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Abstract. We show that the block numerical range of an n×n -operator matrix A corresponding
to an operator A on the Banach space X with respect to a decomposition X = ∏Xj has at most
n connected components. We then characterize operator matrices with finite block numerical
range. As an important tool we prove an inclusion theorem for the block numerical ranges of the
principal submatrices of A .

1. Introduction and notation

The block numerical range of a bounded linear operator A on a Hilbert space with
respect to an orthogonal decomposition was introduced by C. Tretter and M. Wagen-
hofer in [9] (see also [10, Chapter 1.11]) in order to obtain a better estimate for the
spectrum of A than the one given by the numerical range. Generalizing this work as
well as [5] we developed an approach to block numerical ranges of operator matrices
with respect to arbitrary decompositions of arbitrary Banach spaces in [7].

Our starting point in the present paper is the following result of M. Wagenhofer
concerning orthogonal decompositions of Hilbert spaces:

Let D : H = H1 × ·· ·×Hn be an orthogonal decomposition of the Hilbert space
H with unit sphere SH , and let A be a bounded linear operator on H . For each �u =
(u1, . . . ,un)∈∏ j SHj =: S×H we refer to the matrix (Aui|u j)i, j as A�u . Moreover, σ(A�u)
denotes the spectrum of A�u , and n(λ ) the algebraic multiplicity of λ ∈ σ(A�u) . In this
particular case the block numerical range of A is the set VD(A) =

⋃
�u∈S×H

σ(A�u).
Wagenhofer’s result reads as follows:

PROPOSITION 1.1. [11, Proposition 1.15] Let H and A be as above.
The block numerical range VD(A) consists of at most n path-connected compo-

nents W1, . . . ,Ws . Moreover, the following equation holds for each k � s, �u,�v ∈ S×H :

∑
λ∈σ(A�u)∩Wk

n(λ ) = ∑
λ ′∈σ(A�v)∩Wk

n(λ ′). (1)
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In the present paper we show in Section 2 that the block numerical range of an
n×n -operator matrix A corresponding to an operator A on an arbitrary Banach space
X has at most n connected components C1, . . . ,Cs , and an equation analogous to (1)
holds. So in particular the block numerical range is either uncountable or finite. More-
over, concerning path-connectedness we generalize Wagenhofer’s proposition to arbi-
trary smoothly normed and arbitrary uniformly convex Banach spaces. The Lp -spaces
(1 < p < ∞) belong to both of these classes (for details see e. g. [3]).

In Sections 4 and 5 we characterize operator matrices with finite block numerical
range, thus generalizing a result for 2× 2 matrices corresponding to an orthogonal
decomposition of a finite-dimensional Hilbert space ([8, Theorem 2.2]).

As a tool we prove an inclusion theorem concerning the block numerical ranges
of principal submatrices of a given operator matrix in section 3 thereby generalizing [9,
Theorem 3.1].

Finally, in the appendix we establish a result on the set of zeros of a connected set
of polynomials which will be needed in Section 2. Moreover, we show that for some
common Banach spaces X the hypotheses of a restricted version of the generalisation
of Wagenhofer’s result hold even though their norm is neither smooth nor uniformly
convex (see Proposition 2.6).

Let us point out that our results are new even in the case of finite dimensional
spaces.

1.1. Decomposition of Banach spaces

Our starting point is a complex Banach space (X ,‖ · ‖) which is decomposed into
the direct product of n � 1 closed subspaces X1, . . . ,Xn of X : X = ∏n

1 Xk and referred
to as D . The number n = n(D) is called the order of D . The canonical projection
onto Xj with kernel ∏k �= j Xk is denoted Pj ( j = 1 . . .n) .

The dual of the Banach space X is X ′ . We set Satt(X) = {(x,ϕ) : x ∈ X , ϕ ∈
X ′, ‖x‖= ‖ϕ‖= ϕ(x) = 1} . To explain the notation Satt we observe that a normalized
pair (x,ϕ) ∈ X × X ′ is in Satt(X) if ϕ attains its norm on x , while x considered
as an element in the bidual X ′′ of X attains its norm on ϕ . Moreover, we denote
SD = ∏n

i=1 Satt(Xi) . To define a topology Tatt on Satt(X) we first equip X with the
norm topology and X ′ with the weak∗ -topology and then consider the product topology
on X ×X ′ . Restricting this topology to Satt(X) gives us Tatt . We take the product
topology TD on SD , i. e. (SD ,TD) = ∏n

i=1(Satt(Xi),Tatt ).
For every Banach space X , (Satt(X),Tatt ) is connected (see e. g. [1, p. 101,

Theorem 4]), and so is the product (SD ,TD) for every decomposition D of X .

OPEN PROBLEM. Is Satt(X) even path-connected for every Banach space X ? If
this was true, then Proposition 2.4 below (a generalisation of Proposition 1.1 above)
would hold for every Banach space.

