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Abstract. In this paper, we first give a condition such that a countable unitary system has com-
plete wandering vectors, which plays the key role to operator parameterize frame generators for
unitary systems in the literatures. Then we continue to study more general operator parameter-
izations and their applications. Based on the invertibility of some parameterizing operators, we
introduce the concept of generalized dual pair of frame generators for a unitary system, which is
a natural generalization of dual pair of frame generators. Then we characterize generalized dual
pair of frame generators and some interesting properties and constructions of generalized dual
frame generator pairs are also studied.

1. Introduction

A frame for a Hilbert space H is a sequence ( fi)i∈I of elements in H such that
there are constants A,B > 0 satisfying

A‖ f‖2 � ∑
i∈I

|〈 f , fi〉|2 � B‖ f‖2, for all f ∈ H.

The numbers A and B are called the lower and the upper frame bounds respectively.
The frame is a tight frame if A = B and a normalized tight frame if A = B = 1. If only
require the right inequality to be satisfied, then ( fi)i∈I is called a Bessel sequence for
H . If ( fi)i∈I is a frame as well as a Schauder basis of H , then ( fi)i∈I is called a Riesz
basis for H .

The concept of frame first appeared in the late 1940’s and early 1950’s (see [4,
13]) during the study on nonharmonic Fourier series. Now frame has been applied in
many fields such as signal processing, data compression and so on. There are tons of
literatures on this topic, see [1, 2, 8, 11, 12]. In applications, the most useful frames
are structured frames. The typical structured frames are wavelet frames and Gabor
frames, frame {2 n

2 f (2nx− k) : n,k ∈ Z} ⊂ L2(R) is called a wavelet frame and frame
{e2πmaxg(x−nb) : m,n ∈ Z} ⊂ L2(R) is called a Gabor frame where a,b are two given
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positive real numbers. Abstractly, both of them are generated by a countable actions of
unitary operators on some functions.

In [3, 8], X. Dai, D. Han and D. Larson introduced an unified way to study the
structured frames, where a unitary system is defined to be a set of unitary operators U
acting on a Hilbert space H which contains the identity operator I of B(H) , the set of
all linear bounded operators on H . A Bessel generator of U is defined to be a vector
x ∈ H with the property that U x := {Ux : U ∈ U } is Bessel sequence for H . In this
paper, we use B(U ) to denote the set of all Bessel generators of a unitary system U .
If x ∈ H is a unit vector and U x forms an orthonormal basis for H , then x is called
a complete wandering vector for U . The set of all complete wandering vectors of a
unitary system U is denoted as W (U ) . In case that U x forms a frame for H , we
call x a frame generator for U . The set of all frame generators of a unitary system
U is denoted as F (U ) . The concepts of normalized tight frame generator and Riesz
generator for U are defined similarly and we use N T F (U ) and R(U ) to denote
them respectively.

In [3], X. Dai and D. Larson studied the complete wandering vectors for a unitary
system, one of most important results is the operator parameterization of all complete
wandering vectors of a unitary system. In [8], D. Han and D. Larson followed the sim-
ilar ideas developed in [3] to study the frame generators for a unitary system. They
generalized the operator parameterizations on complete wandering vectors to frame
generators of a unitary system. Motivated by [3, 8], the authors in [5, 9, 10] studied the
wandering vectors for some special unitary systems. In [6, 7], the author considered
the multi-wandering vectors and multi-frame vectors for unitary systems and obtained
some similar results. However, all the results of these literatures rely on the assumption
that there exist complete wandering vectors for the unitary systems. But it was pointed
out in [3] that not all countable unitary system has complete wandering vectors. In this
paper, we first give a condition such that a countable unitary system has complete wan-
dering vectors. Then we continue to study more general operator parameterizations and
their applications. Finally, based on the invertibility of some parameterizing operators,
we introduce the concept of generalized dual frame generator pairs for a unitary sys-
tem, which is a natural generalization of dual frame generator pairs. Some interesting
properties and constructions of generalized dual frame generator pairs are also studied.

In order to understand our main results, let’s recall that the local commutant of
U at ψ is defined to be the set Cψ(U ) = {T ∈ B(H) : TUψ = UTψ ,∀U ∈ U } .
There are also three important operators associated with each η ∈B(U ) . The analysis
operator associated with η is defined to be the operator θη(x) = ∑U∈U 〈x,Uη〉eU ,
where {eU}U∈U is the standard orthonormal basis of Hilbert space l2(U ) and θ ∗

η is
called the synthesis operator associated with η . The frame operator associated with η
is defined to be Sη = θ ∗

η θη . Throughout the whole paper, we use U(S) to denote the
set of unitary operators in S ⊂ B(H) .
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2. Operator parameterizations

Since some operator parameterizations of frame generators of unitary systems
heavily rely on the existence of complete wandering vectors, in this section, we first
give a condition such that a countable unitary system has complete wandering vectors.
Then we study more on the operator parameterizations of frame generators of unitary
systems and their generalizations and some applications.

