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SEMI–SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

PAWEŁ WÓJCIK

(Communicated by B. Jacob)

Abstract. The investigations of the smooth points in the operator spaces K (H ) and L (H )
were started in [J. R. Holub, Math. Ann. 201 (1973), 157–163] and [T. J. Abatzoglou, Math.
Ann. 239 (1979), 129–135]. The aim of this paper is to present a description of semi-smooth
points in the operator spaces L (H1,H2) and K (H1,H2) .

1. Introduction

It is a result of Holub’s [4, Theorem 3.3], that for a compact operator T ∈K (H )
on a real Hilbert space H , T is smooth ⇔ ‖Tx1‖ = ‖Tx2‖ = ‖T‖ for some ‖x1‖ =
‖x2‖ = 1 implies x1 = ±x2 . Abatzoglou [1, Theorem 3.1] extended this result to
L (H ) . It is worth mentioning that the program of characterizing smooth operators
was recently completed in [8] in the more general setting of Banach spaces.

In this paper, motivated by the results published by Holub, Abatzoglou and Miličić,
we study the notion of semi-smooth points in the spaces L (H1,H2) , where H1,H2

are Hilbert spaces over R .
For a given A ∈ L (H1,H2) , we denote M(A) := {x ∈ H1 : ‖x‖ = 1, ‖Ax‖ =

‖A‖} . Our new theorem will be related in spirit, though not in proof, to the Holub-
Abatzoglou Theorem. More precisely, the Holub-Abatzoglou characterization can be
reformulated as:

T is smooth ⇔ dimspanM(A) = 1,

and we will prove that

T is semi-smooth ⇔ dimspanM(A) � 2.
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2. Preliminaries

Let (X ,‖ ·‖) be a real normed space. X∗ denotes the dual space for X . We define
norm derivatives:

ρ ′±(x,y) := ‖x‖ · lim
λ→0±

‖x+λ y‖−‖x‖
λ , x,y ∈ X .

Convexity of the norm yields that the above definition is meaningful. The following
properties can be found, e.g., in [2], [3]:

(n1) ∀α∈R ρ ′±(x,αx+ y) = α‖x‖2 + ρ ′±(x,y) ;
(n2) ∀α�0 ρ ′±(αx,y) = αρ ′±(x,y) = ρ ′±(x,αy) ;
(n3) ∀α<0 ρ ′±(αx,y) = αρ ′∓(x,y) = ρ ′±(x,αy) ;
(n4) ∀x,y∈X ρ ′±(x,x) = ‖x‖2 , |ρ ′±(x,y)| � ‖x‖ · ‖y‖ .
Note, that if (X ,〈·|·〉) is an inner product space, then 〈y|x〉 = ρ ′

+(x,y) = ρ ′−(x,y)
for arbitrary x,y ∈ X .

Miličić [5] introduced the following concept. Let us define ρ ′ : X ×X → R by

ρ ′(x,y) := 1
2

(
ρ ′−(x,y)+ ρ ′

+(x,y)
)
, x,y ∈ X .

The functional ρ ′ is also denoted by 〈y|x〉g and called an M -semi-inner product – cf.
Miličić [7] and [3]. From the properties of the mappings ρ ′± we get:

(m1) ∀α∈R ρ ′(x,αx+ y) = α‖x‖2 + ρ ′(x,y) ;
(m2) ∀α∈R ρ ′(αx,y) = αρ ′(x,y) = ρ ′(x,αy) ;
(m3) ∀x,y∈X ρ ′(x,x) = ‖x‖2 , |ρ ′(x,y)| � ‖x‖ · ‖y‖ .
Moreover, the mappings ρ ′

+ , ρ ′− , ρ ′ are continuous with respect to the second
variable, but not necessarily with respect to the first one.

We say that X is smooth at point xo if there is a unique functional f ∈ X∗ such
that ‖ f‖ = 1 and f (x) = ‖x‖ . Now, we consider a set

Nsm(X) := {x ∈ X : X is smooth at x}∪{0} .

