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A NOTE ON BAPAT’S q–PERMANENT CONJECTURE

LON MITCHELL

(Communicated by R. A. Brualdi)

Abstract. Ravindra Bapat conjectured the q -permanent of a non-diagonal Hermitian positive
definite matrix is a strictly increasing (in q ) interpolation between the determinant (q = −1)
and the permanent (q = 1). We prove that this is true for non-diagonal positive definite matrices
if and only if it is true for singular positive semidefinite matrices without a zero row. Thus we
conjecture the q -permanent of a non-diagonal Hermitian positive semidefinite matrix without
a zero row is strictly increasing on [−1,1] . We prove this extended conjecture in the rank-one
case and the 3-by-3 case.

The q -permanent of a n -by-n matrix A = (ai j) is defined by

pq(A) := ∑
σ∈Sn

a1σ(1) · · ·anσ(n)q
l(σ),

where l(σ) is the number of inversions of the permutation σ in the symmetric group
Sn . The polynomial pq(A) interpolates between the determinant (q = −1) and the
permanent (q = 1). Ravindra Bapat conjectured that when A is a non-diagonal (Her-
mitian) positive definite (PD) matrix, pq(A) is a strictly increasing function of q for
q ∈ [−1,1] , and he proved this conjecture for 3-by-3 matrices [2]. Proofs have also
been given in special cases [13], including for tridiagonal matrices [9]. Other aspects
of pq(A) have been explored [1, 4, 10, 12], but even for n = 4 the conjecture remains
difficult [3]. Indeed, the fundamental fact that pq(A) � 0 for q ∈ [−1,1] was not easy
to establish, and comes from work of Bożejko and Speicher on generalized Brownian
motions [5]. They showed that for q ∈ (−1,1) ,

〈g1⊗g2⊗·· ·⊗gn,h1 ⊗h2⊗·· ·⊗hn〉q = ∑
σ∈Sn

ql(σ)〈g1,hσ(1)〉 · · · 〈gn,hσ(n)〉

defines an inner product on the full Fock space F =
⊕

k�0 H ⊗k , where H is a com-
plex separable Hilbert space with inner product 〈·, ·〉 and H 0 = C . Thus if A is the
Gram matrix [8] of non-zero vectors v1,v2, . . . ,vn ∈ H and q ∈ [−1,1] , then

pq(A) = 〈v1 ⊗ v2⊗·· ·⊗ vn,v1⊗ v2⊗·· ·⊗ vn〉q � 0.
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There is also a recursive definition,

〈g1⊗g2⊗·· ·⊗gn,h1⊗h2⊗·· ·⊗hn〉q
=

n

∑
k=1

qk−1〈g1,hk〉〈g2 ⊗·· ·⊗gn,h1⊗·· ·⊗hk−1⊗hk+1⊗·· ·⊗hn〉q,

which can be useful to explain, for example, a fact that we will use in what follows:
Given w,v1,v2, . . . ,vn ∈ H with w orthogonal to each vi ,

〈v1⊗ v2⊗·· ·⊗ vk−1⊗ (vk +w)⊗vk+1⊗·· ·⊗ vn,

v1⊗ v2⊗·· ·⊗ vk−1⊗ (vk +w)⊗vk+1⊗·· ·⊗ vn〉q
= 〈v1⊗ v2⊗·· ·⊗ vn,v1 ⊗ v2⊗·· ·⊗ vn〉q

+ 〈v1⊗ v2⊗ vk−1⊗w⊗ vk+1⊗·· ·⊗ vn,v1⊗ v2⊗ vk−1⊗w⊗ vk+1⊗·· ·⊗ vn〉q.

We will first consider the relationship between PD and positive semidefinite (PSD)
matrices with respect to Bapat’s conjecture.

THEOREM 1. Bapat’s q-permanent conjecture is true for non-diagonal PD ma-
trices only if it is true for all singular PSD matrices that have no zero row.