THEOREM 2.1. Suppose U = {Uj} j∈Z is a countable unitary system for Hilbert
space H with U0 = I . Let {e j} j∈Z be an orthonormal basis for H . Let S ∈ B(H) be
the bilateral shift of multiplicity one, i.e., Se j = e j+1 for all j ∈ Z . Then W (U ) 	= /0
if and only if there exists a unitary operator T ∈ B(H) such that for any m ∈ Z ,
T ∗Sme0 = UmT ∗e0 , i.e., Um is locally unitary equivalent to Sm at e0 for any m ∈ Z .

Proof. =⇒: Suppose that W (U ) 	= /0 . Let ψ ∈ W (U ) . Then {Ujψ} j∈Z is an
orthonormal basis for H . Since {e j} j∈Z is also an orthonormal basis of H , there exists
a unitary operator T ∈ B(H) such that TUmψ = em for all m∈Z . Hence TU0ψ = e0 ,
i.e., Tψ = e0 . So ψ = T ∗e0 . Hence TUmT ∗e0 = em = Sme0 , which implies that
T ∗Sme0 = UmT ∗e0 .

⇐=: Suppose that there exists a unitary operator T ∈ B(H) such that T ∗Sme0 =
UmT ∗e0 for all m ∈ Z . Let ψ = T ∗e0 . Then Umψ = T ∗Sme0 = T ∗em for all m ∈ Z .
Since T ∗ is a unitary operator, {Umψ}m∈Z is an orthonormal basis for H . So ψ ∈
W (U ) . Hence W (U ) 	= /0 . �

EXAMPLE 2.2. Let {en}+∞
n=−∞ be an orthonormal basis for a separable Hilbert

space H . Let U be the bilateral shift of multiplicity one, i.e., Uen = en+1 , and U =
{Un : n ∈ Z } . Then it is easy to check that any en ∈ W (U ) . So W (U ) 	= /0 . Let
T =U . Then T is a unitary operator in B(H) and it is obvious that T ∗Sme0 =UmT ∗e0

for all m ∈ Z .

Under the assumption that W (U ) 	= /0 , the following two lemmas operator param-
eterize the set of complete wandering vectors and the set of Bessel vectors of a unitary
system respectively.

LEMMA 2.3. [3] Let U be a unitary system in B(H) . Suppose ψ ∈ W (U ) .
Then

W (U ) = {Vψ : V ∈ U(Cψ(U ))}.

Moreover, the correspondence

V −→Vψ ,U(Cψ(U )) −→ W (U )

is one-to-one.
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LEMMA 2.4. [8] Suppose U is a unitary system for H . Let ψ ∈ W (U ) and
η ∈ H . Then

(i) η ∈ B(U ) if and only if there exists a unique bounded operator Tη ∈ Cψ (U )
such that η = Tη ψ .

(ii) η ∈F (U ) if and only if there exists a unique Tη ∈ Cψ (U ) and Tη is surjec-
tive such that η = Tηψ .

(iii) η ∈ N T F (U ) if and only if there exists a unique Tη ∈ Cψ (U ) and Tη is
a co-isometry such that η = Tη ψ .

(iv) η ∈ R(U ) if and only if there exists a unique Tη ∈ Cψ(U ) and Tη is an
invertible operator such that η = Tηψ .

The following lemma is of interest itself, which will also simplify our proofs of
main results in sequel.

LEMMA 2.5. Let S be a subset of B(H) and x ∈ H . If V ∈ Cx(S ) , then

CVx(S ) = {A ∈ B(H) : AV ∈ Cx(S )}.

Proof. Suppose that T ∈ CVx(S ) . Then for any S ∈ S ,

TVSx = TSVx = STVx.

So TV ∈ Cx(S ) . Conversely, if AV ∈ Cx(S ) , then for any S ∈ S we have AVSx =
SAVx . But AVSx = ASVx . So ASVx = SAVx for all S ∈ S . It follows that A ∈
CVx(S ) . �

By Lemma 2.5, the following known result follows.

COROLLARY 2.6. Suppose S ⊂ B(H) and x ∈ H . If V ∈ Cx(S ) is invertible,
then CVx(S ) = Cx(S )V−1 .

The following result shows that the unique operator parameterizing the Bessel
generators of a unitary system in Lemma 2.4 plays the role of synthesis operator.

LEMMA 2.7. Suppose U is a unitary system, ψ ∈ W (U ) and η ∈ B(U ) . Let
Sη be the frame operator of {Uη}U∈U and Tη be the unique operator in Cψ (U ) such
that η = Tηψ . Then Sη = TηT ∗

η .

Proof. Since ψ ∈ W (U ) , i.e., {Uψ :U ∈ U } forms an orthonormal basis of H ,
for any f ∈ H , we have

f = ∑
U∈U

〈 f ,Uψ〉Uψ .

