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Abstract. The indefinite inner products induced by invertible and self-adjoint weights are intro-
duced for elements in Hilbert C∗ -modules. The solvability of the equation AX =C is considered
for Hilbert C∗ -module operators. Some equivalent conditions concerning two aspects of factor-
ization and range inclusion are refined and generalized to the weighted case.

1. Introduction

For a linear operator T , the range and the null space of T are denoted by R(T )
and N (T ) , respectively, and by R(T ) the norm closure of R(T ) . Douglas [4] (see
also [11]) studied the equation AX =C for bounded linear operators on Hilbert spaces,
and gave the following so called Douglas theorem.

DOUGLAS THEOREM. [4, Theorem 1] If A and C are in the C∗ -algebra B(H )
of all bounded linear operators on a Hilbert space H , then the following statements
are equivalent:

(i) R(C) ⊆ R(A);

(ii) there exists X ∈ B(H ) such that C = AX ;

(iii) CC∗ � k2AA∗ for some scalar k � 0 .

Moreover, if (i), (ii), and (iii) are valid, then there exists a unique operator D ∈ B(H )
(known as the reduced (or Douglas) solution in the literature) with C = AD so that

(a) ‖D‖2 = inf{μ : CC∗ � μAA∗} ;

(b) N (D) = N (C);

(c) R(D) ⊆ R(A∗) .
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The equivalence between these established conditions are inspected in more gen-
eral settings [3, 5, 6, 7, 11, 16]. Šmul’jan [13] was the first mathematician who pointed
out that the Douglas theorem does not hold in indefinite inner product spaces, in general,
even in the finite dimensional ones. Rodman [12] proved the Douglas theorem for Krein
space operators. Under the condition that R(A∗) is orthogonally complemented, the
equivalence between the solvability of AX = C and the range inclusion R(C) ⊆ R(A)
is proved in [7, Theorem 1.1] for adjointable operators on Hilbert C∗ -modules. The ne-
cessity of the orthogonal complementarity of R(A∗) as well as equivalent conditions
for the majorization CC∗ � λAA∗ are investigated in a recent paper [6, Theorems 2.4
and 3.2].

In the current paper, we restrict our attention to clarify the relationship between
two aspects of factorization and range inclusion for Hilbert C∗ -module operators, with
emphasis imposed on the indefinite inner products induced by weights, which are in-
vertible and self-adjoint, yet may fail to be positive. It is mentionable that the indefinite
inner products considered in this paper are quite different from that in [1].

Some results obtained originally in [6] and [7] are refined and generalized in this
paper to the weighted case. More specifically, the proof of (iii)⇐⇒(iv) in [7, Theo-
rem 1.1] is reorganized in the weighted case (see the proof of Theorem 1). Note that
Theorem 3.2 of [6] actually deals with the reduced solution of AX = C rather than the
general solution, and so a gap is contained in its proof of (iii)=⇒(i). The modified
versions of [6, Theorem 3.2] are provided in the weighted case with the restriction of
the reduced solution; see Theorems 2 and 3 in the next sections, respectively. A result
in the non-weighted case is provided towards covering the gap mentioned above; see
our Theorem 4 for the details.

Let us recall briefly some basic knowledge about Hilbert C∗ -modules and ad-
jointable operators; more details can be found e.g., in [9].

An inner product module over a C∗ -algebra A is a (right) A -module H equipped
with an A -valued inner product 〈·, ·〉 , which is C-linear and A -linear in the second
variable and has the properties 〈x,y〉∗ = 〈y,x〉 as well as 〈x,x〉 � 0 with equality if and
only if x = 0. The A -module H is called a (right) Hilbert A -module if it is complete

with respect to the norm ‖x‖ = ‖〈x,x〉‖ 1
2 .

Suppose that H and K are two Hilbert A -modules, let L (H ,K ) be the set
of all operators T : H → K for which there is an operator T ∗ : K → H such that
〈Tx,y〉 = 〈x,T ∗y〉 for all x ∈ H and y ∈ K . It is known that (see, e.g., [9, P., 8]) any
element T ∈ L (H ,K ) must be a bounded linear operator, which is also A -linear. In
the case when H = K , we abbreviate L (H ,H ) as L (H ) , which is a C∗ -algebra.