1.2. The block numerical range of an operator

In the following, L (X) denotes the set of bounded linear operators on the com-
plex Banach space X . Moreover we refer to the unit sphere of the Banach space X as
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SX = {x ∈ X : ‖x‖ = 1} .
Let X = ∏n

1 Xk be an arbitrary decomposition of X into closed subspaces Xk ,
denoted by D . For A∈L (X) and i, j ∈ {1, . . . ,n} we define bounded linear operators
Ai j := PiAPj|Xj . Then A can be written as an n×n operator matrix A = (Ai j)n

i, j=1 such
that for all x = (x1, . . . ,xn) ∈ X the following equation holds:

Axk = APkx =
n

∑
j=1

AjkPkx =
n

∑
j=1

Ajkxk.

For d = ((u1,ϕ1), . . . ,(un,ϕn)) = ∏n
k=1(uk,ϕk) ∈ SD we define

Bd = (ϕi(Ai ju j))
n
i, j=1 = (ϕi(PiAu j))n

i, j=1.

For details we refer to [7, Section 1.2].
The next lemma is obvious but useful in the remainder of the paper.

LEMMA 1.2. The mapping d �→ Bd from SD(X) into the space Mn(C) of all
complex n×n matrices is continuous. In particular, the image MD , say, is connected
and even path-connected, whenever SD(X) is path-connected.

Proof. Recall that the mapping (X ,T||.||)× (X ′,Tw∗) 
 (x,ϕ) �→ ϕ(x) is jointly
continuous on bounded sets. This fact implies the Lemma, since SD(X) is connected
(see Section 1.1). �

For a bounded operator T the set σ(T ) = {λ ∈ C : λ I−T not bijective} denotes
its spectrum. The block numerical range is defined as follows:

DEFINITION 1.3. [5, p. 8], [7, Definition 1.1] Let D be a decomposition of the
complex Banach space X and let A ∈ L (X) . The block numerical range of A with
respect to D is the set

VD(A) :=
⋃

d∈SD

σ(Bd) =
⋃

d∈SD

{λ : det(λ I−Bd) = 0}. (2)

Observe that for the trivial decomposition X = X , denoted by D0 , the block nu-
merical range VD0(A) is nothing else than the spatial numerical range (see e. g. [1])
which is connected by Lemma 1.2:

V (A) = {ϕ(Au) : (u,ϕ) ∈ Satt(X)}. (3)

Moreover, if H is a Hilbert space and D is an orthogonal decomposition of H , then
VD(A) coincides with the block numerical range introduced in [9] and already men-
tioned in the introduction.

Let us recall the following facts on the block numerical range: we have always
VD(A) ⊂VD ′(A′) ⊂VD(A) ([7, Proposition 2.6]). It follows that

VD ′(A′) ⊂VD ′′(A′′) ⊂VD ′(A′) = VD(A), (4)

where D ′ , D ′′ are the corresponding decompositions of X ′ , X ′′ , respectively. The
importance of the block numerical range lies among others in the relation σ(A) ⊂
VD(A) ([7, Theorem 2.8]).
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2. Topological properties of the block numerical range

In this section we show that on arbitrary Banach spaces the block numerical range
consists of at most n connected components where n is the order of the decomposition.
Moreover, an equation analogue to (1) holds. Assuming then that the norm of the
underlying Banach space is smooth, i. e. for each x ∈ SX there exists a unique ϕ ∈ X ′ ,
‖ϕ‖ = 1, with ϕ(x) = 1, we even obtain a corresponding decomposition into path-
connected components.

In the following, for each B ∈ Mn(C) the number n(z) refers to the algebraic
multiplicity of z ∈ σ(B) .

LEMMA 2.1. Let M ⊂ Mn(C) be connected and W (M ) :=
⋃

B∈M σ(B) . Then
the following holds.

(a) W (M ) consists of at most n connected components C1, . . . ,Cs , and on each
component Ck the following equation holds:

∑
z∈σ(B)∩Ck

n(z) = ∑
z′∈σ(C)∩Ck

n(z′) for all B,C ∈ M . (5)

(b) ([11, Prop. 1.10 (3)]) If M is even path-connected then W (M ) consists of at
most n path-connected components Ck and equation (5) holds also for these
components.

Proof. (a) Let Pn be the set of all monic polynomials of degree n equipped with
the topology of uniform convergence on compacta. The mapping M 
 A �→ det(z−
A) ∈ Pn is obviously continuous, and hence the image P of M is connected. So the
assertion follows from Proposition 6.1 in the appendix.

(b) See the given reference. �
REMARKS.

(i) We point out that the proof of part (b) is quite different from that one of part (a),
and none of the two assertions can be deduced from the other.