Since Tη ∈ Cψ (U ) and η = Tη ψ , we have that

Sη f = ∑
U∈U

〈 f ,Uη〉Uη = ∑
U∈U

〈 f ,UTη ψ〉UTηψ

= ∑
U∈U

〈 f ,TηUψ〉TηUψ = Tη ∑
U∈U

〈T ∗
η f ,Uψ〉Uψ

= TηT ∗
η f .
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So Sη = TηT ∗
η . �

COROLLARY 2.8. Suppose that U is a unitary system and ψ ∈ W (U ),η ∈
F (U ) . Let Tη be the unique operator in Cψ(U ) such that η = Tηψ . If Tη is a
normal operator, then η ∈ R(U ) .

Proof. Since Tη is a normal operator, Sη = TηT ∗
η = T ∗

η Tη . Since Sη is invertible,
it follows that Tη is an invertible operator. So η ∈ R(U ) by Lemma 2.4. �

The following result provides a general approach to generate new frame generators
for a unitary system from given ones.

THEOREM 2.9. Suppose that U is a unitary system and ψ ∈W (U ) . Let ξ1,ξ2 ∈
F (U ) and Tξ1

,Tξ2
be surjective operators in Cψ (U ) such that ξ1 = Tξ1

ψ , ξ2 =
Tξ2

ψ . If Tξ1
T ∗

ξ2
= 0 and A ∈ Cξ1

(U ),B ∈ Cξ2
(U ) , then Aξ1 +Bξ2 ∈ F (U ) if and

only if AA∗ +BB∗ is invertible.

Proof. Since

A ∈ Cξ1
(U ) = CTξ1

ψ(U ),

ATξ1
∈ Cψ (U ) by Lemma 2.5. Similarly, BTξ2

∈ Cψ (U ) . So ATξ1
+BTξ2

∈ Cψ (U ) .
Since

Aξ1 +Bξ2 = ATξ1
ψ +BTξ2

ψ = (ATξ1
+BTξ2

)ψ ,

Aξ1 + Bξ2 ∈ F (U ) if and only if ATξ1
+ BTξ2

is surjective by Lemma 2.4. Since
Tξ1

T ∗
ξ2

= 0, we have

(ATξ1
+BTξ2

)(ATξ1
+BTξ2

)∗ = ATξ1
T ∗

ξ1
A∗ +BTξ2

T ∗
ξ2

B∗.

Suppose a1,b1 and a2,b2 are lower and upper frame bounds of {Uξ1 : U ∈ U } and
{Uξ2 : U ∈ U } respectively. Then

min{a1,a2}(AA∗+BB∗) � ATξ1
T ∗

ξ1
A∗ +BTξ2

T ∗
ξ2

B∗ � max{b1,b2}(AA∗+BB∗).

So

min{a1,a2}(AA∗+BB∗) � (ATξ1
+BTξ2

)(ATξ1
+BTξ2

)∗ � max{b1,b2}(AA∗ +BB∗).

It follows that ATξ1
+BTξ2

is surjective if and only if AA∗ +BB∗ is invertible. Hence
Aξ1 +Bξ2 ∈ F (U ) if and only if AA∗ +BB∗ is invertible. �

Specially, for the normalized tight frame generators, we have the following result.

COROLLARY 2.10. Suppose that U is a unitary system and ψ ∈ W (U ) . Let
ξ1,ξ2 ∈ N T F (U ) and Tξ1

,Tξ2
be co-isometrical operators in Cψ (U ) such that

ξ1 = Tξ1
ψ , ξ2 = Tξ2

ψ . If Tξ1
T ∗

ξ2
= 0 and A ∈ Cξ1

(U ),B ∈ Cξ2
(U ) then Aξ1 +Bξ2 ∈

N T F (U ) if and only if AA∗ +BB∗ = I .
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Since for any operator T ∈B(H) , TT ∗ is invertible if and only if T is surjective.
In the above results, let B = 0, then we have the following corollary, which character-
izes the operator multipliers of frame generators and normalized tight frame generators
of unitary systems.

COROLLARY 2.11. Suppose U is a unitary system for H with W (U ) 	= /0 .
(i) If η ∈F (U ) and T ∈Cη (U ) , then Tη ∈F (U ) if and only if T is surjective.
(ii) If η ∈ N T F (U ) and T ∈ Cη (U ) , then Tη ∈ N T F (U ) if and only if

T is a co-isometry.

LEMMA 2.12. Suppose U is a unitary system for H and ψ ∈ W (U ) . Let η ∈
B(U ) and Tη is the unique operator in Cψ (U ) such that η = Tη ψ . If T ∈ Cη (U ) ,
then Tη ∈ B(U ) and TTη = TTη .

Proof. Since η ∈ B(U ) , there exists a unique operator Tη ∈ Cψ (U ) such that
η = Tη ψ by Lemma 2.4(i). So Tη = TTηψ . Since T ∈ Cη(U ) , for any U ∈ U , we
have

TTηUψ = TUTηψ = TUη = UTη = UTTηψ ,

it follows that TTη ∈Cψ (U ) . So Tη ∈B(U ) and TTη = TTη by Lemma 2.4(i). �

The following is the characterization of operator multipliers for Riesz basis gener-
ators of unitary systems.