If both H1 and H2 are submodules of H such that H1∩H2 = {0} , then H1 �
H2 is defined by

H1 �H2 = {h1 +h2 : h1 ∈ H1,h2 ∈ H2}.

Recall that a closed submodule M of H is said to be orthogonally complemented in
H if H = M �M⊥ , where

M⊥ =
{
x ∈ H : 〈x,y〉 = 0, for all y ∈ M

}
.
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A brief description of the arrangement of this paper is as follows. In the next
section, we focus on the study of the equivalent conditions concerning two aspects of
factorization and range inclusion. Furthermore, in view of the solvability of the equa-
tion AX = C , the necessity of the orthogonal complementarity of R(A∗) is clarified.

Throughout the rest of this paper, Cm×n is the set of all m×n complex matrices,
A is a C∗ -algebra, H , K , E are Hilbert A -modules and IH (or simply I ) is the
identity operator on H . In addition, N ∈ L (H ) , M ∈ L (K ) , and G ∈ L (E ) are
three weights (see Definition 1).

2. Main results

We start our work with the following definition playing an essential role in our
investigation.

DEFINITION 1. An element M of L (H ) is said to be a weight if M = M∗ and
M is invertible in L (H ) . If, furthermore, M is positive, then M is said to be positive
definite.

DEFINITION 2. Let M ∈L (H ) be a weight. The indefinite inner product on H
induced by M is defined by

〈x,y〉M := 〈x,My〉, for all x,y ∈ H , (1)

and the notation HM is used to indicate that H is endowed with this indefinite inner
product.

Recall that a weight J on a Hilbert space (H ,〈·, ·〉) is said to be an involution if
J = J∗ = J−1 . In this case, HJ is called a Krein space. It is clear that P+ = I+J

2 and
P− = I−J

2 are projections such that R(P+) ⊆ H+ and R(P−) ⊆ H− , where H+ =
{x∈H : 〈x,x〉J � 0} and H− = {x∈H : 〈x,x〉J � 0} . Krein spaces have been applied
in many disciplines such as the quantum field theory [8] and noncommutative geometry
[14]. The reader is referred to [2, 10] for some basic results on Krein spaces.

EXAMPLE 1. Let (K ,〈·, ·〉) be a Hilbert C∗ -module over a unital C∗ -algebra A

with the unit e , and let J =
(

I 0
0 −e

)
, where I denotes the identity operator in L (K ) .

Then
〈(x,a),(y,b)〉J = 〈J(x,a),(y,b)〉 = 〈x,y〉−a∗b

gives rise to an indefinite inner product on K ⊕A . The case when K is taken to be
Cn×n and A = C is called the Minkowski space.

The following lemma is known.

LEMMA 1. (See [15, Remark 1.1]) Let M ∈ L (K ) and N ∈ L (H ) be two
weights. Then for every T ∈ L (H ,K ) ,

〈Tx,y〉M = 〈x,T #y〉N , for every x ∈ H and y ∈ K ,
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where T # is called the weighted adjoint operator of T and is given by

T # = N−1T ∗M ∈ L (K ,H ). (2)

REMARK 1. Let T ∈ L (H ,K ) , and let M ∈ L (K ) and N ∈ L (H ) be two
weights. Since N−1,T ∗ and M are all adjointable, the operator T # formulated by (2) is
in fact an element of L (K ,H ) . Instead of T ∈ L (H ,K ) and T # ∈ L (K ,H ) ,
we use the notation T ∈ L (HN ,KM) and T # ∈ L (KM,HN) to indicate that H and
K are endowed with weights N and M , respectively.

DEFINITION 3. Let A ∈ L (HN ,KM) and C ∈ L (EG,KM) . An operator D ∈
L (EG,HN) is said to be a reduced solution to the system

AX = C
(
X ∈ L (EG,HN)

)
, (3)

if AD = C and R(D) ⊆ R(A#) , where A# = N−1A∗M .

REMARK 2. Since N is not necessarily positive definite, it may happen that R(A#)

∩N (A) �= {0} . For example, take H = K = C2 and let M = N =
(

1 0
0 −1

)
be

two weights on H and K , respectively. Put A =
(

1 −1
1 −1

)
. It is evident that

A# =
(

1 −1
1 −1

)
, and so

R(A#) =
{
(α,α)t : α ∈ C

}
= N (A).