(ii) In general the connected components and the path-connected components are
different as the following simple example shows:

M =
{(

t + i(sin( 2π
t )) 0

0 i(2t−1)

)
: 0 < t � 1

}
.

The lemma above leads immediately to our first result.

PROPOSITION 2.2. Let X = ∏n
j=1 Xj be an arbitrary decomposition D of the

Banach space X , and let A ∈ L (X) be arbitrary. Then the block numerical range
VD(A) consists of at most n connected components C1, . . . ,Cs (s � n). Moreover, on
each component Ck the following equation holds:

∑
z∈σ(Bd)∩Ck

n(z) = ∑
z′∈σ(Bd′)∩Ck

n(z′), d,d′ ∈ SD .
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Proof. Apply Lemmata 1.2 and 2.1 (a) bearing equation (2) in mind. �
Now we direct our attention to the announced generalization of Proposition 1.1

resulting in path-connected components of VD(A) . To this end we need the following
lemma:

LEMMA 2.3. If the norm on X is smooth then (Satt(X),Tatt ) is path-connected.

Proof. Since the norm is smooth, to every x ∈ SX there exists a unique ϕx ∈ SX ′
satisfying ϕx(x) = 1. The mapping x �→ ϕx is continuous with respect to the norm
topology on SX and the weak∗ -topology on SX ′ (for details see [3, Theorem 2.2]).

Let (x,ϕx), (y,ϕy) ∈ Satt(X) be arbitrary.

(i) y �= −x : Then x+ t(y− x) �= 0 for all 0 � t � 1. Set z(t) = x+t(y−x)
‖x+t(y−x)‖ . Then

[0,1] 
 t �→ v(t) = (z(t),ϕz(t)) is a path from (x,ϕx) to (y,ϕy) .
(ii) y = −x : Choose a third point z �= x,−x , and apply (i) to x,z and z,−x . �

PROPOSITION 2.4. Let X be a Banach space equipped with a smooth norm, and
let X = ∏n

j=1 Xj be an arbitrary decomposition D of X . Let A ∈ L (X) be arbi-
trary. Then the block numerical range VD(A) consists of at most n path-connected
components W1, . . . ,Ws (s � n). Moreover on each path-connected component Wk the
following equation holds:

∑
z∈σ(Bd)∩Wk

n(z) = ∑
z′∈σ(Bd′)∩Wk

n(z′), d,d′ ∈ SD .

Proof. By Lemma 2.3 all Satt(Xj) are path-connected, since the norm is smooth
on the subspaces Xj . Hence SD is path-connected, too. Now apply Lemmata 1.2 and
2.1 (b). �

COROLLARY 2.5. Let X be uniformly convex. Then the assertions of the propo-
sition hold for every bounded operator A and every decomposition D of X .

Proof. The hypothesis on X implies that X is reflexive and that the norm on the
dual space X ′ is (uniformly) smooth (see e. g. [6, Propositions 1.e.2, 1.e.3]). Since X
is reflexive, we have VD(A) = VD ′(A′) where D ′ is the decomposition of X ′ induced
by D , (see equation (4)). �

The proof of Proposition 2.4 shows that its conclusion holds whenever SD is path-
connected. In the appendix we show, that Satt(X) is path-connected for X = C(K) ,
C0(L) , and L1(Ω,Σ,μ) even though the corresponding norms are not smooth. So we
obtain the following proposition:

PROPOSITION 2.6. Assume X = ∏ j Xj where each Xj is isometrically isomor-
phic to one of the spaces mentioned above. Then the assertions of Proposition 2.4 hold
for every bounded linear operator A on X .
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OPEN PROBLEM. Let X be a Banach space with smooth norm. Is it possible
that VD(A) is connected but not path-connected? Note that MD is path-connected and
VD(A) = W (MD ) , cf. Remark (ii) after Lemma 2.1.

3. Inclusion

In this section we show that under a rather weak restriction on the decomposition
the block numerical range of a principal operator submatrix is contained in the closure
of the block numerical range. If the underlying Banach space is reflexive, the closure
can be omitted.

In the remainder of this section, X = X1 × . . .×Xn is a fixed decomposition D
while A ∈ L (X) is arbitrary.

LEMMA 3.1. [5, Lemma 1.3] Let π be a permutation of {1, . . . ,n} . Abbreviate
the decomposition Xπ = ∏Xπ(i) by Dπ , and let Sπ : X →Xπ be given by Sπ(x1, . . . ,xn)=
(xπ(1), . . . ,xπ(n)) =: xπ . Moreover, set ‖xπ‖ = ‖Sπ(x)‖ = ‖x‖ . Then Aπ := SπAS−1

π =
(Aπ(i)π(k))i,k=1,...,n and VDπ (SπAS−1

π ) = VD(A) .

Proof. Obvious. �

DEFINITION 3.2. The decomposition D : X = ∏n
1 Xj of order n is called regular

if dim(Xj) � n for all j = 1, . . . ,n.