THEOREM 2.13. Suppose U is a unitary system for H with W (U ) 	= /0 . Let
η ∈ R(U ) and T ∈ Cη(U ) . Then Tη ∈ R(U ) if and only if T is invertible.

Proof. Since η ∈ R(U ) , Tη is invertible by Lemma 2.4 (iv). Since TTη = TTη
by Lemma 2.12, it follows that TTη is invertible if and only if T is invertible. So
Tη ∈ R(U ) if and only if T is invertible. �

Suppose S⊂B(H) . Let S U J (S) denote the surjective operators in S , COI (S)
denote the co-isometry operators in S and I N V (S) denote the invertible operators
in S . Now we have the following operator parameterization properties, which can be
viewed as a generalization of the operator parameterization property for complete wan-
dering vectors of unitary systems in Lemma 2.3.

THEOREM 2.14. Suppose U is a unitary system for H with W (U ) 	= /0 .
(i) If η ∈ F (U ) , then the map T1 : S U J (Cη (U )) −→ F (U ) such that

T1(V ) = Vη is a one to one map.
(ii) If η ∈N FT (U ) , then the map T2 : C OI (Cη (U ))−→N FT (U ) such

that T2(V ) = Vη is a one to one map.
(iii) If η ∈ R(U ) , then R(U ) = {Vη : V ∈ I N V (Cη (U )} and the map T3 :

I N V (Cη (U )) −→ R(U ) such that T3(V ) = Vη is a one to one and onto map.
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Proof. By Corollary 2.11 and Theorem 2.13, the maps T1,T2,T3 are well-defined.
If V1η = V2η , then UV1η = UV2η for any U ∈ U . Since Vi ∈ Cη (U ) (i = 1,2,3) ,
we have V1Uη =V2Uη for any U ∈ U . Since {Uη : U ∈ U } is a frame, V1 = V2 . It
follows that Ti (i = 1,2,3) are one to one maps. This finishes the proofs of (i) and (ii).
We now prove R(U ) = {Vη : V ∈ I N V (Cη (U )} and the map T3 is onto. For any
ξ ∈R(U ) , since {Uη :U ∈U } and {Uξ :U ∈U } are Riesz bases of H , there exist
Riesz lower bounds Aη ,Aξ and Riesz upper bounds Bη ,Bξ such that for any x ∈ H ,

Aη‖x‖2 � ∑
U∈U

|〈x,Uη〉|2 � Bη‖x‖2

and

Aξ‖x‖2 � ∑
U∈U

|〈x,Uξ 〉|2 � Bξ‖x‖2.

For any x ∈ H , x = ∑U∈U 〈x,S−1
η Uη〉Uη since {S−1

η Uη : U ∈ U } is the dual Riesz
basis of {Uη : U ∈ U } . Let V : H −→ H be the operator defined by

Vx = ∑
U∈U

〈x,S−1
η Uη〉Uξ .

Then

‖Vx‖ = ‖ ∑
U∈U

〈x,S−1
η Uη〉Uξ‖ = ‖θ ∗

ξ ({〈x,S−1
η Uη}U∈U )‖

� ‖θ ∗
ξ ‖‖{〈x,S−1

η Uη}U∈U ‖ �
√

Bξ/Aη · ‖x‖.

So V ∈ B(H) and VUη =Uξ for any U ∈U , in particular, let U = I we get Vη = ξ .
So VUη = Uξ = UVη for any U ∈ U , which implies that V ∈ Cη(U ) . Since
{S−1

ξ Uξ :U ∈U } is the dual Riesz basis of {Uξ :U ∈U } , for any y∈H , {〈y,S−1
ξ Uξ 〉 :

U ∈U }∈ l2(U ) . So ∑U∈U 〈y,S−1
ξ Uξ 〉Uη is convergent. Let z = ∑U∈U 〈y,S−1

ξ Uξ 〉Uη ,

then Vz = y . So V is surjective. If Vx = 0, i.e., ∑U∈U 〈x,S−1
η Uη〉Uξ = 0, since

{Uξ : U ∈ U } is a Riesz basis, then 〈x,S−1
η Uη〉 = 0 for all U ∈ U . It follows that

x = 0. Thus V is injective. So V ∈ I N V (Cη (U ) and Vη = ξ . So R(U ) = {Vη :
V ∈ I N V (Cη (U )} and the map T3 is one to one and onto. �

If T ∈ U ′ , then T ∈ Cη (U ) for any η ∈ H . So we have the following simple
facts.

COROLLARY 2.15. Suppose U is a unitary system for H with W (U ) 	= /0 and
T ∈ U ′ . Then

(i) TF (U ) ⊂ F (U ) if only if T is surjective.
(ii) TW (U ) ⊂ W (U ) if and only if T is unitary.
(iii) TN T F (U ) ⊂ N T F (U ) if and only if T is co-isometry.
(iv) TR(U ) ⊂ R(U ) if and only if T is invertible.
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For any x,y,z ∈H , x⊗y(z) = 〈z,y〉x denotes a rank one operator. It is well known
that for any ξ ,η ∈ B(U ) , the operator T = ∑U∈U Uξ ⊗Uη is well-defined bounded
operator in B(H) . And the properties of T is closed related with the properties of the
Bessel generators. In fact, T = θ ∗

ξ θη . the following facts are direct consequences of the
well-known result that a Bessel sequence is a frame if and only if its synthesis operator
is surjective and it is a Riesz basis if and only if its synthesis operator is invertible. For
convenience, we collect them into the following lemma.

