det((A�α+β−1B)
1
2 (A−1�β X)(A�1−αB)(A−1�β X)(A�α+β−1B)

1
2 )

=(detA�α+β−1B)
1
2 (detA−1�β X)(detA�1−αB)(detA−1�β X)(detA�α+β−1B)

1
2

=(detA�α+β−1B)(detA−1�β X)2(detA�1−αB)

=(detA)2−α−β (detB)α+β−1((detA−1)1−β (detX)β )2(detA)α(detB)1−α

=(detA)β (detB)β (detX)2β

=((detA)
1
2 (detX)(detB)(detX)(detA)

1
2 )β

=det(A
1
2 XBXA

1
2 )β .

By the well-known antisymmetric tensor power technique, (2.1) holds obviously
according to the fact that (2.4) implies (2.8). �

REMARK 2.1. It is easy to prove that Theorem 2.2 can be derived from Theorem
2.1, if we replacd A by A−1 and B by B−1 in (2.1). Therefore, Theorem 2.2 and
Theorem 2.1 are equivalent if A,B > O .

REMARK 2.2. If we put X = I in Theorem 2.1, then it is just Theorem 1.5.

REMARK 2.3. If we put β = 1 in Theorem 2.1, then it is just Theorem 1.2.
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