If X is a separable real Banach space, then Nsm(X) is dense. We give a characterization
of smoothness in terms of the norm derivatives (see, e.g., [3, 2]). Namely, the following
statements are equivalent:

(a) X is smooth at xo , i.e., xo ∈ Nsm(X) ;

(b) ρ ′
+(xo, ·) ∈ X∗ ;

(c) ∀y∈X ρ ′−(xo,y) = ρ ′
+(xo,y) .

It is clear that if X is smooth, then the M -semi-inner product ρ ′ is linear in the second
argument. However, there also exists non-smooth spaces from which the mapping ρ ′
is linear in the second variable too ([5, Example 8.1], [3, p. 51]).

A real normed space X is called semi-smooth (see [6]) if ρ ′ is additive (or, equiv-
alently, linear; see (m2)) with respect to the second variable, i.e.,

∀x,y,z∈X ρ ′(x,y+ z) = ρ ′(x,y)+ ρ ′(x,z) .
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So, each smooth space is semi-smooth in the above sense but not conversely ( l1 is a
suitable example; see [5, Example 8.1] and [3, p. 51]).

This notion of semi-smooth spaces motivates this paper. We want to introduce the
following definition. Namely, we say that a normed space (X ,‖ · ‖) is semi-smooth at
the point xo ∈ X if it satisfies

∀y,z∈X ρ ′(xo,y+ z) = ρ ′(xo,y)+ ρ ′(xo,z) .

Similarly as before, we define

N s
sm(X) := {x ∈ X : X is semi-smooth at x} .

Thus we can write X = N s
sm(X) if and only if X is semi-smooth. Observe that

Nsm(X) ⊆ N s
sm(X). (1)

We summarize our observations in the following simple result. Let xo ∈ X \{0} . Then
the following statements are equivalent:

(a) X is semi-smooth at xo , i.e., xo ∈ N s
sm(X) ;

(b) ρ ′(xo, ·) ∈ X∗ .

It is worth mentioning that in some cases the notion of semi-smoothness may be more
convenient than the notion of smoothness. Indeed, recently the concept of semi-smooth-
ness played a significant role in the paper [11].

3. Semi-smoothness in operator spaces

A simple lemma will be useful here. The proof is rather easy, so we omit it.

LEMMA 1. Let X be a real normed space. Let x,y ∈ X . Suppose that a∗ ∈ X∗ is
a linear functional such that ‖a∗‖ = 1 . If a∗(x) = ‖x‖ , then

ρ ′
−(x,y) � ‖x‖ ·a∗(y) � ρ ′

+(x,y). (2)

One should be able to verify with little effort that if dist(A,K (H1,H2)) < ‖A‖ ,
then M(A) �= /0 and dimspanM(A) < ∞ . By [10, Theorem 3.2] and [9] we get

THEOREM 1. [10] Let A,T ∈L (H1,H2) and dist(A,K (H1,H2))< ‖A‖ . Then
the following conditions hold:

ρ ′
+(A,T ) = max{〈Ax|Tx〉 : x ∈ M(A)};

ρ ′−(A,T ) = min{〈Ax|Tx〉 : x ∈ M(A)}. (3)

The author proved a far more general theorem (see [10]) in that he considered only
M -ideals; here we need the special case of [10, Theorem 3.2] (i.e. only (3)) and we did
not cite his general version.

Now we are in position to prove the first main result of this paper.
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THEOREM 2. Let H1,H2 be real Hilbert spaces. Suppose that dimH1 � 2 ,
dimH2 � 2 . Assume A ∈ L (H1,H2) and dist(A,K (H1,H2)) < ‖A‖ . Then the
following statements are equivalent:

(a) A is semi-smooth, i.e., A ∈ N s
sm (L (H1,H2)) ,

(b) dimspanM(A) � 2 .