LEMMA 2.16. Suppose ξ ,η ∈ B(U ) . Let T = ∑U∈U Uξ ⊗Uη .
(1) If T = I , then (ξ ,η) is a pair of dual frame generators of U .
(2) If T is surjective, then η ∈ F (U ) .
(3) If T ∗ is surjective, then ξ ∈ F (U ) .
(4) If T is invertible, then η ,ξ ∈ F (U ) . Moreover, if T−1 ∈ Cξ (U ) , then

T−1ξ ∈ F (U ) and (T−1ξ ,η) is a pair of dual frame generators for U ; If (T ∗)−1 ∈
Cη(U ) , then (T ∗)−1η ∈ F (U ) and (ξ ,(T ∗)−1η) is a pair of dual frame generators
for U .

(5) If ξ ,η ∈ R(U ) , then T is invertible.

The following is a result which generalizes Theorem 2.9 without W (U ) 	= /0 .

THEOREM 2.17. Suppose that U is a unitary system for H and ξ ,η1,η2 ∈
B(U ) . Let Ti = ∑U∈U Uηi ⊗Uξ (i = 1,2) . Suppose TiT ∗

i (i = 1,2) are invert-
ible and T1T ∗

2 = 0 , A ∈ Cη1(U ) and B ∈ Cη2(U ) . If AA∗ + BB∗ is invertible, then
Aη1 +Bη2 ∈ F (U ) .

Proof. Since T1T ∗
1 and T2T ∗

2 are invertible, there exist positive numbers a1 and
a2 such that a1I � T1T ∗

1 and a2I � T2T ∗
2 . Since A ∈ Cη1(U ),B ∈ Cη2(U ) , for any

x ∈ H , we have

(AT1 +BT2)x = ∑
U∈U

〈x,Uξ 〉AUη1 + ∑
U∈U

〈x,Uξ 〉BUη2

= ∑
U∈U

〈x,Uξ 〉UAη1 + ∑
U∈U

〈x,Uξ 〉UBη2

= ∑
U∈U

〈x,Uξ 〉U(Aη1 +Bη2).

So, AT1 + BT2 = ∑U∈U U(Aη1 + Bη2)⊗Uξ . It is easy to check that Aη1 + Bη2 ∈
B(U ) . So it is sufficient to show that AT1 + BT2 is surjective by Lemma 2.16 (2).
Since T1T ∗

2 = 0, we have

(AT1 +BT2)(AT1 +BT2)∗ = AT1T
∗
1 A∗ +BT2T

∗
2 B∗.

Since

min{a1,a2} · (AA∗+BB∗) � AT1T
∗
1 A∗ +BT2T

∗
2 B∗,
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we have

min{a1,a2} · (AA∗+BB∗) � (AT1 +BT2)(AT1 +BT2)∗.

So (AT1 + BT2)(AT1 + BT2)∗ is invertible, which implies that AT1 + BT2 is surjec-
tive. �

REMARK 2.18. (i). In the above Theorem, if ξ ∈ W (U ) , then Ti (i = 1,2) is
the parameterizing operator Tηi of ηi (i = 1,2) . Thus Theorem 2.17 generalizes the
result in Theorem 2.9.

3. Generalized dual pair of frame generators

From the above section, we know that for ξ ,η ∈ B(U ) , the operator

T = ∑
U∈U

Uξ ⊗Uη ,

plays an important role in studying the properties of the Bessel generators. And we
know that if ξ ,η ∈ R(U ) then T is invertible, however if T is invertible, it is not
guaranteed that ξ ,η ∈ R(U ) . In this section, we concentrate on studying the prop-
erties of the Bessel generators when T is invertible. We will introduce the concept of
generalized dual frame generator of a frame generator and pairs of generalized dual
frame generators of a unitary system and give some characterizations and constructions
of such pairs.

DEFINITION 3.1. Suppose that U is a unitary system for H and η1,η2 ∈B(U ) .
Let T = ∑U∈U Uη1 ⊗Uη2 . If T ∈ U ′ and T is invertible, then η2 is called a gener-
alized dual frame generator of η1 .

REMARK 3.2. (1) Since T = ∑U∈U Uη1⊗Uη2 is in U ′ and is invertible if and
only if T ∗ = ∑U∈U Uη2 ⊗Uη1 is in U ′ and is invertible, η1 is a generalized dual
frame generator of η2 if and only if η2 is a generalized dual frame generator of η1 .

(2) When η1 is a generalized dual frame generator of η2 , we called (η1,η2) is a
pair of generalized dual frame generators of U .

(3) If T = I , then (η1,η2) is a pair of dual frame generators. So pair of generalized
dual frame generators is a generalization of pair of dual frame generators.