THEOREM 3.3. (cf. [9, Theorem 3.1]) Let D be regular. Let 1 � i1 < · · ·< ik � n
and let P = ∑k

1 Pij be the projection of X onto Xi1 × . . .×Xik =: Y . Abbreviate the

induced decomposition on Y as DY . Then VDY (PAP|Y ) ⊂ VD(A). If moreover X is
reflexive then VDY (PAP|Y ) ⊂VD(A) .

REMARK. Let A = (Aik)i,k=1,...,n be an n×n (operator) matrix. A principal sub-
matrix of size r is a submatrix of the form

(
Aikil

)
k,l=1,...,r where 1 � i1 < i2 < · · ·< ir �

n holds. Using this notion the theorem asserts that the block numerical range of every
principal submatrix C of A is contained in VD(A) (in VD(A) if X is reflexive).

Our proof is inspired by that one of [9, Theorem 3.1].
In the following we identify X with its canonical image in X ′′ , and X ′ with its

canonical image in X ′′′ .

Proof of Theorem 3.3. On account of Lemma 3.1 we may assume Y = Xn−k+1 ×
·· · ×Xn . Assume k = n− 1 and let μ ∈ VDY (PAP|Y ) be arbitrary. Then there exists
dY = ((v j,ψ j))n

j=2 with μ ∈ σ(BdY ) . Since dim(X1) � n , there exists ϕ ∈ X ′
1 of norm

1 satisfying ϕ(A1kvk) = 0 for k = 2, . . . ,n . To this ϕ there exists ξ ∈ X ′′ (∈ X if X is
reflexive) such that (ξ ,ϕ) ∈ Satt(X ′′) We set d′′ = ((ξ ,ϕ),(v2,ψ2), . . . ,(vn,ψn)) and
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obtain

Bd′′ =

⎛
⎜⎜⎜⎝

ϕ(A′′
11ξ ) 0 · · · 0

ψ2(A21x) ψ2(A22v2) · · · ψ2(A2nvn)
...

...
...

...
ψn(An1x) ψn(An2v2) · · · ψn(Annvn)

⎞
⎟⎟⎟⎠ ,

from which μ ∈ σ(Bd′′) ⊂VD ′′(A′′) ⊂VD(A) follows by equation (4).
The remainder of the proof follows by induction. �

COROLLARY 3.4. Let D be regular. Then V (Aii) ⊂VD(A) ( VD(A) in case X is
reflexive) for all i .

4. Operators with finite block numerical range

By Proposition 2.2 the block numerical range is either uncountable or finite. In
this section we characterize operators with finite block numerical range whenever the
decomposition is regular.

DEFINITION 4.1. Let D : X = ∏n
1 Xn be a given decomposition of X , and let

A = (Aik) be the corresponding operator matrix of an operator A ∈ L (X) . It is called
upper triangular if Aik = 0 for all 1 � k < i � n . The matrix is called p-similar to an
upper triangular operator matrix if there exists a permutation π of the index set N =
{1, . . . ,n} such that the operator matrix

(
Aπ(i)π(k)

)
corresponding to the decomposition

Dπ is upper triangular.

The set of eigenvalues of A is denoted by σp(A) . Our main theorem reads as
follows:

THEOREM 4.2. Let D : X = ∏n
1 Xk be a regular decomposition with the canoni-

cal projections Pj : X �→ Xj , and for A ∈ L (X) let A = (Aik) be the corresponding
representation of A as an operator matrix. The following assertions are equivalent:

(a) The block numerical range VD(A) is finite.

(b) A is p-similar to an upper triangular operator matrix and for all i there exists
λi ∈ C such that Aii = λiPi holds.

If one of these assertions holds (and therefore the other), then VD(A)= σ(A)= σp(A)=
{λ1, . . . ,λn}.

The proof will be given in the next section.

REMARKS.

(i) The theorem shows that σ(A) �=VD(A) implies that VD(A) is uncountable, even
if X is finite-dimensional.

(ii) The theorem does not hold for decompositions which are not regular. A coun-
terexample may be found in [8].
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5. The proof of Theorem 4.2

5.1. Auxiliary results

The following characterisation of operator matrices which are p-similar to upper
triangular operator matrices is a direct consequence of the proof of the result of R.
Brualdi [2, Theorem 1.4.2] restricted to the class of (0,1)-matrices the diagonal of
which consists completely of ones. It says the following1:

Let J be an n×n-matrix of 0 and 1 and assume that Jii = 1 for i = 1, . . . ,n. Then
its permanent perm(J) := ∑πpermutation∏i Jiπ(i) equals 1 if and only if there exists a

permutation π of the set N = {1, . . . ,n} such that the matrix (Jπ(i)π( j))i, j∈N is lower
triangular.