Proof. We start with proving (b)⇒(a). If dimspanM(A)= 1, then M(A)= {x1,−x1} .

Therefore ρ ′
+(A,T )

(3)
= 〈A(±x1)|T (±x1)〉 (3)

= ρ ′−(A,T ) for all T ∈ L (H1,H2) . This
means that A is a smooth point, and by (1), we have A ∈ N s

sm(L (H1,H2)) .
Now, assume that dimspanM(A) = 2. It is not difficult to prove that a restriction

A|spanM(A) : spanM(A) → H2

has to be a similarity (scalar multiple of an isometry). Namely, ‖Au‖ = ‖A‖ · ‖u‖ for
all u ∈ spanM(A) ; more precisely, M(A) is a circle in the subspace spanM(A) . Since
spanM(A) ⊆ H1 and A(spanM(A)) ⊆ H2 , we have

H1 = spanM(A)⊕ (spanM(A))⊥ and
H2 = A(spanM(A))⊕A(spanM(A))⊥.

If T ∈ L (H1,H2) , then T can be written as a 2×2 matrix with operator entries,

T =
[

T1 T2

T3 T4

]
,

where
T1 ∈ L (spanM(A), A(spanM(A))) ,
T2 ∈ L

(
spanM(A)⊥, A(spanM(A))

)
,

T3 ∈ L
(
spanM(A), A(spanM(A))⊥

)
, and

T4 ∈ L
(
spanM(A)⊥, A(spanM(A))⊥

)
.

Let us fix x and y , two orthogonal unit vectors in M(A) , and let us define the
operators A1,B1,C1,D1 ∈ L (spanM(A),A(spanM(A))) by

A1x := Ax, A1y := Ay;
B1x := 0, B1y := Ax;

C1x := Ay, C1y := 0;
D1x := Ax, D1y := −Ay.

It is clear that L (spanM(A),A(spanM(A))) = span{A1,B1,C1,D1} . Moreover, we
have also Ax⊥Ay , because the operator A|spanM(A) is a similarity. Let us introduce the
operators B,C,D ∈ L (H1,H2) ,

B :=
[

B1 0
0 0

]
, C :=

[
C1 0
0 0

]
, D :=

[
D1 0
0 0

]
.

Take an arbitrary E ∈ L (H1,H2) such that

E :=
[

0 E2

E3 E4

]
.
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Fix b,c,d ∈ R . If we define F := bB+ cC+dD+E , then we have

Fx = dAx+ cAy+E3x,
Fy = bAx−dAy+E3y.

(4)

Now, we define W := {〈Au|Fu〉 ∈ R : u ∈ M(A)} . This yields the conditions ρ ′
+(A,F)

= maxW (see Theorem 1) and ρ ′−(A,F) = minW . It is helpful to recall that ‖Ax‖ =
‖Ay‖ = ‖A‖ , x⊥y and

Ax⊥Ay, spanM(A)⊥E3x,E3y. (5)

Since M(A) is a circle (and E3x,E3y⊥spanM(A)), it follows from the definition of F
that

W = {〈Au|Fu〉 ∈ R : u ∈ M(A)}
= {〈A(αx+ βy)|F(αx+ βy)〉 : αx+ βy ∈ M(A)}
=

{〈αAx+ βAy|αFx+ βFy〉 : α2 + β 2 = 1
}

(4)
= {〈αAx+ βAy|α(dAx+ cAy)+ β (bAx−dAy)〉+ 〈αAx+βAy|αE3x+ βE3y〉 :

α2 + β 2 = 1}
(5)
= {(α2d + αβb)‖Ax‖2 +(αβc−β 2d)‖Ay‖2 :

α2 + β 2 = 1}
= ‖A‖2 ·{(α2d + αβb)+ (αβc−β 2d) : α2 + β 2 = 1

}
= ‖A‖2 ·{(α2−β 2)d + αβ (b+ c) : α2 + β 2 = 1

}
.