(4) If U is a unitary group and ξ ,η ∈ R(U ) , then it is easy to see that θξ ,θη ∈
U ′ and are invertible. So T = ∑U∈U Uξ ⊗Uη = θ ∗

ξ θη ∈ U ′ and is invertible, which

implies that (ξ ,η) is a pair of generalized dual frames generators of U .

It is well-known that if a pair of Bessel generators is a pair of dual frame genera-
tors, then both of them are in fact frame generators. The following results generalized
this fact to the case of pairs of generalized dual frame generators of a unitary system.
The following results also tell us that pairs of generalized dual frame generators are
closely related to pairs of dual frame generators, so they also have potential applica-
tions in expansion of elements in Hilbert spaces.
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THEOREM 3.3. Suppose U is a unitary system, η1,η2 ∈ B(U ) .
(i) If (η1,η2) is a pair of generalized dual frame generators of U , then η1,η2 ∈

F (U ) .
(ii) (η1,η2) is a pair of generalized dual frame generators of U if and only if

there exists a unique invertible operator A ∈ U ′ such that (Aη1,η2) is a pair of dual
frame generators of U .

Proof. (i) is direct consequence of Lemma 2.16 (4).
(ii) =⇒: Since (η1,η2) is a pair of generalized dual frame generators of U ,

T = ∑U∈U Uη1 ⊗Uη2 is invertible and is in U ′ . Let A = T−1 , then A ∈ U ′ is
invertible and (Aη1,η2) is a pair of dual frame generators of U by (4) of Lemma 2.16.
If A,B ∈ U ′ are invertible operators such that (Aη1,η2) and (Bη1,η2) are pairs of
dual frames, then

∑
U∈U

UAη1 ⊗Uη2 = A ∑
U∈U

Uη1⊗Uη2 = AT = I

= ∑
U∈U

UBη1⊗Uη2 = B ∑
U∈U

Uη1⊗Uη2 = BT.

So AT = BT . Since T is invertible, we have A = B . So the operator A such that
A ∈ U ′ is invertible and (Aη1,η2) is a pair of dual frame generators is unique.

⇐=: Since (Aη1,η2) is a pair of dual frame generators of U and A ∈ U ′ is
invertible,

I = ∑
U∈U

UAη1⊗Uη2 = ∑
U∈U

AUη1⊗Uη2

= A ∑
U∈U

Uη1⊗Uη2.

So A−1 = ∑U∈U Uη1 ⊗Uη2 . Since A ∈ U ′ , it is easy to see that A−1 ∈ U ′ . So
(η1,η2) is a pair of generalized dual frame generators of U . �

COROLLARY 3.4. Suppose that U is a unitary system for H and (ξ ,η) is a
pair of generalized dual frame generators of U . Then there exists a dual frame gen-
erator ηD of η such that for any dual frame generator θ of ξ , (ηD,θ ) is a pair of
generalized dual frame generators of U .

Proof. Let T = ∑U∈U Uξ ⊗Uη . Since (ξ ,η) is a pair of generalized dual frame
generators of U , T ∈U ′ is invertible. So (T−1ξ ,η) is a pair of dual frame generators
of U by Lemma 2.16(4). Let ηD = T−1ξ . For any θ ∈ H such that (ξ ,θ ) is a pair
of dual frame generators of U , we have A = ∑U∈U Uξ ⊗Uθ = I . So

∑
U∈U

UηD ⊗Uθ = ∑
U∈U

UT−1ξ ⊗Uθ

= ∑
U∈U

T−1Uξ ⊗Uθ = T−1 ∑
U∈U

Uξ ⊗Uθ = T−1.
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Since T ∈ U ′ , T−1 ∈ U ′ . So (ηD,θ ) is a pair of generalized dual frame generators
of U . �

Let {eU}U∈U be the canonical orthonormal basis of Hilbert space l2(U ) . Sup-
pose η ∈ B(U ) . Then the analysis operator θη of {Uη}U∈U is defined by θη =
∑U∈U eU ⊗Uη . In order to study the generalized dual frame generators, we give the
structure of dual frame generator and generalized dual frame generator of a frame gen-
erator in the following theorem.

THEOREM 3.5. Suppose U is a unitary system and η ∈F (U ) , ξ ∈ H . If θη ∈
U ′ , then:

(i) (ξ ,η) is a pair of dual frame generators of U if and only if there exists θ ∈
B(U ) with ∑U∈U Uθ ⊗Uη = 0 such that ξ = S−1

η η + θ .
(ii) (ξ ,η) is a pair of generalized dual frame generators of U if and only if there

exists an invertible operator T ∈ U ′ and θ ∈ B(U ) with ∑U∈U Uθ ⊗Uη = 0 such
that ξ = TS−1

η η + θ .

Proof. Since θη ∈U ′ , it is easy to see that θ ∗
η ∈U ′ . So Sη = θ ∗

ηθη ∈U ′ , which
implies that S−1

η ∈U ′ . Since for any U ∈U we have S−1
η Uη =US−1

η η , the canonical
dual frame of {Uη : U ∈ U } is {US−1

η η : U ∈ U } , which follows that the canonical
dual frame of {Uη : U ∈ U } is generated by S−1

η η .