Consider the permutation σ =
(

1, 2, . . . , n
n, n−1, . . . , 1

)
. Then σ ◦π =: ρ transforms

J into an upper triangular matrix Jρ .

PROPOSITION 5.1. The operator matrix A = (Aik) is p-similar to an upper tri-
angular operator matrix if (and only if) to every permutation π �= id there exists k such
that k �= π(k) and Akπ(k) = 0 .

Proof. We consider the incidence matrix J corresponding to A , which is de-

fined by Jik =
{

1, Aik �= 0, or i = k
0, else.

By hypothesis its permanent perm(J) satisfies

perm(J) = 1. So it is p-similar to an upper triangular matrix Jρ by the previous para-
graph. But then the same is true for (Aρ(i)ρ(k)) . The remainder is obvious. �

LEMMA 5.2. Let X ,Y,Z be Banach spaces and let S : X �→ Y, T : Y �→ Z be two
bounded non-zero linear operators. Then there exists a pair (u,ϕ) ∈ Satt(Y ) such that
S′ϕ �= 0 as well as Tu �= 0 .

Proof. By hypothesis there exists v ∈ X such that Sv �= 0. Set x = Sv
‖Sv‖ . Then

there exists ψ ∈Y ′ such that (x,ψ) ∈ Satt(Y ) .
(I) If Tx �= 0 then (x,ψ) is the desired pair.
(II) Let Tx = 0. By hypothesis there exists z ∈ SY such that Tz �= 0. x and z

are linearly independent. We set wλ = λ x+z
‖λ x+z‖ for λ ∈ C . To every λ there exists

w′
λ such that (wλ ,w′

λ ) ∈ Satt(Y ) . Then Twλ = Tz
‖λ x+z‖ �= 0, and we have only to show

that there exists λ such that S′w′
λ �= 0 holds. Assuming the contrary we obtain from

x = ‖x+ z/λ‖ ·wλ − z/λ for λ > 0

0 = S′w′
λ (v) = w′

λ (Sv) = ‖Sv‖w′
λ (x)

= ‖Sv‖(‖x+ z/λ‖ ·1−w′
λ(z)/λ ) →‖Sv‖ for λ → ∞,

a contradiction. �
1In the proof mentioned above on [2, p. 18] the matrix in question is A′ .
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COROLLARY 5.3. Let Y , Z be Banach spaces, 0 �= v∈Y , and 0 �= T ∈L (Y,Z) .
Then there exists (u,ϕ) ∈ Satt(Y ) such that ϕ(v) �= 0, and 0 �= Tu.

Proof. Apply the lemma for X = C and S(λ ) = λ · v . �

LEMMA 5.4. Let X1, . . . ,Xn be arbitrary Banach spaces. For k = 1, . . . ,n−1 let
Tk be a bounded linear mapping from Xk to Xk+1 , and let Tn be a bounded linear
mapping from Xn into X1 . If Tk �= 0 holds for all k then there exist pairs (uk,ϕk) ∈
Satt(Xk) such that

ϕ1(Tnun) ·
n−1

∏
k=1

ϕk+1(Tkuk) �= 0.

Proof. (I) We apply Lemma 5.2 to X = Xn , Y = X1 , and Z = X2. There exists
(u1,ϕ1) ∈ Satt(X1) such that T1u1 �= 0, and T ′

nϕ1 �= 0.
(II) By Corollary 5.3 there exists (u2,ϕ2) ∈ Satt(X2) such that ϕ2(T1u1) �= 0,

as well as T2u2 �= 0. Repeating this construction up to k = n − 1 we obtain
(u2,ϕ2), . . . (un−1,ϕn−1) satisfying ϕk(Tk−1uk−1) �= 0, and Tkuk �= 0, for k = 2, . . . ,n−
1.

(III) We apply Corollary 5.3 again to Y = Xn , v = Tn−1un−1 , and Z = C, T =
T ′
nϕ1. We get (un,ϕn) ∈ Satt(Xn) satisfying

ϕn(v) �= 0 and 0 �= Tun = (T ′
nϕ1)(un) = ϕ1(Tnun).

The proof is complete. �

The next lemma should be known, but since we could not find any reference for it,
we include a proof:

LEMMA 5.5. Let A ∈ L (X) be arbitrary. If its numerical range V (A) is finite
then it consists of only one element λ and A = λ I holds.

Proof. Since V (A) is connected (see equation (3)), it consists of only one element
λ , say. Assume first of all that λ = 0. Then the numerical radius v(A) = 0, hence
A = 0 on account of the Bohnenblust-Karlin inequality ‖A‖ � exp(1)v(A) , see [1,
p. 7]. If λ �= 0 consider the operator A−λ I = B . Then V (B) = {0} , and the assertion
follows. �

LEMMA 5.6. Let D : X = ∏n
j=1 Xj be a regular decomposition with the canonical

projections Pi : X �→ Xi , and let A = (Aik) be the corresponding block operator matrix.
Suppose that VD(A) is finite. Then the following assertions hold:

(a) To every i ∈ {1, . . . ,n} there exists λi such that Aii = λiPi .