Now we consider a circle T := {(α,β )∈ R
2 : α2 +β 2 = 1} and a function ϕ : T→ R ,

ϕ(α,β ) := (α2 −β 2)d + αβ (b+ c) . From this it is very easy to see that −ϕ(α,β ) =
ϕ(β ,−α) , so maxϕ(T) = −minϕ(T) . On the other hand ‖A‖2 ·ϕ(T) = W , and we
obtain maxW = −minW . Therefore

ρ ′(A,F) =
1
2

(
ρ ′
−(A,F)+ ρ ′

+(A,F)
)

=
1
2

(minW +maxW ) = 0.

To summarize, it has been shown that

ρ ′(A,bB+ cC+dD+E) = 0 for all E =
[

0 E2

E3 E4

]
(6)

and for all b,c,d in R . Finally, we show that A ∈ N s
sm (L (H1,H2)) . Fix S,T ∈

L (H1,H2) and recall that L (spanM(A), A(spanM(A))) = span{A1,B1,C1,D1} . Thus
we obtain

S = α1A+ β1B+ γ1C+ δ1D+E,
T = α2A+ β2B+ γ2C+ δ2D+ Ẽ
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for some E =
[

0 E2

E3 E4

]
, Ẽ =

[
0 Ẽ2

Ẽ3 Ẽ4

]
, and for some α1,β1,γ1,δ1,α2,β2,γ2,δ2 ∈ R .

Applying (m1) we get

ρ ′(A,S+T ) = ρ ′(A,(α1 + α2)A+(β1 + β2)B+(γ1 + γ2)C+(δ1 + δ2)D+E1 +E2)
(m1)
= (α1 + α2)‖A‖2 + ρ ′(A,(β1 + β2)B+(γ1 + γ2)C+(δ1 + δ2)D+E1 +E2)
(6)
= (α1 + α2)‖A‖2 +0 = α1‖A‖2 + α2‖A‖2.

On the other hand, by (m1) and (6) we also have

ρ ′(A,S) = ρ ′ (A,α1A+ β1B+ γ1C+ δ1D+E)
(m1)= α1‖A‖2 + ρ ′ (A,β1B+ γ1C+ δ1D+E)
(6)
= α1‖A‖2 +0 = α1‖A‖2.

In a similar way one can prove ρ ′(A,T ) = α2‖A‖2 . Thus we obtain

ρ ′(A,S+T ) = ρ ′(A,S)+ ρ ′(A,T )

for all S,T ∈ L (H1,H2) , which means that A is a semi-smooth point.
For the proof of the implication (a)⇒(b), we assume that A is a semi-smooth

point. Assume, contrary to our claim, that dimspanM(A) > 2. Again, it is easy to see
that M(A) is a unit sphere in a subspace spanM(A) . Thus there are vectors x,y,z ∈
M(A) such that x⊥y , x⊥z , y⊥z . Since A|spanM(A) is a similarity, we have also Ax⊥Ay ,
Ax⊥Az , Ay⊥Az and ‖Ax‖ = ‖Ay‖ = ‖Az‖ = ‖A‖ . Let B,C ∈ L (H1,H2) be defined
by

Bx := Ax, By := −Ay, Bz := 0,
Bw := 0 for w ∈ {x,y,z}⊥;

(7)

and
Cx := 0, Cy := −Ay, Cz := Az,
Cw := 0 for w ∈ {x,y,z}⊥.