(i) =⇒: Let θ = ξ − S−1
η η , then it is easy to see that θ ∈ B(U ) . Since (ξ ,η)

and (S−1
η η ,η) are pairs of dual frame generators of U , we have

∑
U∈U

Uξ ⊗Uη = I = ∑
U∈U

U(S−1
η η)⊗Uη .

So

∑
U∈U

Uθ ⊗Uη = ∑
U∈U

U(ξ −S−1
η η)⊗Uη

= ∑
U∈U

Uξ ⊗Uη − ∑
U∈U

U(S−1
η η)⊗Uη = 0.

⇐=: Since ξ = S−1
η η + θ with θ ∈ B(U ) , it is easy to see that ξ ∈ B(U ) . Since

∑U∈U Uθ ⊗Uη = 0 and ∑U∈U US−1
η η ⊗Uη = I , we have

∑
U∈U

Uξ ⊗Uη = ∑
U∈U

US−1
η η ⊗Uη + ∑

U∈U

Uθ ⊗Uη = I +0 = I.

So (ξ ,η) is a pair of dual frame generators of U .
(ii) =⇒: Since (ξ ,η) is a pair of generalized dual frame generators of U , by (ii)

of Theorem 3.3, there exists an invertible operator A ∈ U ′ such that (Aξ ,η) is a pair
of dual frame generators of U . So there exists β ∈ B(U ) with ∑U∈U Uβ ⊗Uη = 0
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such that Aξ = S−1
η η + β by (i). It follows that ξ = A−1S−1

η η +A−1β . Let T = A−1

and θ = A−1β . Then θ ∈ B(U ) and

∑
U∈U

Uθ ⊗Uη = ∑
U∈U

UA−1β ⊗Uη

= ∑
U∈U

A−1Uβ ⊗Uη = A−1 ∑
U∈U

Uβ ⊗Uη = A−1(0) = 0,

which complete the proof.
⇐=: Since ξ = TS−1

η η + θ with T ∈ U ′ is invertible and θ ∈ B(U ) with

∑U∈U Uθ ⊗Uη = 0, T−1ξ = S−1
η η + T−1θ . Since T ∈ U ′ , it is easy to see that

T−1 ∈ U ′ . So T−1θ ∈ B(U ) . Since

∑
U∈U

UT−1θ ⊗Uη = ∑
U∈U

T−1Uθ ⊗Uη = T−1 ∑
U∈U

Uθ ⊗Uη = 0,

which follows that (T−1ξ ,η) is a pair of dual frame generators of U by (i). So (ξ ,η)
is a pair of generalized dual frame generators of U by Theorem 3.3 (ii). �

REMARK 3.6. The condition that θη ∈ U ′ is not very strong, in fact, if U is a
unitary group or even a group-like unitary system, for example, the Gabor system, then
θη ∈ U ′ is guaranteed.

COROLLARY 3.7. Suppose U is a unitary system and η ∈ F (U ) with its anal-
ysis operator θη ∈ U ′ and ξ ∈ B(U ) . Denote S−1

η η as η∗ , which is the frame
generator of the canonical dual frame of {Uη : U ∈ U } . Then (ξ ,η) is a pair of
generalized dual frame generators of U if and only if (ξ ,η∗) is a pair of generalized
dual frame generators of U .

Proof. It is easy to check that the frame operator Sη∗ = S−1
η and Sη ∈ U ′ , So

Sη∗ ∈ U ′ . If (ξ ,η) is a pair of generalized dual frame generators of U , then there
exists an invertible operator A ∈ U ′ and β ∈ B(U ) with ∑U∈U Uβ ⊗Uη = 0 such
that ξ = AS−1

η η + β by Theorem 3.3 (ii). So

ξ = AS−1
η (SηS−1

η η)+ β = (AS−1
η )Sηη∗ + β = (AS−1

η )S−1
η∗ η∗ + β .

Since AS−1
η ∈ U ′ and

∑
U∈U

Uβ ⊗Uη∗ = ∑
U∈U

Uβ ⊗US−1
η η

= ∑
U∈U

Uβ ⊗S−1
η Uη = ( ∑

U∈U

Uβ ⊗Uη)S−1
η = 0,

(ξ ,η∗) is a pair of generalized dual frame generators of U by Theorem 3.3 (ii). It is
easy to see that (η∗)∗ = η . So (ξ ,η) is a pair of generalized dual frame generators of
U if and only if (ξ ,η∗) is a pair of generalized dual frame generators of U . �
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REMARK 3.8. It is well-known that for a given frame, its two different dual frame
never similar. However, according to the above corollary, its two different generalized
dual frames may be similar,

In the following corollaries, as applications of Theorem 3.5, we give several dif-
ferent ways to construct pairs of generalized dual frame generators of a unitary system.