Proof. We will prove the contrapositive. Let n be fixed and let A be an n -by-n
singular PSD matrix with no zero row. Then A is the Gram matrix of non-zero linearly
dependent vectors v1,v2, . . . ,vn in H = Cn . Since v1, . . . ,vn are linearly dependent,
there exists i such that vi is in the span of v1, . . . ,vi−1,vi+1, . . . ,vn , and so A is non-
diagonal. Let

P(q) := 〈v1⊗ v2⊗·· ·⊗ vn,v1 ⊗ v2⊗·· ·⊗ vn〉q,
and assume P ′(a) < 0 for some a ∈ (−1,1) . Let w ∈ Cn be a vector orthogonal to
each vi . Using

Q(q) := 〈v1⊗v2⊗·· ·⊗vi−1⊗w⊗vi+1⊗·· ·⊗vn,v1⊗v2⊗·· ·⊗vi−1⊗w⊗vi+1⊗·· ·⊗vn〉q,

and choosing ε > 0 small enough that ε2|Q ′(a)| < |P ′(a)| , we have R ′(a) < 0 where

R(q) := 〈v1⊗ v2⊗·· ·⊗ vi−1⊗ (vi +εw)⊗ vi+1⊗·· ·⊗ vn,

v1 ⊗ v2⊗·· ·⊗ vi−1⊗ (vi +εw)⊗ vi+1⊗·· ·⊗ vn〉q.

Thus, if the conjecture is not true for some n -by-n singular PSD matrix of rank r that
has no zero row, it also fails for a PSD matrix of rank r+1 that has no zero row. Since A
was non-diagonal, so is the Gram matrix of v1,v2, . . . ,vi−1,vi + εw,vi+1, . . . ,vn . Using
induction, the conjecture is not true for some non-diagonal n -by-n PD matrix. �

Theorem 1 suggests an extension of the original conjecture to PSD matrices. For
PSD matrices, having a non-constant q -permanent is equivalent to the matrix having
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non-zero diagonal entries and (if the matrix is PD) not being a diagonal matrix. We will
call such a matrix QPSD.

CONJECTURE. If A is a QPSD matrix, then pq(A) is a strictly increasing function
of q for q ∈ [−1,1] .

Having established that QPSD matrices could create counterexamples to the origi-
nal conjecture, we can ask if there are classes of QPSD matrices for which the extended
conjecture can be proved.

THEOREM 2. The extended conjecture is true for rank-one QPSD matrices.

Proof. If e is a unit vector and c1,c2, . . . ,cn are non-zero complex numbers, then

〈c1e⊗ c2e⊗·· ·⊗ cne,c1e⊗ c2e⊗·· ·⊗ cne〉q = |c1||c2| · · · |cn|
n−1

∏
k=1

(1+q+ · · ·+qk).

Define fm(q) := (1+ q+ · · ·+ qm) and hm(q) = fm−1(q) fm(q) . Then for all m , both
fm(q) and hm(q) are non-negative for q ∈ [−1,1] and strictly increasing for q � 0, so
it remains to consider q < 0. For q �= 1 we find

fm(q) =
1−qm+1

1−q

and

hm(q) =
(1−qm)(1−qm+1)

(1−q)2 ,

so that, for q �= 1, we can write

f ′
m(q) =

fm(q)− (m+1)qm

1−q

and

h′m(q) =
2−3qm +2q2m

(1−q)3 −qm−1 m− (m−1)q2

(1−q)3 +
(2m−1)q2m

(1−q)2

and see f ′
m(q) > 0 for q ∈ [−1,0] when m is odd and h′m(q) > 0 for q ∈ [−1,0] when

m is even. Since we can write ∏n−1
k=1(1+q+ · · ·+qk) as ∏(n−1)/2

j=1 h2 j(q) if n is odd or

fn−1(q)∏(n−2)/2
j=1 h2 j(q) if n is even, we find that for q ∈ [−1,1] , ∏n−1

k=1(1+ q+ · · ·+
qk) is a product of non-negative strictly increasing functions and hence is also strictly
increasing for q ∈ [−1,1] . �

REMARK. Carlos da Fonseca has conjectured that for every non-diagonal PD ma-
trix A there is an r <−1 such that pq(A) is strictly increasing on (r,∞) [6]. This is not
true in the QPSD case as ∏ j

k=1(1+ q+ · · ·+ qk) shows when j = 3 (and seems to be
the case for j � 3 and j ≡ 0 or j ≡ 3 modulo 4). However, these examples seem not
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to lead to counterexamples to da Fonseca’s conjecture, as numerical evidence suggests
pq(J + εI) , for ε > 0 where J is the matrix of all ones and I is the identity matrix,
does satisfy the conjecture.

We can also prove a stronger converse to Theorem 1:

THEOREM 3. If the extended conjecture is true for all QPSD matrices of nullity 1 ,
the extended conjecture is true for all QPSD matrices.

Proof. Assume the extended conjecture is true for all QPSD matrices of nullity 1.
By the proof of Theorem 1 the only possible counterexample to the extended conjecture
would be a non-diagonal PD matrix. Proceed by induction on n , first noting the result
is true for n = 2. Let A be an n -by-n non-diagonal PD matrix with n � 3, so that A is
the Gram matrix of non-zero linearly independent vectors v1,v2, . . . ,vn . We can write

〈v1 ⊗ v2⊗·· ·⊗ vn,v1⊗ v2⊗·· ·⊗ vn〉q
=〈(v ′

1 +w)⊗ v2⊗·· ·⊗ vn,(v ′
1 +w)⊗ v2⊗·· ·⊗ vn〉q

=〈v ′
1 ⊗ v2⊗·· ·⊗ vn,v

′
1⊗ v2⊗·· ·⊗ vn〉q + 〈w⊗ v2⊗·· ·⊗ vn,w⊗ v2⊗·· ·⊗ vn〉q

=〈v ′
1 ⊗ v2⊗·· ·⊗ vn,v

′
1⊗ v2⊗·· ·⊗ vn〉q+〈w,w〉〈v2 ⊗ v3⊗·· ·⊗ vn,v2⊗ v3⊗·· ·⊗ vn〉q,

where w is non-zero and orthogonal to v2, . . . ,vn and v ′
1 is in the span of v2,v3, . . . ,vn .

If v ′
1 = 0, then the Gram matrix of v2,v3, . . . ,vn is an (n−1)-by-(n−1) non-diagonal

PD matrix, which by the induction hypothesis has strictly increasing q -permanent on
[−1,1] . If v ′

1 �= 0 then the Gram matrix of v ′
1,v2,v3, . . . ,vn is an n -by-n matrix of rank

n−1, which by assumption has strictly increasing q -permanent on [−1,1] . The Gram
matrix of v2,v3, . . . ,vn may or may not be non-diagonal, but the q -permanent of A is
either the sum of two strictly increasing functions or one strictly increasing function
and a constant. �

Thanks to Theorem 1 and Bapat’s original result [2], the extended conjecture is
true for 3-by-3 matrices. Using Theorem 3 allows for a simpler proof: we can assume
without loss of generality we are dealing with the Gram matrix of vectors e1,ae1 +
ce2,be1 + de2 where e1 and e2 are orthonormal and a , b , c , and d are complex
numbers such that |a|2 + |c|2 and |b|2 + |d|2 are non-zero. In that case, the derivative

d
dq

(〈e1 ⊗ (ae1 + ce2)⊗ (be1 +de2),e1⊗ (ae1 + ce2)⊗ (be1 +de2)〉q)

=
∣
∣(1+q)ab+ cd

∣
∣2 + |a|2|b|2(1+q)2 + |ad +bcq|2 +(|a|2 +2|c|2)|b|2q2

is non-negative for all q .

Acknowledgement. The author wishes to thank the anonymous referee for many
helpful comments, including that another proof of Theorem 1 can be found by com-
bining results of Marvin Marcus [11] with the fact that the coefficients of pq(A) are
continuous functions of A . In addition, some claims in [6] should be considered in the
context of [14, 7].
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