(8)

A moment’s reflection shows that ‖B‖ = ‖A‖ = ‖C‖ . If we define linear functionals
f ,g ∈ L (H1,H2)∗ by the formulas

f (T ) :=
〈

Ax
‖Ax‖ |Tx

〉
and g(T ) :=

〈
Ay
‖Ay‖ |Ty

〉
,

then ‖ f‖ = 1 = ‖g‖ , f (A) = ‖A‖ = g(A) and f (A) = f (B) , g(A) = −g(B) . Thus

‖A‖2 = ‖A‖ · f (A) = ‖A‖ · f (B)
(2)
� ρ ′

+(A,B)
(m3)
� ‖A‖ · ‖B‖= ‖A‖2,

whence ρ ′
+(A,B) = ‖A‖2 . In a similar way, we obtain

‖A‖2 = ‖A‖ ·g(A) = ‖A‖ · (−g(B))
(2)
� −ρ ′

−(A,B)

� |ρ ′
−(A,B)|

(m3)
� ‖A‖ · ‖B‖= ‖A‖2,
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thus ρ ′−(A,B) = −‖A‖2 . Therefore ρ ′(A,B) = 0. We now apply this method again,
with B replaced by C , to obtain ρ ′(A,C) = 0.

From (7) and (8), we have

(B+C)x = Ax, (B+C)y = −2Ay,
(B+C)z = Az, (B+C)w = 0 for w ∈ {x,y,z}⊥.

It is easy to check that ‖B +C‖ = 2‖A‖ . Moreover, in a similar way one can prove
ρ ′−(A,B+C) = −2‖A‖2 . A calculation is identical and we do not repeat this process.
But we should show that ρ ′

+(A,B+C) = ‖A‖2 . It follows from Theorem 1 that

ρ ′
+(A,B+C) = max{〈Au|(B+C)u〉 : u ∈ M(A)}

= max{α2‖Ax‖2−2β 2‖Ay‖2 + γ2‖Az‖2 : α2 + β 2 + γ2 = 1}
= ‖A‖2 ·max{α2−2β 2 + γ2 : α2 + β 2 + γ2 = 1}
= ‖A‖2 ·max{1−β 2−2β 2 : β ∈ [−1,1]} = ‖A‖2 ·1.

Summarizing, we obtain

ρ ′(A,B+C) =
1
2

(
ρ ′
−(A,B+C)+ ρ ′

+(A,B+C)
)

= −1
2
‖A‖2 �= 0 = ρ ′(A,B)+ ρ ′(A,C)

and therefore A /∈ N s
sm (L (H1,H2)) , a contradiction. The proof of Theorem 2 is

complete. �
Analysis similar to that in the proof of Theorem 2 shows that we can obtain the

following theorem.

THEOREM 3. Let H1,H2 be Hilbert spaces. Suppose that 2 � dimH1,dimH2 .
Assume A ∈ K (H1,H2) and A �= 0 . The following statements are equivalent:

(a) A is semi-smooth, i.e., A ∈ N s
sm (K (H1,H2)) ,

(b) dimspanM(A) � 2 .

Finally, on account of Theorem 2, as a corollary we get the following result.

THEOREM 4. Suppose that 2 � dimH1 , 2 � dimH2 . The following statements
are equivalent:

(a) L (H1,H2) is semi-smooth;

(b) dimH1 = 2 or dimH2 = 2 .

Proof. Using Theorem 2 and the inequalities dimspanM(A) � dimH1 and

dimspanM(A) = dimspanA(spanM(A)) � dimH2,

we have our assertion. �
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4. Concluding remark and problem

It is worth mentioning that in order to prove our main result (i.e. Theorem 2) we
assumed that dist(A,K (H1,H2)) < ‖A‖ . However, for infinite-dimensional spaces
we may consider yet another case, i.e. dist(A,K (H1,H2))= ‖A‖ . Let us consider two
subsets La,Lb ⊆ L (H1,H2) defined by La := {A : dist(A,K (H1,H2)) < ‖A‖}
and Lb := {A : dist(A,K (H1,H2)) = ‖A‖} . Of course, main result, Theorem 2, gave
the almost complete description of semi-smoothness. Indeed, La is huge (namely, La

is open and dense) and Lb is very small (more precisely, Lb is nowhere dense). So,
a large class of operators was investigated. However, the case dist(A,K (H1,H2)) =
‖A‖ remains an open problem.
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