(b) The function C×SD 
 (λ ,d) �→ det(λ −Bd) =: Qd(λ ) is constant with respect
to d ; in other words all characteristic polynomials are equal.
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Proof. By Theorem 3.3 V (Aii) ⊂VD(A) . Since V (Aii) is connected (see equation
(3)), it consists of one element. Lemma 5.5 yields the first assertion. Let Qd(λ ) =
∑n

k=0 ak(d)λ k . Let k be arbitrary. d �→ ak(d) is a polynomial in the elements of Bd

hence continuous. On the other hand ak(d) is the k -th elementary symmetric function
of the roots of Qd(λ ) lying in VD(A) . Hence the range of d �→ ak(d) is finite. Since
SD is connected, d �→ ak(d) is constant. The assertion follows. �

COROLLARY 5.7. Let VD(A) be finite. Then we have:

(a) σ(Bd) = σ(Bd′) = VD(A) for all d,d′ ∈ SD .

(b) Each λi from Lemma 5.6 (a) is an eigenvalue of all Bd .

Proof. Use equation (2), Lemma 5.6 (a), and Theorem 3.3. �

LEMMA 5.8. Let D : X = X1×X2 be a regular decomposition, let A ∈ L (X) be
arbitrary, and let A = (Aik) be the corresponding operator matrix. If VD(A) is finite
then A is p-similar to an upper triangular operator matrix and VD(A) = σ(A) =
σp(A) consists of at most 2 elements.

Proof. Let Pj be the projection from X onto Xj with kernel Xk (k �= j ). By
Lemma 5.6 we have Aii = λiPi . Let now d = ((u1,ϕ1),(u2,ϕ2)) ∈ SD be arbitrary.
Then the associated matrix

Bd = (ϕi(Ai ju j)) =
(

λ1 ϕ1(A12u2)
ϕ2(A21u1) λ2

)

possesses the characteristic polynomial Qd(λ )= (λ −λ1)(λ −λ2)−ϕ1(A12u2)·ϕ2(A21u1) .
By Corollary 5.7 λ j is a root of Qd(λ ) for j = 1, 2, hence ϕ1(A12u2) ·ϕ2(A21u1) = 0.
Since d was arbitrary, Lemma 5.4 implies that A12 = 0 or A21 = 0 and the assertion
follows from Proposition 5.1. �

5.2. Proof of Theorem 4.2

The implication (b) ⇒ (a) is obvious.
(a) ⇒ (b): Proof by induction on n � 2 :

(I) The implication holds for n = 2 by Lemma 5.8.
(II) Suppose it holds for all regular decompositions of order n−1, (n � 3).
Claim: Theorem 4.2 holds for all regular decompositions of order n .
Proof. We set N = {1, . . . ,n} .

(i) By Lemma 5.6 Aii = λiPi for all 1 � i � n where λi ∈ σp(A) .
(ii) Let Y = ∏n−1

i=1 Xi and An−1 = (Aik)i,k=1,...,n−1 . Theorem 3.3 implies that
VDY (An−1) ⊂ VD(A) = VD(A) . By the induction hypothesis An−1 is p-similar to an
upper triangular operator matrix, that means: there exists a permutation σ̃ of the set
N \ {n} such that the matrix (Aσ̃(i)σ̃(k))i,k�n−1 satisfies

Aσ̃(i)σ̃(k) = 0 for 1 � σ̃(k) < σ̃(i) � n−1. (6)
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Setting σ(k) = σ̃(k) for k < n and σ(n) = n the matrix SσA S−1
σ satisfies equation

(6), too (where σ̃ is replaced by σ ). Hence, we may assume without loss of generality
that

Aik = 0 holds for all i, k satisfying 1 � k < i � n−1. (7)

(iii) Let id �= π be an arbitrary permutation of the set N . By Proposition 5.1 it is
enough to show that there exists j such that j �= π( j) as well as Ajπ( j) = 0. Assume
first that

π �= ρ :=
(

1 2 3 . . . n
2 3 4 . . . 1

)
.

Then there exists k � n− 1 satisfying π(k) � k If π(k) = k then the induced per-
mutation π̃ on N \ {k} =: Nk is not the identity. Consider the principal submatrix
Ak = (Ajl) j,l �=k . By the induction hypothesis there exists j ∈ Nk with π̃( j) �= j as well
as Ajπ̃( j) = 0 = Ajπ( j) .