COROLLARY 3.9. Suppose U is a unitary system and η ∈ F (U ) with its anal-
ysis operator θη ∈ U ′ . If (θ1,η) and (θ2,η) are pairs of dual frame generators of
U , then (θ1 + θ2,η) is a pair of generalized dual frame generators of U .

Proof. Since (θ1,η) and (θ2,η) are pairs of dual frame generators of U , by (i) of
Theorem 3.5, there exist β1,β2 ∈B(U ) with ∑U∈U Uβ1⊗Uη = ∑U∈U Uβ2⊗Uη =
0 such that θ1 = S−1

η η + β1 and θ2 = S−1
η η + β2 . So θ1 + θ2 = 2S−1

η η +(β1 + β2) .
Since θη ∈ U ′ , it is easy to see that Sη ∈ U ′ . Since

∑
U∈U

U(β1 + β2)⊗Uη = ∑
U∈U

Uβ1⊗Uη + ∑
U∈U

Uβ2⊗Uη = 0,

it follows that (θ1 + θ2,η) is a pair of generalized dual frame generators of U by
Theorem 3.3 (ii). �

COROLLARY 3.10. Suppose U is a unitary system and η ∈F (U ) with its anal-
ysis operator θη ∈U ′ . If (θ ,η) is a pair of dual frame generators of U , then (Aθ ,η)
is a pair of generalized dual frame generators of U for any invertible operator A∈U ′ .

Proof. Since θη ∈U ′ , it is easy to see that Sη ∈U ′ . Since (θ ,η) is a pair of dual
frame generators of U , θ = S−1

η η + β with β ∈ B(U ) and ∑U∈U Uβ ⊗Uη = 0 by
(i) of Theorem 3.5. Suppose A∈U ′ is an invertible operator. Then Aθ = AS−1

η η +Aβ .
It is to check that Aβ ∈ B(U ) and

∑
U∈U

UAβ ⊗Uη = ∑
U∈U

AUβ ⊗Uη = A ∑
U∈∈U

Uβ ⊗Uη = 0.

So (Aθ ,η) is a pair of generalized dual frame generators of U by (ii) of Theorem
3.5. �

COROLLARY 3.11. Suppose U is a unitary system and η ∈F (U ) with its anal-
ysis operator θη ∈ U ′ . If (θ1,η) is a pair of generalized dual frame generators of U
and (θ2,η) is a pair of dual frame generators of U , then there is a number M > 0
such that (θ1 +Cθ2,η) is a pair of generalized dual frame generators of U for any
C > M.

Proof. Since (θ1,η) is a pair of generalized dual frame generators of U , there
exists an invertible operator T ∈ U ′ and β1 ∈B(U ) with ∑U∈U Uβ1⊗Uη = 0 such
that θ1 = TS−1

η η + β1 by (ii) of Theorem 3.5. Since (θ2,η) is a pair of dual frame
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generators of U , θ2 = S−1
η η + β2 for some β2 ∈ B(U ) with ∑U∈U Uβ2 ⊗Uη = 0

by (i) of Theorem 3.5. Let M = ‖T‖ . Then T +CI =C(I + 1
CT ) is invertible whenever

C > M = ‖T‖ . Since T ∈ U ′ , it is easy to check that T +CI ∈ U ′ and β1 +Cβ2 ∈
B(U ) and

∑
U∈U

U(β1 +Cβ2)⊗Uη = ∑
U∈U

Uβ1⊗Uη +C ∑
U∈U

Uβ2⊗Uη = 0.

Since

θ1 +Cθ2 = TS−1
η η + β1 +CS−1

η η +Cβ2 = (T +CI)S−1
η η +(β1 +Cβ2),

(θ1 +Cθ2,η) is a pair of generalized dual frame generators of U for any C > M by
(ii) of Theorem 3.5. �

COROLLARY 3.12. Suppose U is a unitary system and η ∈F (U ) with its anal-
ysis operator θη ∈ U ′ . If A,B ∈ U ′ are invertible and (ξ ,η) is a pair of generalized
dual frame generators of U , then (Aξ ,Bη) is a pair of generalized dual frame gener-
ators of U .

Proof. Since θη ∈U ′ , it is easy to see that Sη ∈U ′ . So S−1
η ∈ U ′ . Since (ξ ,η)

is a pair of generalized dual frame generators of U , there exists an invertible operator
T ∈U ′ and β ∈B(U ) with ∑U∈U Uβ ⊗Uη = 0 such that ξ = TS−1

η η +β by (ii) of
Theorem 3.5. Since B ∈ U ′ is invertible, it is easy to check that Bη ∈ F (U ) . Since
A,B,S−1

η ∈ U ′ , ATS−1
η B−1 ∈ U ′ . Since

∑
U∈U

UAβ ⊗Uη = ∑
U∈U

AUβ ⊗Uη = A ∑
U∈U

Uβ ⊗Uη = 0,

and

Aξ = ATS−1
η η +Aβ = ATS−1

η B−1Bη +Aβ = (ATS−1
η B−1)Bη +Aβ ,

(Aξ ,Bη) is a pair of generalized dual frame generators of U by (ii) of Theorem
3.5. �
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