In addition, R(A∗) = {(α,−α)t : α ∈ C} �= R(A#) .
If R(A#)∩N (A) = {0} , then whenever it exists, the reduced solution to system

(3) is unique.

Our main result reads as follows.

THEOREM 1. (Main) Let A ∈ L (HN ,KM) be such that

H = R(A#)�N (A), where A# = N−1A∗M . (4)

Then for every C ∈ L (EG,KM) , the following three statements are equivalent:

(i) R(C) ⊆ R(A);

(ii) system (3) has a reduced solution;

(iii) system (3) has a solution.
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Proof. The proofs of (ii)=⇒(iii) and (iii)=⇒(i) are obvious. It is enough to prove
the implication (i)=⇒(ii). Suppose that C ∈ L (E ,K ) is such that R(C) ⊆ R(A) .
Then for every x ∈ E , there exists y ∈ H such that

Cx = Ay = Ay1, (5)

where, by assumption (4), y is decomposed uniquely as y = y1 + y2 with y1 ∈ R(A#)
and y2 ∈ N (A) . If y′1 ∈ R(A#) also satisfies (5), that is, Cx = Ay′1 , then

y1− y′1 ∈ R(A#)∩N (A) = {0}.

Hence y1 = y′1 by assumption (4). It follows that the operator D : E → H , x �→ y1 is
well-defined and

R(D) ⊆ R(A#) and Cx = ADx, for all x ∈ E . (6)

We prove that D is bounded by using the closed graph theorem. Let {xn} be in E

such that xn → x and Dxn → y . It is clear that y ∈R(A#) , and Cxn →Cx , ADxn → Ay ,
since C and A are bounded. Moreover, by (6), we have

ADxn = Cxn →Cx,

whence Cx = Ay , which ensures that Dx = y . This completes the proof of the bound-
edness of D .

We show that

‖C#x‖ � M‖A#x‖, where M = ‖N‖ · ‖D‖ · ‖G−1‖ . (7)

In view of (2) and (6), for each x ∈ K we have

〈C#x,C#x〉 = 〈G−1C∗Mx,G−1C∗Mx〉
= 〈CG−2C∗Mx, Mx〉
= 〈ADG−2C∗Mx, Mx〉
= 〈DG−2C∗Mx, A∗Mx〉
= 〈NDG−1 ·G−1C∗Mx, N−1A∗Mx〉
= 〈NDG−1 ·C#x, A#x〉.

Hence

‖C#x‖2 = ‖〈NDG−1 ·C#x, A#x〉‖ � ‖N‖‖D‖‖G−1‖‖C#x‖‖A#x‖,

which clearly leads to (7).
We then define an operator V from H to E in three steps. It follows from (7)

that the operator
V : R(A#) → R(C#), A#x →C#x
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is well-defined, linear, and ‖Vu‖� M‖u‖ for every u∈R(A#) . Therefore, the operator
V can be extended to be a bounded linear operator from R(A#) to R(C#) . A further
linear extension of V can be made from assumption (4) by just letting

Vu = 0, for all u ∈ N (A) .

From the construction of the operator V above, we observe that

V |N (A) ≡ 0, VA#x =C#x (x ∈ K ), ‖Vu‖ � M‖u‖ (u ∈ R(A#)
)
. (8)

Next, we prove that D# = V (Hence, the boundedness of V will be deduced). Indeed,
given any x ∈ E and y ∈ H with y = y1 + y2 such that y1 ∈ R(A#) and y2 ∈ N (A) ,
we can choose sequences {un} and {vn} in K such that

lim
n→∞

A#un = y1 and lim
n→∞

A#vn = Dx
(
see (6)

)
,

whence, by (8) and (6), we infer that

〈x,Vy〉G =〈x,Vy1〉G = lim
n→∞

〈x,VA#un〉G = lim
n→∞

〈x,C#un〉G
= lim

n→∞
〈Cx,un〉M = lim

n→∞
〈ADx,un〉M = lim

n→∞
〈Dx,A#un〉N

=〈Dx,y1〉N = lim
n→∞

〈A#vn,y1〉N = lim
n→∞

〈vn,Ay1〉M
= lim

n→∞
〈vn,Ay〉M = lim

n→∞
〈A#vn,y〉N = 〈Dx,y〉N .