Now assume that π(k) < k � n−1 holds. But then Akπ(k) = 0 by equation (7).
(iv) So it remains to prove that to ρ there exists j satisfying Ajρ( j) = 0. Let

d = ((uk,ϕk))k be arbitrary. Then the characteristic polynomial Qd(λ ) satisfies

Qd(λ ) = det(λ −Bd) =
n

∏
j=1

(λ −λ j)+ sign(ρ)
n

∏
j=1

ϕ j(Ajρ( j)uρ( j))

since all other products ∏n
j=1 ϕ j(Ajπ( j)uπ( j)) vanish on account of what has been proved

so far. By Corollary 5.7(a) Qd(λ j) = 0. Since d was arbitrary Lemma 5.4 implies the
existence of j such that Ajρ( j) = 0.

The proof by induction is complete. The remainder follows from representing the
Matrix (Aik) as an upper triangular matrix. �

6. Appendix

6.1. On the set of zeros of a connected set of monic polynomials

Let Pn be the set of all monic polynomials P(z) = zn + ∑n
k=1 akzn−k of degree n

equipped with the topology of uniform convergence on compacta. For each polyno-
mial P let N(P) be the set of its zeros and for z ∈ N(P) the number n(z) denotes its
multiplicity. The main result of this subsection reads as follows:

PROPOSITION 6.1. Let P ⊂Pn be a connected subset and let W (P)=
⋃

P∈P N(P)
be the set of its zeros. Then W (P) has at most n connected components C1, . . . ,Cs

(s � n). Moreover for every k � s and P,Q ∈ P the following equation holds:

∑
z∈N(P)∩Ck

n(z) = ∑
z′∈N(Q)∩Ck

n(z′) =: n(Ck). (8)

In order to prove this proposition we need the Theorem of Rouché (see e. g. [4,
Theorem III.7.7, p. 177]). To this end let P ∈ Pn be arbitrary. Let z1, . . . ,zs be the
distinct zeros of P . If s = 1 then let ε > 0 be arbitrary. Else let δ (P) = min{|zi− z j| :
i �= j} and let ε satisfy 0 < ε < δ (P)/3.
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Set B(z j,ε) = {z ∈ C : |z− z j| < ε} , m(P,z j,ε) = min{|P(z)| : |z− z j| = ε} , and

Uj(P,ε) = {Q ∈ Pn : sup{|Q(z)−P(z)| : |z− z j| = ε} < m(P,z j,ε)}.
The following lemma is a special case of Rouché’s Theorem.

LEMMA 6.2. (a) For all Q ∈U(P,z j,ε) we have ∑z∈N(Q)∩B(z j ,ε) n(z) = n(z j),
in particular N(Q)∩B(z j,ε) �= /0.

(b) For all Q ∈ ⋂
j=1,...,sU(P,z j,ε) =: U(P,ε) and all z ∈ N(Q) there exists exactly

one z j ∈ N(P) such that |z− z j| < ε.

Proof. (a) This is a direct application of Rouché’s Theorem to f = P and g =
Q−P (we use the notation of the cited reference).

(b) follows from

n = ∑
j�s

n(z j) = ∑
j�s

⎛
⎝ ∑

z∈N(Q)∩B(z j ,ε)
n(z)

⎞
⎠

︸ ︷︷ ︸
=n(z j)

. �

Furthermore we need the following lemma:

LEMMA 6.3. Let P �= /0 be a connected subset of Pn . Let /0 �=C be a (relatively)
open and closed subset of W (P) .Then the following assertions hold:

(a) For every R ∈ P we have N(R)∩C �= /0 .

(b) The function fC : R �→ ∑z∈N(R)∩C n(z) = fC(R) is constant on P .

Proof. Without loss of generality assume C �= W (P). Set D = W (P) \C and
PC = {R ∈ P : N(R)∩C �= /0} , PD = {R ∈ P : N(R) ⊂ D} . Since C �= /0 there
exists R ∈ P such that N(R)∩C �= /0 which implies that PC �= /0.

Claim: PC is open and closed. Let R∈ PC be arbitrary, let N(R) = {z1, . . . ,zs} ,
N(R) ∩C = {z1, . . . ,zr} , (r � s). Since C is open there exists ε > 0 such that⋃

j�r B(z j,ε)∩W (P) ⊂ C. Without loss of generality assume that ε < δ (R)/3. For
Q∈V (R) :=U(R,ε)∩P and j � r Lemma 6.2 yields /0 �= N(Q)∩B(z j,ε)⊂W (P)∩
B(z j,ε) ⊂C, hence Q ∈ PC, which proves that V (R) ⊂ PC , thus PC is open. Like-
wise it follows that PD is open. Since P \PC = PD the claim is proved. Since PC

is nonvoid and P is connected it follows PC = P .
Let R ∈ P and Q ∈V (R) be arbitrary. For z ∈ N(Q)∩C there exists z j such that

j � r and z ∈ B(z j,ε) by Lemma 6.2 (b). Thus we obtain

fC(Q) = ∑
z∈N(Q)∩C

n(z) =
r

∑
j=1

⎛
⎝ ∑

z∈N(Q)∩B(z j ,ε)
n(z)

⎞
⎠ (9)

=
r

∑
j=1

n(z j) = fC(R), (10)
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which implies that fC is locally constant, thus constant since P is connected. �

Proof of Proposition 6.1. Claim: W (M ) has at most n connected components:
Let P0 ∈ M be fixed. Then there exist at most n connected components Cj of

W (M ) ( j = 1, . . . ,s � n ) such that /0 �= N(P0)∩Cj since N(P0) has at most n distinct
elements.