This completes the proof of D# = V .
Now, for each x ∈ E and y ∈ H , we have

〈Dx,y〉 =〈Dx,N−1y〉N = 〈x,VN−1y〉G = 〈x,GVN−1y〉,

which implies that D is adjointable and D∗ = GVN−1 . It follows from (6) that D is
actually the reduced solution to system (3). �

EXAMPLE 2. Let E = H = K = C
2 and M = N =

(
0 1
1 0

)
be two weights on

H and K , respectively. Let G be any weight on E and put A =
(

1 −1
1 −1

)
. It is

evident that

R(A#) =
{
(α,−α)t : α ∈ C

}
and N (A) = R(A) =

{
(α,α)t : α ∈ C

}
,

which lead obviously to (4). Let C ∈ L (E ,K ) = C2×2 be any operator such that
R(C) ⊆ R(A) . Then clearly,

C =
(

α β
α β

)
for some α,β ∈ C ,
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and therefore the reduced solution to system (3) turns out to be

D =

(
α
2

β
2

−α
2 − β

2

)
.

As a reverse direction of (4), we have the following result.

THEOREM 2. Let A ∈ L (HIH ,KM) . Then the following statements are equiv-
alent:

(i) H can be decomposed directly as (4) with N = IH therein;

(ii) given every Hilbert C∗ -module E with a weight G and every C ∈ L (EG,KM)
with R(C) ⊆ R(A) , system (3) with N = IH therein has a reduced solution;

(iii) given every Hilbert C∗ -module E and every C ∈ L (EIE ,KM) with R(C) ⊆
R(A) , system (3) with N = IH therein has a reduced solution.

Proof. The implication (i)=⇒(ii) is shown in Theorem 1, and the implication
(ii)=⇒(iii) is obvious.

(iii)=⇒(i): Put E = R(A#) = R(I−1
H A∗M) = R(A∗) ⊆ H , which is endowed

with the identity weight. Let C = A|E be the restriction of A on E . It is obvious that
C ∈ L (E ,K ) such that

C∗x = A∗x for every x ∈ K ,

which gives by (2) that

C#x = I−1
E C∗Mx = A∗Mx = A#x, for every x ∈ K .

By our assumption, there exists D ∈ L (EIE ,HN) such that

AD = C and R(D) ⊆ R(A#) = E .

Therefore,
D∗A#x = C#x = A#x, for every x ∈ K ,

which implies that
D∗u = u, for all u ∈ E .

The equation above together with D∗ ∈ L (H ,E ) yields

R(D∗) = E and D∗D∗x = D∗x for all x ∈ H .

It follows that

x = D∗x+(x−D∗x) ∈ E +N (D∗) for all x ∈ H ,

which means that H = E +N (D∗) and E ∩N (D∗) = {0} .
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It remains only to prove that N (D∗) = N (A) . By assumption R(D)⊆ E , hence
D∗Du = Du for every u ∈ E . Therefore for each u ∈ E ,

〈Du−u,Du−u〉=〈Du,Du〉− 〈u,Du〉− 〈Du,u〉+ 〈u,u〉
=〈u,D∗Du〉− 〈u,Du〉− 〈u,D∗u〉+ 〈u,u〉= 0,

which gives Du = u . It follows that

N (A) =
{
x ∈ H : 〈u,Ax〉M = 0,∀u ∈ K

}
=
{
x ∈ H : 〈A#u,x〉 = 0,∀u ∈ K

}
=
{
x ∈ H : 〈v,x〉 = 0,∀v ∈ E

}
=
{
x ∈ H : 〈Dv,x〉 = 0,∀v ∈ E

}
=
{
x ∈ H : 〈v,D∗x〉 = 0,∀v ∈ E

}
= N (D∗). �

REMARK 3. Replacing “has a reduced solution” with “has a solution”, we do not
know at this moment whether the implication (iii)=⇒(i) in the preceding theorem is
valid or not. A partial answer will be given in Theorem 4.

THEOREM 3. Let A ∈ L (HN ,HM) be such that NA = AN and

〈x,x〉N = 0 implies x = 0 whenever x ∈ R(A#) . (9)

Then the following statements are equivalent:

(i) H can be decomposed directly as (4);

(ii) given every Hilbert C∗ -module E with a weight G and every C ∈ L (EG,HM)
with R(C) ⊆ R(A) , system (3) with KM = HM therein has a reduced solution.

Proof. The implication (i)=⇒(ii) is shown in Theorem 1.
(ii)=⇒(i): Let E = R(A#) and G = N|E be the restriction of N on E . Since

NA = AN , we have NA∗ = A∗N and N−1A∗ = A∗N−1 , so

E = R(N−1A∗M) = R(N−1A∗) = R(A∗N−1) = R(A∗). (10)

Hence
GE = R(NA∗) = R(A∗N) = R(A∗) = E .

It follows that G is a weight on E . Put C = A|E : EG → HM as before. Then (10)
yields C ∈ L (EG,HM) , which satisfies

C∗x = A∗x and C#x = N−1C∗Mx = A#x for every x ∈ HM .

By the assumption, there exists D ∈ L (EG,HN) such that

AD = C and R(D) ⊆ E .
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Therefore,
D#A#x = C#x = A#x for all x ∈ HM ,

which gives

D#u = u and D#D#x = D#x, for all u ∈ E ⊆ HN and x ∈ HN .

As in the proof of Theorem 2, we can obtain

R(D#) = E and HN = E �N (D#).

For each u ∈ E , since D#Du = Du , we have

〈Du−u,Du−u〉N =〈Du,Du〉N −〈u,Du〉N −〈Du,u〉N + 〈u,u〉N
=〈u,D#Du〉G−〈u,Du〉N −〈u,D#u〉G + 〈u,u〉N = 0,

which gives Du = u by (9). From (9) it follows that

N (D#) =
{
x ∈ HN : 〈u,D#x〉G = 0,∀u ∈ EG

}
=
{
x ∈ HN : 〈Du,x〉N = 0,∀u ∈ EG

}
=
{
x ∈ HN : 〈v,x〉N = 0,∀v ∈ E ⊆ HN

}
=
{
x ∈ HN : 〈A#z,x〉N = 0,∀z ∈ HM

}
=
{
x ∈ HN : 〈z,Ax〉M = 0,∀z ∈ HM

}
= N (A).

This completes the proof that H can be decomposed directly as (4). �

REMARK 4. For a Krein C∗ -module HJ , the set

H0 = {x ∈ H : 〈x,x〉J = 0}

is called the neutral part of H . In this case, (9) can be figured out as R(A#)∩H0 =
{0} .

We finish this paper with a result on the orthogonal complementarity of R(A∗) .
In what follows we consider only the non-weighted case. Recall that every C∗ -algebra
A can be regarded as a Hilbert A -module via the inner product given by

〈x,y〉 := x∗y, for all x,y ∈ A .

Assume that A has a unit e . Then for each T ∈ L (A,K ) ,

T (x) = T (ex) =
(
T (e)

)
x = ax = La(x),

where a = T (e) . If, in addition, K = A , then La ∈ L (A) and (La)∗ = La∗ . In
particular, Le is the identity operator IA on A .
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THEOREM 4. Let A be a unital C∗ -algebra and let A ∈ L (A,K ) . If for every
C ∈ L (E ,K ) with R(C) ⊆ R(A) , system (3) with G = IE ,H = A and N = IH has
a solution, then A can be decomposed orthogonally as

A = R(A∗)�N (A).

Proof. Let H = A , E = R(A∗) and C = A|E . By the proof of Theorem 2, we
have C ∈ L (E ,K ) such that

C∗x = A∗x, for all x ∈ K .

By our assumption, there exists X ∈ L (E ,H ) such that AX = C . Then

X∗A∗x = C∗x = A∗x, for all x ∈ K .

It follows that X∗u = u for all u ∈ E , therefore R(X∗) ⊇ E , which leads obviously by
X∗ ∈ L (H ,E ) to R(X∗) = E .

Now let a = X∗(e) ∈ E , where e is the unit of A . Then

X∗(x) = La(x), for all x ∈ H ,

where La is an element of L (H ) rather than an element of L (H ,E ) . Since R(La)=
R(X∗) = E is closed in H , by [9, Theorem 3.2], we infer that H can be decomposed
orthogonally as H = E �E ⊥ . The conclusion then follows from the well-known equa-

tion R(A∗)
⊥

= N (A) . �
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