We apply the Lemma above to C = W (M ) \⋃
j�sCj . If C �= /0 then it satisfies

the conditions of the Lemma, hence N(P0)∩C �= /0 , a contradiction, and the claim is
proved.

Finally we apply part b) of the foregoing Lemma to C =Cj and obtain the second
assertion of our Proposition. �

6.2. Path-connectedness of Satt(X) for three spaces with non-smooth norm

(I) Let X = C(K) denote the space of continuous functions on the compact space
K . Its dual is the space of all Radon-measures on K . Let x0 ∈ K be arbitrary and
( f ,μ),(g,ν) ∈ Satt(X) .

(i) Assume x0 ∈U = {x ∈ K : | f (x)| < 1}.
Then there exists a continuous function h : K → [0,1] such that h(x0) = 1 and

h(K \U) = 0. Since μ( f ) = 1 = |μ |(1K) , where 1K is the constant one function, we
obtain μ(U) = 0. Now [0,1] 
 t �→ (h((1− t) f + th)+ (1− h) f ,μ) connects ( f ,μ)
with a pair ( f1,μ) where f1(x0) = 1.

Assume now that f (x0) = exp(ia) for some a ∈ R .
Then [0,1] 
 t �→ (exp(−ita) f ),exp(ita) · μ)) is a path in Satt(X) connecting

( f ,μ) with a pair ( f1,μ1) , where again f1(x0) = 1.

(ii) In both cases [0,1] 
 t �→ ( f1,(1− t)μ1 + tδx0) is a path in Satt(X) from
( f1,μ1) to ( f1,δx0) where δx0 denotes the Dirac measure in x0 .

(iii) Analogously, we find a function g1 and a path connecting (g1,δx0) and (g,ν) .
(iv) [0,1]
 t �→ ((1− t) f1 + tg1,δx0) is a path in Satt(X) connecting ( f1,δx0) and

(g1,δx0) where f1(x0) = g1(x0) = 1.

(II) Almost the same arguments work for X = C0(L) where L is locally compact.
(III) Let X = L1(Ω,Σ,μ) be the space of integrable functions f (modulo null

functions) on a complete measure space (Ω,Σ,μ) . The functions of the dual space
L∞(Ω,Σ,μ) are referred to as ϕ , ψ , . . . . For a set M ⊂ Ω , 1M denotes the indicator
function and Mc = Ω\M refers to the complement of M .

( f ,ϕ)∈ Satt (X) holds if and only if
∫ | f |dμ = 1, |ϕ |� 1Ω , and ϕ(x)= f (x)/| f (x)|

whenever f (x) �= 0. We set Zf = f−1({0}) , Uf = Zc
f .

Let ( f ,ϕ), (g,ψ) ∈ Satt(X) be arbitrary.
(i) Define ϕ1 = 1Ug∩Zf ·ψ + 1Zg∪Uf ·ϕ and analogously ψ1 . Then [0,1] 
 t �→

( f ,(1− t)ϕ + tϕ1) connects ( f ,ϕ) and ( f ,ϕ1) . Likewise (g,ψ) and (g,ψ1) are con-
nected by a path.

(ii) Assume that A := {x ∈ Uf : g(x)/ f (x) < 0} is empty. Then (1− t) f (x) +
tg(x) �= 0 for 0 < t < 1 and x ∈Uf ∪Ug . For 0 � t � 1 set ft = (1−t) f+tg

‖(1−t) f+tg‖ . For 0 <
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t < 1 define χt = 1Uf ∪Ug
(1−t) f+tg
|(1−t) f+tg| +1Zf∩Zg((1− t)ϕ1 + tψ1) . Set χ0 = ϕ1 , χ1 = ψ1 .

Then t �→ ( ft ,χt) connects ( f ,ϕ1) and (g,ψ1).
(iii) If A �= /0 take h = 1A · ig+1Ac ·g and ξ such that (h,ξ ) ∈ Satt(X) . Now use

(h,ξ ) as an intermediate point and apply (i) and (ii) twice.
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e-mail: manfred.wolff@uni-tuebingen.de

Operators and Matrices
www.ele-math.com
oam@ele-math.com


